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ÇIĞDEM BIÇER AND CELIL NEBIYEV

Received 12 December, 2021

Abstract. In this work, we define Rad−⊕−supplemented and strongly Rad−⊕−supplemented
lattices and give some properties of these lattices. We generalize some properties of Rad−⊕
−supplemented modules to lattices. Let L be a lattice and 1= a1⊕a2⊕. . .⊕an with a1,a2, . . . ,an ∈
L. If ai/0 is Rad−⊕− supplemented for every i = 1,2, . . . ,n, then L is also Rad−⊕− supple-
mented. Let L be a distributive Rad−⊕−supplemented lattice. Then 1/u is Rad−⊕−supplemented
for every u ∈ L. We also define completely Rad−⊕−supplemented lattices and prove that every
Rad−⊕−supplemented lattice with SSP property is completely Rad−⊕− supplemented.
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1. INTRODUCTION

In this paper, every lattice is complete modular lattice with the smallest element
0 and the greatest element 1. Let L be a lattice, x,y ∈ L and x ≤ y. A sublattice
{a ∈ L|x≤ a≤ y} is called a quotient sublattice and denoted by y/x. An element y
of a lattice L is called a complement of x in L if x∧ y = 0 and x∨ y = 1, this case we
denote 1 = x⊕ y (in this case we call x and y are direct summands of L). L is said to
be complemented if each element has at least one complement in L. An element x of
L is said to be small or superfluous and denoted by x� L if y = 1 for every y ∈ L
such that x∨y = 1. The meet of all the maximal (6= 1) elements of a lattice L is called
the radical of L and denoted by r(L). An element a of L is called a supplement of
b in L if it is minimal for a∨b = 1. a is a supplement of b in a lattice L if and only
if a∨ b = 1 and a∧ b� a/0. A lattice L is called a supplemented lattice if every
element of L has a supplement in L. If every element of L has a supplement that is
a direct summand in L, then L is called a ⊕−supplemented lattice. We say that an
element y of L lies above an element x of L if x ≤ y and y� 1/x. L is said to be
hollow if every element distinct from 1 is superfluous in L, and L is said to be local
if L has the greatest element (6= 1). An element x ∈ L has ample supplements in L
if for every y ∈ L with x∨ y = 1, x has a supplement z in L with z ≤ y. L is said
to be amply supplemented, if every element of L has ample supplements in L. It is
clear that every amply supplemented lattice is supplemented. A lattice L is said to
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be distributive if x∧ (y∨ z) = (x∧ y)∨ (x∧ z) for every x,y,z ∈ L. An element y of a
lattice L is called a generalized (radical) supplement (or briefly, Rad-supplement) of
x in L if 1 = x∨ y and x∧ y ≤ r (y/0). A lattice L is said to be generalized (radical)
supplemented (or briefly, Rad-supplemented) if every element of L has a generalized
(radical) supplement in L.

Let L be a lattice. Consider the following conditions.
(D1) For every element x of L, there exist x1,x2 ∈ L such that 1 = x1⊕ x2, x1 ≤ x

and x2∧ x� x2/0.
(D3) If x1 and x2 are direct summands of L and 1 = x1∨ x2, then x1∧ x2 is also a

direct summand of L.
More informations about (amply) supplemented lattices are in [1, 2, 8]. The defin-

ition of ⊕−supplemented lattices and some informations about these lattices are in
[5]. More results about (amply) supplemented modules are in [11]. The definition of
generalized supplemented lattices and some important properties of them are in [6].
Some important properties of Rad−⊕−supplemented modules are in [4, 7, 10]. The
definition of β∗ relation on lattices and some properties of this relation are in [9]. The
definition of β∗ relation on modules and some properties of this relation are in [3].

Lemma 1. Let L be a lattice, a,b ∈ L and a be a Rad-supplement of b in L. Then
r (a/0) = a∧ r (L).

Proof. See [6, Lemma 2(b)]. �

Lemma 2. Let L be a lattice and y be a Rad-supplement of x in L. Then for a≤ x,
a∨ y is a Rad-supplement of x in 1/a.

Proof. See [6, Lemma 5]. �

Lemma 3. Let L be a lattice and a,b ∈ L. If x is a Rad-supplement of a∨ b in L
and y is a Rad-supplement of a∧ (b∨ x) in a/0, then x∨ y is a Rad-supplement of b
in L.

Proof. See [6], the proof of Lemma 7. �

2. RAD−⊕−SUPPLEMENTED LATTICES

Definition 1. Let L be a lattice. If every element of L has a Rad-supplement that
is a direct summand in L, then L is called a Rad−⊕− supplemented (or generalized
⊕− supplemented) lattice.

It is clear that every Rad−⊕−supplemented lattice is Rad-supplemented, but
the converse is not true in general (see Example 1 and Example 2). It is also clear
that every ⊕−supplemented lattice is Rad−⊕− supplemented, but the converse
is not true in general (See Example 3). Hence Rad−⊕−supplemented lattices are
more general than ⊕− supplemented lattices. Hollow and local lattices are Rad−⊕
−supplemented.
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Lemma 4. Let L be a lattice, a1,a2 ∈ L and 1 = a1⊕ a2. If a1/0 and a2/0 are
Rad−⊕−supplemented, then L is also Rad−⊕−supplemented.

Proof. Let x be any element of L. Then 0 is a Rad-supplement of a1∨a2∨ x in L.
Since a1/0 is Rad−⊕−supplemented, a1∧ (a2∨ x) has a Rad-supplement y that is a
direct summand in a1/0. Then by Lemma 3, y = y∨0 is a Rad-supplement of a2∨ x
in L. Since a2/0 is Rad−⊕− supplemented, a2 ∧ (x∨ y) has a Rad-supplement z
that is a direct summand in a2/0. Then by Lemma 3, y∨ z is a Rad-supplement
of x in L. Since y is a direct summand of a1/0 and z is a direct summand of a2/0
and 1 = a1 ⊕ a2, y∨ z = y⊕ z is a direct summand of L. Hence L is Rad−⊕−
supplemented. �

Corollary 1. Let a1,a2, . . . ,an ∈ L and 1 = a1⊕ a2⊕ . . .⊕ an. If ai/0 is Rad−⊕
−supplemented for every i = 1,2, . . . ,n, then L is also Rad−⊕−supplemented.

Proof. Clear form Lemma 4. �

Lemma 5. Let L be a Rad−⊕−supplemented lattice, u ∈ L and u = (u∧a)∨
(u∧b) for every a,b ∈ L with 1 = a⊕b. Then;

(i) 1/u is Rad−⊕−supplemented.
(ii) If u is a direct summand of L, then u/0 is also Rad −⊕−supplemented.

Proof.
(i) Let x ∈ 1/u. Since L is Rad−⊕−supplemented, x has a Rad-supplement y

that is a direct summand in L. By Lemma 2, y∨ u is a Rad-supplement of
x in 1/u. Since y is a direct summand of L, there exists z ∈ L such that 1 =
y⊕z. Here 1= (y∨u)∨(z∨u). Since u= (u∧ y)∨(u∧ z), (y∨u)∧(z∨u) =
(y∨ (u∧ y)∨ (u∧ z))∧ (z∨ (u∧ y)∨ (u∧ z)) = (y∨ (u∧ z))∧ (z∨ (u∧ y)) =
(y∧ (z∨ (u∧ y)))∨(u∧ z)= (y∧ z)∨(u∧ y)∨(u∧ z)= 0∨(u∧ y)∨(u∧ z)=
(u∧ y)∨ (u∧ z) = u. Hence 1/u is Rad −⊕−supplemented.

(ii) Let u be a direct summand of L and x∈ u/0. Since L is Rad−⊕−supplemen-
ted, there exist y,z∈ L such that 1= x∨y, x∧y≤ r (y/0)≤ r (L) and 1= y⊕z.
By hypothesis u = (u∧ y)⊕ (u∧ z). Since u is a direct summand of L, u∧ y
is also a direct summand of L. Since 1 = x∨ y and x≤ u, by modularity, u =
x∨(u∧ y). Since u∧y is a direct summand of L, by Lemma 1, r ((u∧ y)/0) =
u∧ y∧ r (L). Since x∧u∧ y = x∧ y≤ r (L) and x∧u∧ y≤ u∧ y, x∧u∧ y≤
u∧ y∧ r (L) = r ((u∧ y)/0). Hence u/0 is Rad−⊕−supplemented.

�

Corollary 2. Let L be a distributive and Rad−⊕−supplemented lattice. Then 1/u
Rad−⊕−supplemented for every u ∈ L.

Proof. Clear from Lemma 5. �

Lemma 6. Let L be a Rad−⊕−supplemented lattice with (D3) property. Then
for every direct summand u of L, u/0 is Rad−⊕−supplemented.
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Proof. Let u be a direct summand of L and x ∈ u/0. Since L is Rad−⊕− supple-
mented, there exists a direct summand y of L such that 1 = x∨ y and x∧ y≤ r (y/0).
Since u∨ y = 1 and L has (D3) property, u∧ y is a direct summand of L. Hence
u∧ y is a direct summand of u/0. By modularity, u = x∨ (u∧ y). Since x∧ u∧ y =
x∧ y ≤ r (y/0) ≤ r (L) and x∧ u∧ y ≤ u∧ y, x∧ u∧ y ≤ u∧ y∧ r (L). Since u∧ y is
a direct summand of L, by Lemma 1, u∧ y∧ r (L) = r ((u∧ y)/0). Therefore, u/0 is
Rad−⊕−supplemented. �

Proposition 1. Let 1 = a⊕b with a,b ∈ L. Then b/0 is Rad−⊕−supplemented if
and only if for every x ∈ 1/a, there exists a direct summand y of L such that y ∈ b/0,
1 = x∨ y and x∧ y≤ r (L).

Proof. (=⇒) Let x∈ 1/a. Then x∧b∈ b/0 and since b/0 is Rad−⊕− supplemen-
ted, x∧b has a Rad-supplement y that is a direct summand in b/0. Here b=(x∧b)∨y
and x∧y= x∧b∧y≤ r (y/0)≤ r (L). Since y is a direct summand of b/0, there exists
z ∈ b/0 such that b = y⊕ z. Then 1 = a⊕b = a⊕ y⊕ z and y is a direct summand of
L. Since a≤ x and b = (x∧b)∨ y, 1 = a∨b = x∨b = x∨ (x∧b)∨ y = x∨ y.

(⇐=) Let x ∈ b/0. Then a∨ x ∈ 1/a and by hypothesis, there exists a direct
summand y of L such that y ∈ b/0, 1 = a∨ x∨ y and (a∨ x)∧ y ≤ r (L). Then we
have b = b∧ 1 = b∧ (a∨ x∨ y) = (a∧b)∨ x∨ y = x∨ y and x∧ y ≤ (a∨ x)∧ y ≤
r (L). Since y is a direct summand of L, there exists z ∈ L with 1 = y⊕ z. Here
b = b∧ 1 = b∧ (y⊕ z) = y⊕ (b∧ z) and y is a direct summand of b/0. By Lemma
1, r (y/0) = y∧ r (L). Since x∧ y ≤ r (L) and x∧ y ≤ y, x∧ y ≤ y∧ r (L) = r (y/0).
Hence y is a Rad-supplement of x in b/0 and b/0 is Rad−⊕− supplemented. �

Proposition 2. Let L be a Rad−⊕−supplemented lattice, a be a direct summand
of L and for every direct summand t of L with 1 = t ∨a, t ∧a be a direct summand of
a/0. Then a/0 is Rad−⊕−supplemented.

Proof. Since a is a direct summand of L, there exists b ∈ L with 1 = a⊕ b. Let
x ∈ a/0. Since L is Rad−⊕−supplemented, there exist y,z ∈ L such that 1 = x∨ y,
x∧ y ≤ r (y/0) and 1 = y⊕ z. By x ≤ a, 1 = x∨ y = a∨ y. By hypothesis, a∧ y
is a direct summand of a/0 and since a is a direct summand of L, a∧ y is a direct
summand of L. By Lemma 1, r ((a∧ y)/0) = a∧ y∧ r (L). Here x∧ y ≤ y∧ r (L)
and x∧ a∧ y ≤ a∧ y∧ r (L) = r ((a∧ y)/0). Since 1 = x∨ y and x ≤ a, a = a∧ 1 =
a∧ (x∨ y) = x∨ (a∧ y). Hence a/0 is Rad−⊕−supplemented. �

Let x,y ∈ L. It is defined a relation β∗ on the elements of L by xβ∗y if and only if
for every t ∈ L with x∨ t = 1 then y∨ t = 1 and for every k ∈ L with y∨ k = 1 then
x∨ k = 1. (See [9, Definition 1])

Lemma 7. Let L be a Rad-supplemented lattice. If every Rad-supplement element
in L is β∗ equivalent to a direct summand of L, then L is Rad−⊕−supplemented.

Proof. Let x be any element of L and y be a Rad-supplement of x in L. By hypo-
thesis, there exists a direct summand a of L such that yβ∗a. Since x∨y = 1, x∨a = 1.
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Assume x∧a� r (L). Then there exists a maximal (6= 1) element t of L with x∧a� t.
Here (x∧a)∨ t = 1. By [9, Lemma 2], a∨ (x∧ t) = 1 and since yβ∗a, y∨ (x∧ t) = 1.
Since x∨ t = 1, by [9, Lemma 2], (x∧ y)∨ t = 1. Since x∧ y ≤ r (y/0) ≤ r (L) ≤ t,
t = (x∧ y)∨ t = 1. This contradicts with t 6= 1. Hence x∧a≤ r(L). Since a is a direct
summand of L, by Lemma 1, x∧a≤ a∧r (L) = r (a/0). Hence a is a Rad-supplement
of x in L and L is Rad −⊕− supplemented. �

Corollary 3. Let L be a Rad-supplemented lattice. If every Rad-supplement ele-
ment in L lies above a direct summand of L, then L is Rad−⊕−supplemented.

Proof. Clear from Lemma 7. �

Definition 2. Let L be a lattice. If a/0 is Rad−⊕−supplemented for every direct
summand a of L, then L is called a completely Rad−⊕− supplemented lattice.

Clearly we can see that every completely Rad−⊕−supplemented lattice is Rad−⊕
−supplemented.

Proposition 3. Let L be a Rad−⊕−supplemented lattice with (D3) property.
Then L is completely Rad−⊕−supplemented.

Proof. Clear from Lemma 6. �

Definition 3. Let L be a lattice. L is said to have SSP property if a∨b is a direct
summand for every direct summands a and b of L.

Proposition 4. Let L be a Rad−⊕−supplemented lattice with SSP property. Then
L is completely Rad−⊕−supplemented.

Proof. Let a be a direct summand of L. Then there exists b∈ L such that 1 = a⊕b.
let x ∈ 1/b. Since L is Rad−⊕−supplemented, there exists a direct summand y
of L such that x∨ y = 1 and x∧ y ≤ r (y/0). Here b∨ y is a Rad-supplement of
x in 1/b, by Lemma 2. Since b and y are direct summands of L and L has SSP
property, b∨y is a direct summand of L and there exists z∈ L such that 1= (b∨ y)⊕z.
Here 1 = (b∨ y)∨ (b∨ z) and (b∨ y)∧ (b∨ z) = b∨ ((b∨ y)∧ z) = b∨ 0 = b and
b∨ y is a direct summand of 1/b. Hence 1/b is Rad−⊕− supplemented and since
a
0 = a

a∧b
∼= a∨b

b = 1
b , a/0 also Rad−⊕−supplemented. �

Definition 4. Let L be a Rad-supplemented lattice. If every Rad-supplement ele-
ment in L is a direct summand of L, then L is called a strongly Rad−⊕− supplemen-
ted lattice.

It is clear that every strongly⊕−supplemented lattice is Rad−⊕− supplemented.
Since every lattice with (D1) property is strongly ⊕−supplemented, these lattices
are Rad −⊕−supplemented too. Every strongly Rad−⊕−supplemented lattice is
Rad−⊕−supplemented, but the converse is not true in general (See Example 3).

Lemma 8. Let 1 = a⊕b in L and x,y ∈ b/0. Then y is a Rad-supplement of x in
b/0 if and only if y is a Rad-supplement of a∨ x in L.
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Proof. (=⇒) Since y is a Rad-supplement of x in b/0, b= x∨y and x∧y≤ r (y/0).
Then 1= a⊕b= a∨x∨y and (a∨ x)∧y= (a∨ x)∧b∧y= ((a∧b)∨ x)∧y= x∧y≤
r (y/0). Hence y is a Rad-supplement of a∨ x in L.

(⇐=) Since y is a Rad-supplement of a∨ x in L, 1 = a∨ x∨ y and (a∨ x)∧ y ≤
r (y/0). Then b = 1∧b = (a∨ x∨ y)∧b = (a∧b)∨x∨y = x∨y and x∧y≤ (a∨ x)∧
y≤ r (y/0). Hence y is a Rad-supplement of x in b/0. �

Lemma 9. Let L be a strongly Rad−⊕−supplemented lattice. Then a/0 is
strongly Rad−⊕−supplemented for every direct summand a of L.

Proof. Let a be a direct summand of L and 1 = a⊕b with b ∈ L. Let y be a Rad-
supplement of x in a/0. By Lemma 8, y is a Rad-supplement of b∨x in L. Since L is
strongly Rad−⊕− supplemented, y is a direct summand of L. By this, there exists
z ∈ L with 1 = y⊕ z. By modularity, a = a∧1 = a∧ (y⊕ z) = y⊕ (a∧ z). Hence y is
a direct summand of a/0 and a/0 is strongly Rad−⊕−supplemented. �

Corollary 4. Every strongly Rad−⊕−supplemented lattice is completely Rad−⊕
−supplemented.

Proof. Clear from Lemma 9. �

Example 1. Consider the lattice L = {1,a,b,c,0} given by the following diagram;

1
↗ ↖

b c
↖ ↗

a
↑
0

Then L is Rad-supplemented but not Rad−⊕−supplemented.

Example 2. Consider the lattice L = {1,a,b,c,d,e,0} given by the following dia-
gram;

1
↗ ↖

a b
↖ ↗ ↖

c d
↖ ↗

e
↑
0

Then L is Rad-supplemented but not Rad−⊕−supplemented.
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Example 3. Consider the interval [0,1] with natural topology. Let P be the set of
all closed subsets of [0,1]. P is complete modular lattice by the inclusion (See[1,

Example 2.10]). Here ∧
i∈I

Ci = ∩
i∈I

Ci and ∨
i∈I

Ci = ∪
i∈I

Ci for every Ci ∈ P(i ∈ I)
(
∪
i∈I

Ci

is the closure of ∪
i∈I

Ci

)
. By [5, Example 3], P is amply supplemented but not ⊕

-supplemented. Since P is amply supplemented, then it is Rad-supplemented too.
Since P is not ⊕−supplemented, it is not strongly Rad−⊕−supplemented too. It is
clear that r (P) = [0,1] and hence P is Rad−⊕− supplemented.

REFERENCES

[1] R. Alizade and S. E. Toksoy, “Cofinitely weak supplemented lattices,” Indian J. Pure Appl. Math.,
vol. 40, no. 5, pp. 337–346, 2009.

[2] R. Alizade and S. E. Toksoy, “Cofinitely supplemented modular lattices,” Arabian Journal for
Science and Engineering, vol. 36, no. 6, p. 919, Aug 2011, doi: 10.1007/s13369-011-0095-z.
[Online]. Available: https://doi.org/10.1007/s13369-011-0095-z

[3] G. F. Birkenmeier, F. Takil Mutlu, C. Nebiyev, N. Sokmez, and A. Tercan, “Goldie*-supplemented
modules.” Glasg. Math. J., vol. 52A, pp. 41–52, 2010, doi: 10.1017/S0017089510000212.
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