

Miskolc Mathematical Notes Vol. 24 (2023), No. 2, pp. 665–671

$RAD - \oplus -SUPPLEMENTED LATTICES$

ÇIĞDEM BIÇER AND CELIL NEBIYEV

Received 12 December, 2021

Abstract. In this work, we define $\operatorname{Rad} - \oplus$ -supplemented and strongly $\operatorname{Rad} - \oplus$ -supplemented lattices and give some properties of these lattices. We generalize some properties of $\operatorname{Rad} - \oplus$ -supplemented modules to lattices. Let *L* be a lattice and $1 = a_1 \oplus a_2 \oplus \ldots \oplus a_n$ with $a_1, a_2, \ldots, a_n \in L$. If $a_i/0$ is $\operatorname{Rad} - \oplus$ - supplemented for every $i = 1, 2, \ldots, n$, then *L* is also $\operatorname{Rad} - \oplus$ - supplemented for every $u \in L$. We also define completely $\operatorname{Rad} - \oplus$ -supplemented lattices and prove that every $\operatorname{Rad} - \oplus$ -supplemented lattice with SSP property is completely $\operatorname{Rad} - \oplus$ - supplemented.

2010 Mathematics Subject Classification: 06C05; 06C15

Keywords: lattices, radical, supplemented Lattices, generalized (radical) supplemented lattices

1. INTRODUCTION

In this paper, every lattice is complete modular lattice with the smallest element 0 and the greatest element 1. Let L be a lattice, $x, y \in L$ and $x \leq y$. A sublattice $\{a \in L | x \le a \le y\}$ is called a *quotient sublattice* and denoted by y/x. An element y of a lattice *L* is called a *complement* of *x* in *L* if $x \wedge y = 0$ and $x \vee y = 1$, this case we denote $1 = x \oplus y$ (in this case we call x and y are *direct summands* of L). L is said to be *complemented* if each element has at least one complement in L. An element x of L is said to be *small* or *superfluous* and denoted by $x \ll L$ if y = 1 for every $y \in L$ such that $x \lor y = 1$. The meet of all the maximal $(\neq 1)$ elements of a lattice L is called the radical of L and denoted by r(L). An element a of L is called a supplement of b in L if it is minimal for $a \lor b = 1$. a is a supplement of b in a lattice L if and only if $a \lor b = 1$ and $a \land b \ll a/0$. A lattice L is called a supplemented lattice if every element of L has a supplement in L. If every element of L has a supplement that is a direct summand in L, then L is called a \oplus -supplemented lattice. We say that an element y of L lies above an element x of L if $x \le y$ and $y \ll 1/x$. L is said to be hollow if every element distinct from 1 is superfluous in L, and L is said to be local if L has the greatest element $(\neq 1)$. An element $x \in L$ has ample supplements in L if for every $y \in L$ with $x \lor y = 1$, x has a supplement z in L with $z \le y$. L is said to be *amply supplemented*, if every element of L has ample supplements in L. It is clear that every amply supplemented lattice is supplemented. A lattice L is said to

© 2023 Miskolc University Press

be *distributive* if $x \land (y \lor z) = (x \land y) \lor (x \land z)$ for every $x, y, z \in L$. An element y of a lattice L is called a *generalized (radical) supplement* (or briefly, *Rad-supplement*) of x in L if $1 = x \lor y$ and $x \land y \le r(y/0)$. A lattice L is said to be *generalized (radical) supplemented* (or briefly, *Rad-supplemented*) if every element of L has a generalized (radical) supplement in L.

Let *L* be a lattice. Consider the following conditions.

- (D1) For every element x of L, there exist $x_1, x_2 \in L$ such that $1 = x_1 \oplus x_2, x_1 \leq x$ and $x_2 \wedge x \ll x_2/0$.
- (D3) If x_1 and x_2 are direct summands of L and $1 = x_1 \lor x_2$, then $x_1 \land x_2$ is also a direct summand of L.

More informations about (amply) supplemented lattices are in [1,2,8]. The definition of \oplus -supplemented lattices and some informations about these lattices are in [5]. More results about (amply) supplemented modules are in [11]. The definition of generalized supplemented lattices and some important properties of them are in [6]. Some important properties of Rad- \oplus -supplemented modules are in [4,7,10]. The definition of β_* relation on lattices and some properties of this relation are in [9]. The definition of β^* relation on modules and some properties of this relation are in [3].

Lemma 1. Let *L* be a lattice, $a, b \in L$ and *a* be a Rad-supplement of *b* in *L*. Then $r(a/0) = a \wedge r(L)$.

Proof. See [6, Lemma 2(b)].

Lemma 2. Let *L* be a lattice and *y* be a Rad-supplement of *x* in *L*. Then for $a \le x$, $a \lor y$ is a Rad-supplement of *x* in 1/a.

Proof. See [6, Lemma 5].

Lemma 3. Let L be a lattice and $a, b \in L$. If x is a Rad-supplement of $a \lor b$ in L and y is a Rad-supplement of $a \land (b \lor x)$ in a/0, then $x \lor y$ is a Rad-supplement of b in L.

Proof. See [6], the proof of Lemma 7.

2. Rad
$$\oplus$$
 -Supplemented Lattices

Definition 1. Let *L* be a lattice. If every element of *L* has a Rad-supplement that is a direct summand in *L*, then *L* is called a $\operatorname{Rad} - \oplus -$ supplemented (or generalized $\oplus -$ supplemented) lattice.

It is clear that every $Rad - \oplus$ -supplemented lattice is Rad-supplemented, but the converse is not true in general (see Example 1 and Example 2). It is also clear that every \oplus -supplemented lattice is $Rad - \oplus$ - supplemented, but the converse is not true in general (See Example 3). Hence $Rad - \oplus$ -supplemented lattices are more general than \oplus - supplemented lattices. Hollow and local lattices are $Rad - \oplus$ -supplemented. **Lemma 4.** Let *L* be a lattice, $a_1, a_2 \in L$ and $1 = a_1 \oplus a_2$. If $a_1/0$ and $a_2/0$ are $Rad - \oplus -supplemented$, then *L* is also $Rad - \oplus -supplemented$.

Proof. Let *x* be any element of *L*. Then 0 is a Rad-supplement of $a_1 \lor a_2 \lor x$ in *L*. Since $a_1/0$ is Rad- \oplus -supplemented, $a_1 \land (a_2 \lor x)$ has a Rad-supplement *y* that is a direct summand in $a_1/0$. Then by Lemma 3, $y = y \lor 0$ is a Rad-supplement of $a_2 \lor x$ in *L*. Since $a_2/0$ is Rad- \oplus - supplemented, $a_2 \land (x \lor y)$ has a Rad-supplement *z* that is a direct summand in $a_2/0$. Then by Lemma 3, $y \lor z$ is a Rad-supplement *z* that is a direct summand in $a_2/0$. Then by Lemma 3, $y \lor z$ is a Rad-supplement of x in *L*. Since *y* is a direct summand of $a_1/0$ and *z* is a direct summand of $a_2/0$ and $1 = a_1 \oplus a_2$, $y \lor z = y \oplus z$ is a direct summand of *L*. Hence *L* is Rad- \oplus -supplemented.

Corollary 1. Let $a_1, a_2, ..., a_n \in L$ and $1 = a_1 \oplus a_2 \oplus ... \oplus a_n$. If $a_i/0$ is $Rad - \oplus$ -supplemented for every i = 1, 2, ..., n, then L is also $Rad - \oplus$ -supplemented.

Proof. Clear form Lemma 4.

Lemma 5. Let *L* be a Rad $-\oplus$ -supplemented lattice, $u \in L$ and $u = (u \land a) \lor (u \land b)$ for every $a, b \in L$ with $1 = a \oplus b$. Then;

(i) 1/u is $Rad - \oplus$ -supplemented.

(ii) If u is a direct summand of L, then u/0 is also Rad $- \oplus$ -supplemented.

Proof.

- (i) Let $x \in 1/u$. Since *L* is Rad- \oplus -supplemented, *x* has a Rad-supplement *y* that is a direct summand in *L*. By Lemma 2, $y \lor u$ is a Rad-supplement of *x* in 1/u. Since *y* is a direct summand of *L*, there exists $z \in L$ such that $1 = y \oplus z$. Here $1 = (y \lor u) \lor (z \lor u)$. Since $u = (u \land y) \lor (u \land z), (y \lor u) \land (z \lor u) = (y \lor (u \land y) \lor (u \land z)) \land (z \lor (u \land y) \lor (u \land z)) = (y \lor (u \land z)) \land (z \lor (u \land y)) = (y \land (z \lor (u \land y))) \lor (u \land z) = (y \land z) \lor (u \land y) \lor (u \land z) = 0 \lor (u \land y) \lor (u \land z) = (u \land y) \lor (u \land z) = u$. Hence 1/u is Rad $-\oplus$ -supplemented.
- (ii) Let *u* be a direct summand of *L* and $x \in u/0$. Since *L* is Rad $-\oplus$ -supplemented, there exist $y, z \in L$ such that $1 = x \lor y, x \land y \leq r(y/0) \leq r(L)$ and $1 = y \oplus z$. By hypothesis $u = (u \land y) \oplus (u \land z)$. Since *u* is a direct summand of *L*, $u \land y$ is also a direct summand of *L*. Since $1 = x \lor y$ and $x \leq u$, by modularity, $u = x \lor (u \land y)$. Since $u \land y$ is a direct summand of *L*, by Lemma 1, $r((u \land y)/0) = u \land y \land r(L)$. Since $x \land u \land y \leq r(L)$ and $x \land u \land y \leq u \land y, x \land u \land y \leq u \land y \land r(L) = r((u \land y)/0)$. Hence u/0 is Rad $-\oplus$ -supplemented.

Corollary 2. Let *L* be a distributive and $Rad - \oplus$ -supplemented lattice. Then 1/u $Rad - \oplus$ -supplemented for every $u \in L$.

Proof. Clear from Lemma 5.

Lemma 6. Let L be a Rad $-\oplus$ -supplemented lattice with (D3) property. Then for every direct summand u of L, u/0 is Rad $-\oplus$ -supplemented.

Proof. Let *u* be a direct summand of *L* and $x \in u/0$. Since *L* is $\operatorname{Rad} - \oplus -$ supplemented, there exists a direct summand *y* of *L* such that $1 = x \lor y$ and $x \land y \le r(y/0)$. Since $u \lor y = 1$ and *L* has (*D*3) property, $u \land y$ is a direct summand of *L*. Hence $u \land y$ is a direct summand of u/0. By modularity, $u = x \lor (u \land y)$. Since $x \land u \land y = x \land y \le r(y/0) \le r(L)$ and $x \land u \land y \le u \land y, x \land u \land y \le u \land y \land r(L)$. Since $u \land y$ is a direct summand of *L*, by Lemma 1, $u \land y \land r(L) = r((u \land y)/0)$. Therefore, u/0 is Rad $- \oplus$ –supplemented.

Proposition 1. Let $1 = a \oplus b$ with $a, b \in L$. Then b/0 is $Rad - \oplus$ -supplemented if and only if for every $x \in 1/a$, there exists a direct summand y of L such that $y \in b/0$, $1 = x \lor y$ and $x \land y \le r(L)$.

Proof. (\Longrightarrow) Let $x \in 1/a$. Then $x \land b \in b/0$ and since b/0 is Rad $-\oplus$ - supplemented, $x \land b$ has a Rad-supplement y that is a direct summand in b/0. Here $b = (x \land b) \lor y$ and $x \land y = x \land b \land y \le r(y/0) \le r(L)$. Since y is a direct summand of b/0, there exists $z \in b/0$ such that $b = y \oplus z$. Then $1 = a \oplus b = a \oplus y \oplus z$ and y is a direct summand of L. Since $a \le x$ and $b = (x \land b) \lor y$, $1 = a \lor b = x \lor b = x \lor (x \land b) \lor y = x \lor y$.

(\Leftarrow) Let $x \in b/0$. Then $a \lor x \in 1/a$ and by hypothesis, there exists a direct summand y of L such that $y \in b/0$, $1 = a \lor x \lor y$ and $(a \lor x) \land y \le r(L)$. Then we have $b = b \land 1 = b \land (a \lor x \lor y) = (a \land b) \lor x \lor y = x \lor y$ and $x \land y \le (a \lor x) \land y \le$ r(L). Since y is a direct summand of L, there exists $z \in L$ with $1 = y \oplus z$. Here $b = b \land 1 = b \land (y \oplus z) = y \oplus (b \land z)$ and y is a direct summand of b/0. By Lemma $1, r(y/0) = y \land r(L)$. Since $x \land y \le r(L)$ and $x \land y \le y, x \land y \le y \land r(L) = r(y/0)$. Hence y is a Rad-supplement of x in b/0 and b/0 is Rad- \oplus -supplemented. \Box

Proposition 2. Let L be a Rad- \oplus -supplemented lattice, a be a direct summand of L and for every direct summand t of L with $1 = t \lor a$, $t \land a$ be a direct summand of a/0. Then a/0 is Rad- \oplus -supplemented.

Proof. Since *a* is a direct summand of *L*, there exists $b \in L$ with $1 = a \oplus b$. Let $x \in a/0$. Since *L* is Rad $-\oplus$ -supplemented, there exist $y, z \in L$ such that $1 = x \lor y$, $x \land y \leq r(y/0)$ and $1 = y \oplus z$. By $x \leq a$, $1 = x \lor y = a \lor y$. By hypothesis, $a \land y$ is a direct summand of a/0 and since *a* is a direct summand of *L*, $a \land y$ is a direct summand of *L*. By Lemma 1, $r((a \land y)/0) = a \land y \land r(L)$. Here $x \land y \leq y \land r(L)$ and $x \land a \land y \leq a \land y \land r(L) = r((a \land y)/0)$. Since $1 = x \lor y$ and $x \leq a$, $a = a \land 1 = a \land (x \lor y) = x \lor (a \land y)$. Hence a/0 is Rad $-\oplus$ -supplemented. \Box

Let $x, y \in L$. It is defined a relation β_* on the elements of *L* by $x\beta_*y$ if and only if for every $t \in L$ with $x \lor t = 1$ then $y \lor t = 1$ and for every $k \in L$ with $y \lor k = 1$ then $x \lor k = 1$. (See [9, Definition 1])

Lemma 7. Let *L* be a Rad-supplemented lattice. If every Rad-supplement element in *L* is β_* equivalent to a direct summand of *L*, then *L* is $Rad - \oplus -supplemented$.

Proof. Let *x* be any element of *L* and *y* be a Rad-supplement of *x* in *L*. By hypothesis, there exists a direct summand *a* of *L* such that $y\beta_*a$. Since $x \lor y = 1$, $x \lor a = 1$.

668

Assume $x \land a \nleq r(L)$. Then there exists a maximal $(\neq 1)$ element *t* of *L* with $x \land a \nleq t$. Here $(x \land a) \lor t = 1$. By [9, Lemma 2], $a \lor (x \land t) = 1$ and since $y\beta_*a$, $y \lor (x \land t) = 1$. Since $x \lor t = 1$, by [9, Lemma 2], $(x \land y) \lor t = 1$. Since $x \land y \le r(y/0) \le r(L) \le t$, $t = (x \land y) \lor t = 1$. This contradicts with $t \ne 1$. Hence $x \land a \le r(L)$. Since *a* is a direct summand of *L*, by Lemma 1, $x \land a \le a \land r(L) = r(a/0)$. Hence *a* is a Rad-supplement of *x* in *L* and *L* is Rad $- \oplus$ – supplemented.

Corollary 3. Let L be a Rad-supplemented lattice. If every Rad-supplement element in L lies above a direct summand of L, then L is $Rad - \oplus -$ supplemented.

Proof. Clear from Lemma 7.

Definition 2. Let *L* be a lattice. If a/0 is Rad $-\oplus$ -supplemented for every direct summand *a* of *L*, then *L* is called a completely Rad $-\oplus$ - supplemented lattice.

Clearly we can see that every completely $Rad - \oplus -supplemented$ lattice is $Rad - \oplus -supplemented$.

Proposition 3. Let L be a $Rad - \oplus$ -supplemented lattice with (D3) property. Then L is completely $Rad - \oplus$ -supplemented.

Proof. Clear from Lemma 6.

Definition 3. Let *L* be a lattice. *L* is said to have SSP property if $a \lor b$ is a direct summand for every direct summands *a* and *b* of *L*.

Proposition 4. Let *L* be a $Rad - \oplus$ -supplemented lattice with SSP property. Then *L* is completely $Rad - \oplus$ -supplemented.

Proof. Let *a* be a direct summand of *L*. Then there exists $b \in L$ such that $1 = a \oplus b$. let $x \in 1/b$. Since *L* is Rad $-\oplus$ -supplemented, there exists a direct summand *y* of *L* such that $x \lor y = 1$ and $x \land y \leq r(y/0)$. Here $b \lor y$ is a Rad-supplement of *x* in 1/b, by Lemma 2. Since *b* and *y* are direct summands of *L* and *L* has SSP property, $b \lor y$ is a direct summand of *L* and there exists $z \in L$ such that $1 = (b \lor y) \oplus z$. Here $1 = (b \lor y) \lor (b \lor z)$ and $(b \lor y) \land (b \lor z) = b \lor ((b \lor y) \land z) = b \lor 0 = b$ and $b \lor y$ is a direct summand of 1/b. Hence 1/b is Rad $-\oplus$ -supplemented and since $\frac{a}{0} = \frac{a}{a \land b} \cong \frac{a \lor b}{b} = \frac{1}{b}$, a/0 also Rad $-\oplus$ -supplemented.

Definition 4. Let *L* be a Rad-supplemented lattice. If every Rad-supplement element in *L* is a direct summand of *L*, then *L* is called a strongly $\text{Rad} - \oplus -$ supplemented lattice.

It is clear that every strongly \oplus -supplemented lattice is Rad- \oplus -supplemented. Since every lattice with (*D*1) property is strongly \oplus -supplemented, these lattices are Rad - \oplus -supplemented too. Every strongly Rad- \oplus -supplemented lattice is Rad- \oplus -supplemented, but the converse is not true in general (See Example 3).

Lemma 8. Let $1 = a \oplus b$ in L and $x, y \in b/0$. Then y is a Rad-supplement of x in b/0 if and only if y is a Rad-supplement of $a \lor x$ in L.

Proof. (\Longrightarrow) Since *y* is a Rad-supplement of *x* in *b*/0, *b* = *x* \lor *y* and *x* \land *y* \le *r*(*y*/0). Then $1 = a \oplus b = a \lor x \lor y$ and $(a \lor x) \land y = (a \lor x) \land b \land y = ((a \land b) \lor x) \land y = x \land y \le r(y/0)$. Hence *y* is a Rad-supplement of $a \lor x$ in *L*.

(\Leftarrow) Since y is a Rad-supplement of $a \lor x$ in L, $1 = a \lor x \lor y$ and $(a \lor x) \land y \le r(y/0)$. Then $b = 1 \land b = (a \lor x \lor y) \land b = (a \land b) \lor x \lor y = x \lor y$ and $x \land y \le (a \lor x) \land y \le r(y/0)$. Hence y is a Rad-supplement of x in b/0.

Lemma 9. Let L be a strongly $Rad - \oplus -supplemented$ lattice. Then a/0 is strongly $Rad - \oplus -supplemented$ for every direct summand a of L.

Proof. Let *a* be a direct summand of *L* and $1 = a \oplus b$ with $b \in L$. Let *y* be a Radsupplement of *x* in *a*/0. By Lemma 8, *y* is a Rad-supplement of $b \lor x$ in *L*. Since *L* is strongly Rad- \oplus - supplemented, *y* is a direct summand of *L*. By this, there exists $z \in L$ with $1 = y \oplus z$. By modularity, $a = a \land 1 = a \land (y \oplus z) = y \oplus (a \land z)$. Hence *y* is a direct summand of *a*/0 and *a*/0 is strongly Rad- \oplus -supplemented.

Corollary 4. Every strongly $Rad - \oplus -supplemented$ lattice is completely $Rad - \oplus -supplemented$.

Proof. Clear from Lemma 9.

Example 1. Consider the lattice $L = \{1, a, b, c, 0\}$ given by the following diagram;

Then *L* is Rad-supplemented but not $Rad - \oplus -$ supplemented.

Example 2. Consider the lattice $L = \{1, a, b, c, d, e, 0\}$ given by the following diagram;

Then *L* is Rad-supplemented but not $Rad - \oplus -$ supplemented.

670

Example 3. Consider the interval [0,1] with natural topology. Let *P* be the set of all closed subsets of [0,1]. *P* is complete modular lattice by the inclusion (See[1, Example 2.10]). Here $\bigwedge_{i \in I} C_i = \bigcap_{i \in I} C_i$ and $\bigvee_{i \in I} C_i = \overline{\bigcup_{i \in I} C_i}$ for every $C_i \in P(i \in I) \left(\overline{\bigcup_{i \in I} C_i} \right)$ is the closure of $\bigcup_{i \in I} C_i$. By [5, Example 3], *P* is amply supplemented but not \oplus -supplemented. Since *P* is amply supplemented, then it is Rad-supplemented too. It is clear that r(P) = [0, 1] and hence *P* is Rad- \oplus -supplemented.

REFERENCES

- R. Alizade and S. E. Toksoy, "Cofinitely weak supplemented lattices," *Indian J. Pure Appl. Math.*, vol. 40, no. 5, pp. 337–346, 2009.
- R. Alizade and S. E. Toksoy, "Cofinitely supplemented modular lattices," Arabian Journal for Science and Engineering, vol. 36, no. 6, p. 919, Aug 2011, doi: 10.1007/s13369-011-0095-z.
 [Online]. Available: https://doi.org/10.1007/s13369-011-0095-z
- [3] G. F. Birkenmeier, F. Takil Mutlu, C. Nebiyev, N. Sokmez, and A. Tercan, "Goldie*-supplemented modules." *Glasg. Math. J.*, vol. 52A, pp. 41–52, 2010, doi: 10.1017/S0017089510000212.
- [4] H. Çalışıcı and E. Türkmen, "Generalized ⊕-supplemented modules." Algebra Discrete Math., vol. 10, no. 2, pp. 10–18, 2010.
- [5] Ç. Biçer and C. Nebiyev, "
 -supplemented lattices," *Miskolc Math. Notes*, vol. 20, no. 2, pp. 773–780, 2019, doi: 10.18514/MMN.2019.2806.
- [6] Ç. Biçer, C. Nebiyev, and A. Pancar, "Generalized supplemented lattices," *Miskolc Math. Notes*, vol. 19, no. 1, pp. 141–147, 2018, doi: 10.18514/MMN.2018.1974.
- [7] Ş. Ecevit, M. T. Koşan, and R. Tribak, "Rad-⊕-supplemented modules and cofinitely Rad-⊕-supplemented modules." *Algebra Collog.*, vol. 19, no. 4, pp. 637–648, 2012, doi: 10.1142/S1005386712000508.
- [8] G. Călugăreanu, *Lattice Concepts of Module Theory*. Dordrecht: Kluwer Academic Publishers, 2000, vol. 22.
- [9] C. Nebiyev and H. H. Ökten, "β_{*} relation on lattices," *Miskolc Math. Notes*, vol. 18, no. 2, pp. 993–999, 2017, doi: 10.18514/MMN.2017.1782.
- [10] Y. Talebi, A. R. M. Hamzekolaei, and D. Keskin Tutuncu, "On Rad-⊕-supplemented modules." *Hadronic J.*, vol. 32, no. 5, pp. 505–512, 2009.
- [11] R. Wisbauer, *Foundations Of Module And Ring Theory. A Handbook For Study And Research.* Philadelphia etc.: Gordon and Breach Science Publishers, 1991, vol. 3.

Authors' addresses

Çiğdem Biçer

(**Corresponding author**) Ondokuz Mayıs University, Department of Mathematics, Kurupelit-Atakum, Samsun, Turkey

E-mail address: cigdem_bicer184@hotmail.com

Celil Nebiyev

Ondokuz Mayıs University, Department of Mathematics, Kurupelit-Atakum, Samsun, Turkey *E-mail address:* cnebiyev@omu.edu.tr