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Abstract. This paper studies the state estimation problem for memristor-based stochastic neural
networks (MSNNs) with mixed variable delays. A new Lyapunov-Krasovskii functional (LKF)
with quadruple integral terms is incorporated. Then, asymptotic stability conditions are estab-
lished for the error system using a linear matrix inequality technique. The estimator gain can be
obtained by solving the linear matrix inequalities. Numerical simulations are given to demon-
strate the effectiveness and superiority of the new scheme.
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1. INTRODUCTION

The memristor-based neural networks (MNNs) made of hybrid complementary
metal-oxide semiconductors have a vast range of applications in bioinspired engi-
neering [5, 7, 8]. One can get a good range of useful applications in new classes of
artificial neural systems [8], neural learning circuits [ 1 5], associative memories [5] by
investigating MNNSs. Recently, many research works have been published on MNNs
[4,12]. In the electronic circuit implementation of the neural networks (NNs), time
delay plays a vital role due to the finite switching speed of amplifiers [3, 16]. The
existence of time delays may cause divergence and instability in system performance
[16]. A particular class of time delay exists in engineering systems, called time-
varying interval delays, which generally exists in networked control systems [23]. In
the previous decade, distributed delays were found in the realistic NN model, and
significant research attention was brought to the stability of NNs with discrete and
distributed time-varying delays [1,24]. Thus, analyzing the dynamics of NNs with
mixed variable delays has attracted more research attention [4, 12].

The first author is supported by Grant-in-Aid for Research Activity Start-up No.20K23328, funded
by Japan Society for the Promotion of Science (JSPS).

© 2023 Miskolc University Press


http://dx.doi.org/10.18514/MMN.2023.4028

1496 R. SARAVANAKUMAR AND H. DUTTA

In practice, synaptic transmission is a silent process brought on by the cause of
random probabilities in the actual neuron system. The methods in [1,20] show that
some stochastic inputs can destabilize or degrade NNs. So, it is essential to study
stochastic perturbations, and their effects on the NNs [18,22]. In addition, the state
estimation problem for stochastic neural networks (SNN5s) is a more challenging task
than for the deterministic NNs. Thus, it is of great importance to study state estima-
tion problems for NNs with stochasticities [6, 19].

The state estimation problem for NNs has brought up a lot of research interest in
the current decade (see [9, 10]). There are some difficulties in estimating the neur-
ons in NNs due to the complicated composition of NNs. Therefore, it is challenging
and essential to study the state estimation problem of NNs. In recent years, the state
estimation of NNs was proposed in [2, 1 1, 14, 17]. In [18], synchronization of MS-
NNs with mixed delays has been proposed. Stability criteria for MSNNs with mixed
delays were considered in [14]. State estimation problem for delayed generalized
NNs was studied in [16]. Exponential stability of uncertain SNNs with mixed delays
was established in [6]. Stability criteria for Markovian jump static SNNs with time
delays are considered in [19]. To the author’s best knowledge, state estimation of
MSNNs with mixed variable delays has not been completely studied yet. Hence, our
primary intention is to study the state estimation for delayed MSNNSs.

The main contribution of this paper are as follows:

(1) Most of the existing results in the literature consider the state estimation prob-
lems for only deterministic cases. Therefore, the state estimation problem for
MSNNs with mixed variable delays is considered in this paper. A novel ap-
proach is proposed to solve the considered problem.

(2) In this article, a stochastic quadruple integral LKF is proposed to deal with
the state estimation problem for MSNNs with mixed time-varying delays.

(3) The quadruple integral term of activation function such as

0 0 r0 pt - 0 ,0 gt
/ / / / e(s)dsdxdydp and / / / / e(s)dsdxdydp
- Jp Jy Jt+x -0 Jp Jy Jt+x

are utilized in estimating the time derivative of the LKF.

From the above comments, the main focus is on the state estimation problem for
MSNNs with mixed variable delays. By establishing a new quadruple stochastic
integral LKF and using the linear matrix inequalities (LMIs) technique, a sufficient
condition for the feasibility of the state estimation problem has been presented, which
assures the asymptotic stability of the estimation error system. At last, an example is
provided to reveal the usefulness and superiority of our approach.

Notation 1. R" denotes the n-dimensional Euclidean space, and R"*" denotes the
set of all n x n real matrices. Y7 denotes the matrix transpose of Y. X > 0 denotes
that X is a real symmetric positive definite matrix. / denotes the identity matrix. *
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denotes the term that is induced by symmetry. diag{a,b,...,z} denotes the block-
diagonal matrix with a,b, ...,z in the diagonal entries.

2. PROBLEM STATEMENT AND PRELIMINARIES

As in [5], the memductance of a memristor is given as ®(¢) = %Ef), where dg(0)
denotes the charge passing through the memristor and ¢ denotes the flux. Since ¢ and

¢, respectively, represent the time integral of the current i(7) and voltage v(¢) applied
to the memristor; namely ¢(¢) = [*_ i(t)dt, and ¢(¢) = [*_, v(t)d7 the memductance

@ is the function of voltage v and ®(v) = %EI?) = 23% = é((tt))

Current

4
Voltage

FIGURE 1. Typical cur-
rent voltage characteris-
tic of memristor with a
sinusoidal current source

[8].

FIGURE 2. Characteris-
tic of the Piece-wise li-
near model of memristor

[8].

The mathematical model of the memductance is presented to accurately describe
the memory function and the hysteresis properties of the memory, according to the
current-voltage characteristics of the memory in Figure 1:

@' (v(1)), v(s) s € (1 —p.1);
o(v(t)) = q"(v(1)), v(s) T,s € (t—p,t; (2.1)
lim, ,,- ®(v(s)), V(s)unchage,s € (t—p,t],

where 1 means increase, | means decrease, p is a sufficiently small positive constant,
limg_;- is either equal to @'(v(r)) or @"(v(¢)), and it means that the memductance
keeps the voltage value. Hence, the memductance function may be discontinuous.
As mentioned in [5], the memristor must display two adequate equilibrium levels,
Ry and R;, where Ry > R1, which makes it easy to switch between high resistance
levels. Fast resistance as low as possible, or vice versa when consuming as little
energy as possible. Therefore, with this property a memductance of the memristor
can be defined as (2.1), where the constants defined by @' (v(7)) = @' and ®" (v(r)) =
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®". Figure 2 shows the current-voltage characteristics of this memristor. The use of
memristors to change the resistance of the circuit sensor in the connection of the NN
called the MNN. Now, consider the MSNN model based on the methods in [8]:

dx(t) = [=Ax(t) + Wo(x) £ (x(2)) + W1 (x) f(x(1 — (1))
)dsdt + [Ex(t) + Eyx(t — 9(t))

W [ et
T Ho(x) f(x(t)) + Hi () f(x(t — (1)) 22

e [ ) dslas().

where
x(t) = [x1(2),x2(t),...,x,(¢)]" is the state vector;

A =diag{a(1),ax(t), ..., an(1)},
(x) = Woij (fj(xj( ) — x,( ))]nxn7
(x) = [wij (f(xj (1 = 0(1))) = xi(2))] e

9= e ([, ssohas—si0)|

(
(x) = [hoij (f;(x;(2)) — t)]nxn’

() = [l (f (et = 0(2))) = xi())] e s
(

9= [ sls)s) o)

Wo
Wi

S

E

H,
nxn

are the feedback connection weight matrices. 0(¢), and d(z) are respectively repres-
enting the time-varying and time-varying distributed delays.

Assumption 1. Th_ere exist scalars 91 > 0, O, >0, u > 0 and d > 0 such that
0<9 <B(t) <V, O(r) <wand 0 < d(t) <d, respectively.

Assumption 2. Each neuron activation function f;(t) (i =1,2,...,n) is continu-
ous and bounded, and satisfies the Lipschitz condition: |f(x))— (xz) | § Fl(x1 —x2)],
with F € R™" and x1,xy € R, x1 # xp are constants. The network measurements are
assumed to satisfy:

y(t) = Cx(t) +1(1,x(2)),
where y(t) € R" is the network measurement, C is a known constant matrix with
appropriate dimension, [: R x R" — R™ is the neuron-dependent nonlinear disturb-
ances on the network outputs, and satisfies: |1(t,x1) —1(t,x2)| < |L(x; — x2)|, with
L € R"™". Consider the full-order state estimator ([21]):

dx (1) = [-AR(t) + Wo () £ (£(1)) + Wi (x) f (£(t = B(2)))



STATE ESTIMATION OF MEMRISTOR-BASED STOCHASTIC NEURAL NETWORKS 1499

(o) [ 'dm F(E(s))ds + Kly(e) — CE(t) — 1(t,£(0) )l + [E(1)

+ E1£(1 — (1)) + Ho(x) f(£(2)) + Hi (x) f(£(t = D(2)))
4 H(v) / " G(s)dslav(e), 2.3)

t—d(r)

where (1) € R" denotes the estimated state, and K € R"™ is the estimator gain
matrix to be calculated. Define the error state e(t) = x(t) — X(t). From (2.2) and
(2.3), one can obtain the following error system:

de(r) = [—Ae(t) + Wo(X)9(t) + Wi(x)@(t — B(1)) + Wa (x) Ty
—KCy(1)]dt + [Ee(t) + Ere(t —B(1)) + Ho(x)9(7) 2.4
+H (x)@(t — 0(1)) + Ha(x)Y1]dv (1),
where Y| = j;tfd(t) O(s)ds, e(t) = [e1(t),ea(t),...,eq(t)]T € R" is the state vector of
the transformed system and @(t) = f(x(t)) — f(x(¢)) with (t) = [@1(t),...,9,(t)]T.
Definition 1. For the error-state system (2.4) and every ¢ € szo([—ﬁz,O};Q{")

where U, is the upper bound of the time delay, the trivial solution is globally asymp-
totically stable if it is locally stable in the sense of Lyapunov and globally attractive.

3. MAIN RESULTS

Theorem 1. For given positive scalars O, %2, u,d and the matrix K, the error-state
system (2.4) of MSNN (2.2) and (2.3) is globally asymptotically mean-square stable
if there exist matrices P55 >0, R; >0, (j=1,2,3),5,>0, (p=1,2,3,4,5), T, >
0,7,>0, g=(1,2,3,4,5,6) and any appropriate dimensional matrices P;, Qs, R;,
Sy, Iy, Us, Vs, (s =1,2), such that the following LMI hold for i =1,2,3:

g | I Ih }
I1; [ I, <0, (3.1)

where
Hll :Hr><s7 (l: 172737 s = 1727"'712)7
P11 P12 P13 P14 P15

x  Pn Px Py P RIRI

P=| % % P3 Py Ps |, Rj=| U R}z , (j=1,2,3)
* * E VR T 22
* * * *  Pss

H171 = —P11A—ATP11 + Pip +P1Tz -I-R%l + 9181 +9215+ P —|-fP1T +0915;

92 92 92 — 92 92 — 92
+13151T+192171+19217‘]T+71‘U1+71'U1T+ 22 erl-i- 22 erlT

+e FTF+&LTL,
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‘62
Mo=2 —Q+Ri+0S] +00 T+ + -2 %oy,

Mi3=—Po+P3—P+Q, ILis=—-R—Ps, H175 =P \Wo+Pis+R1,,
Mg =PuW, Ili;=Ps5—P4, ILjg=-Ps, IIj9=—P;KC,
) 10=PuWs, M1 =—-ATPyu+Py, Tjp=—-ATPjs+Pos,
ho=—(1-wWR} — Q- QY +R+R +&F'F, Thy=-P+Q,
Mhy=—R, The=—(1—wRi, Tz3=—R}+Rj+R}|,

37 = —Rl, +R} 2+R127 311 = =Py + P4, Il310=—Po5s+Pss,
My4= R}, Thg=—R},, Ty =Py, I=—Ps,

Iss =Ry, +d>S3+ 0784+ 95,85 — €1, Tlsy1 =W Pa+ Pus,

Ils 10 = W()TP15 +Ps, Tge=—(1 —,u)R%z —&, Ilgn= WlTP14,

Moo =W/Pis, Tli7=—Ry+Rn+Ry, Ty =—Pu+P,

;10 =—Pis+Pss, Tlgg=—R3,, Ilg; =—Pk,

Mg =—Pss, Tlgg=—g3, Ioj;=—C K Py,

o1 =—CTK"Pis, To10=—S3 Ilio11 =W P,

Moo =Wy Pis, Tljiq1=—Ss, =-S5, By =01,
-9~ B\ - 92 93
I = {Ql (—ﬁlgp— 5S- 61u) ETPy 9,ATTy 712% éﬂn

o P B~ R
HE!Z TIETZ3 ZIETZ5 P 0S 2111]

03 M R AP
Ly _ 26 ”V) ETP, 9)ATT,

I = [Qz < 91Q —

2 Q2 ,63 ﬁ 282 133—193/\
% 2131? T = LATT, 9,E7 2, % ﬁlETZ4 2 TIET 7
2
3 9,7 B 2ﬁ q/]
~ B~ - .
= {Qz (-192117{— 5 Ly — 6 ‘V> E"P 9ATT,

2 2 3 292 393
% —Yigr T % 66 Ts 90 E"Z, % 191ETZ4 % ﬁlETZ(,

. . 2
ROy T 92° . q/]
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ﬁ_Z ‘83

1 O S 1 1
ml=|-v T — AT - LTy —Py - T, — ATy — LT
3 [ 151 < =5 - 5) 1 1T > 5 ¢ 5

ﬁZ

9 93
—Z -7y — 175 —7 —%2Zy — Lz
\Z 54 A 1 123 5 5]
192 92 13 -
I = [—192152 (—ﬁsz— > L7, — =2 6 1T6> —Piy =91
93— 92 H-% 95 — 92 9 — 03
_ T, — Tse —O07Zy — Zy — L Z6
5 4 6 — 212 > 4 3
19 —9?
—Zy —OnZy — 126]

1‘} 192 13 -9
Hg: |:—ﬂ2152 ( 1321T2— 3 T 6 1T6> _Pll _ﬂZITZ
9 — 03 95— 02 0 — 1932
2

93 — 97
— L7
2 6
93 — 93

T6 -2y — Z 6

—Zy —OnZy — Zé:|

T o] i
Q= (0P =0A P =B85 — U S-S
(191W0TP12+191P2T4) WP,
(—ﬁlpza—i-ﬂlng) —191PQT5 —ﬁlcTKTPu 191W2TP12 0 0]

93— 93—
Q= [(19211’23 — 0 AT Py — O T — l’V1> ( BT — ’V>

(—021P3 +021P33) —021P33 (1321Wo Pi3+021Py)
— Oy Pl — 0y CTK Py

(—=01Pyn+91P33) — 1P,

O W Pi3 (—021 Py + 021 Pis)
91 Wy Pi3 0 0],

[EEL 00 Hy H 000 H> 0 0],

[A00O0 W W, 00 —KC W, 0 0],

T =2 2] 01x10], Q' =[Q @ 01x0],

R = [RE R O1x10), ST =1[5T ST O1x10] 77 = (7" T 01410,

U =[ul U 0rao), V= [V W 01

E=
A=
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Proof. Choose the LKF:

5
Vie) =Y Vy(er), (3.2)
p=1

where

Vi(e) =ni (0)P1(0),
>(er) / n3 (s)Rima(s der/t " (s)RyMa(s dS+/ 2 ()Rama(s)ds,

Vs(e;) = Yael (5)Se(s)dsdp +Y3eT(s)Sze(s)dsdp+d/ / 07 (5)S3¢(s)dsdp
—d Jt+p

+01129" (5)Sa@(s)dsdp + D21 Y307 (5)S59(s)dsdp,
Vi(er) = Ya3" (s)Tr3(s)dsdp + Y337 () Ta3(s)dsdp + Ya3" (s)Ts3(s)dsdydp
+ Y537 (5)Tu3(s)dsdydp + Ye3” (s)Ts53(s)dsdxdydp
+ Y737 (5)Te3(s)dsdxdydp,
Vs(e) = Yan" (s)Zin(s)dsdp + 39" (s)Zan(s)dsdp + X4y (s)Zav(s)dsdxdp
sUT(s)Zm(s)dsdxdp+Y60T(S)an(s)dsd1<dxdp
v’ (s)Zsy(s)dsdxdydp,

7 N

o=l [ rwas [ [ oo [l

t— t—"5%
(1) = [e"(s) o7 (5)]",
3(5) = —Ae(t) + Wo@(t) + Wig(r — 0(r)) + Wa X1 — KCy(1),
0(s) = Ee(t) + Ere(t — (1)) + Hoo(t) + Hip(r — (t)) + Ha X1,
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Using Ito’s formula ([13]), the generator LV for the evolution of V(x;) in (3.2) is
therefore given by

t—0
dV( ) LV(xt)dt+2 P]lU +/ o dsPlzl) +/ )dSP13‘)( )
1

t 1—91
+ ], @ @dsPln() + [ @ (s)dsPisn()]dv(t), (33)
— —0p
where
5
)= L
t—91 t =101
LV(e) = [ T(s)ds / el (s)ds o7 (s)ds / (pT(s)ds}
0 t—0 t—0;
P x [;,(t)T e(t) —e(t—0))" e(t—9))" —e(r =)

LV5(e) <Mj (DR Ma(r) =M (£ —01)[~R1 + Ry + R3]t — )

— (1 —pm3 (r = B(t))Rana(t — B(t)) —Mj (1 — O2)R3a (1 — D),
t—0

LVi(er) = e (1)[91S1 + O Sa)e(r) — / ’ﬂl ¢ (5)S1e(s)ds— / ¢ (5)S2¢(s)ds

B

o))" — @t —1)" @t —01) — ot —02)7]" +9" ()P (),
t

+(PT(Z)[dZS3 +ﬁ%54+19%155 d/ (5)S30(s)

t t—"9
_ 9 / 9 (9Ss0(s)ds — B / o7 (5)S59(s)ds,
1=

tf‘f’z

132 132*192 193
LVy(e) :3T(t)[191T1 +09 1+ (21> T + ( 2 : 1> i+ ( - ) T

3_.93 t =
+ (ﬁz 6 ﬁl) Tela(t) — /,_ﬁl 3" (5)Ti3(s)ds — / ’ 3" (5)Ta3(s)ds

t—%
S)T33
5)Ts3

—Yo5"
—Yu3"

97 95— 0 93
LV5(e,):t)T(t)[l%Zl—i-ﬁQ]Zz—i- (21) Z3+ < >Z4—|— <61> Zs

(9)T53(s)dsdp — Y357 (s)Tas(s)dsdp
(5)Ts3(s)dsdydp — Ys3" (s)Ts3(s)dsdydp,

2

13‘% — ﬁ? 1 T t—0 T
() 2 [ o @z [ 0z
t—19 t—%
— Yo' (5)Zan(s)dsdp — Ysn" (5)Zan(s)dsdp
—Yan' (5)Zsn(s)dsdxdp — Ysy (s)Zsy(s)dsdydp.
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By using Jensen’s inequality implies

t
—d (pT(s)S3(p(s)ds < —Y]TS3Y1,
t—d

t
= / | 0 (95s0(s)ds < XS,
=01

t—0

—‘321/ q)T (S)Ss(p(s)ds < —Y9TS5T9,
t—0

where Yy = [y @(s)ds, Yo = Lt:g '@(s)ds. To derive the stability criteria, zero

equations with any matrices P, Q, R, S, 7, U and ¥ of appropriate dimensions, to

be chosen as follows,

0=20f () 2le(t)—ele—00) — [ s(s)as— [ w(s)av(s)

l‘—‘f’l

0=20f () Qe 1) —elr—0@) ~ [ " sts1as— [ " n(s)nts),

t—0(r) —9(1)

) t—9(r)
0=2nf()R[e(t= (1) —elt—02) = [ " s(s)as— [ " n(ss)]

t—9% —
t

0=2n (1)S[dre(t) / e(s)ds — Ya3(s)dsdp — Yan(s)dv(s)dp),

t—%
0=2nl ()T [Ore(t) — /;1:1 e(s)ds —Y33(s)dsdp — Yan(s)dv(s)dp],
2
0= 2nF () ( ) e(t)Yae(ssdp — Tag(s)dsdxdp ~ Yan(5)dv(5)zdp
ﬁZ_ﬁZ
0= 2 ()V[( %25 ) el0) - Yaelo)dsdp ~ Ysss)dsxdp  Tsn(ss(szap.
where
N0 =[" () L —00))]., P=[2 2], Q=[Q ]
R=[R] %], s=[st s, T=[1" T
u=[ul 4", V=[]

It is clear that

i [ o)t

t t

oSS [ ns)av(s))

SEHOE L NORYE »
—Vl

tf‘lf)l

t—9%
—anf0Q [ oty
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t—9% t—9%

o)) Zl [ n(sdv(s),

t—9(1)

SHOLZ UL HORSY A
t—0(t)
-mi(HR /t B

<N (ORZy, ' RIs(0) + | /

t—%

t—0(1) t—0(1)

(
A 2L o(s)av(s))

t—0
0
— 203 (1)SYay(s)dv(s)dp < O3 (1)SZ; ' STma(t) + / . Y10Z3Y10dp,
—U]
—2nj (1) TY3n(s)dv(s)dp
0 —% -
<oanf(OTZ ' T a0+ [ [ ozl as)ds)de.
— 203 (1) U4y (s)dv(s)dydp
ﬁ% T —1 74T 0 0 T
S <2> n3 (t)‘ZIZS ‘Zl n3(t)+/ﬁ / Y]OZSYIOdXdp)
—U1 Jp
— 2% (1) VXsn(s)dv(s)dydp
ﬁ%_ﬁ% T 1 )T o0
g( 5 >n3(t)‘VZ6 % 1’]3(l‘)+/ﬁ /YIOZJ]odxdp.

where Y19 = fttﬂ, 1(s)dv(s). From inequalities in Assumption (A2) and in (2.3), one
can have

0 <eife’ (t)FTFe(r) — " (t)0(1)],
0 <esle’ (t—0(1))F Fe(t — (1)) — 9 (1 = 0(t))0(t — O(r))],
0 <esle” (1)L Le(t) — " (1) (1)]. (3.4)
Define
(1) =[e" (1) e (1=0(1)) e (t=01) €' (t—02) 0" ()
¢ (1 —0() @' (1—01) o (r—02) W (1) YT Y5 Y§].

Combining (3.3) to (3.4) and applying Schur complement and the Izo isometry ([13]),
one can deduce that

v s [ [, 1§ omesiae s (oo )
S L ﬂf M asicaio + (5 57—
/ / /+x / T () Tiak (s)dsdodxdp. (3.5)
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From (3.5) and Schur’s complement Lemma, it can be seen that the error system (2.4)

is asymptotically stable.

Theorem 2. For given positive scalars ©1,9,,u,d, the error-state system (2.4) of
MSNN (2.2) and (2.3) is asymptotically stable if there exist matrices P > 0, R; >
0, (j=1,23),8,>0, (p=1,2,3,4,5),7,>0,Z,>0, g=(1,2,3,4,5,6), G> 0,
and any appropriate dimensional matrices s, Qg, R, Ss, Ly, Us, Vs, (s = 1,2),

such that the following LMI hold fori=1,2,3:

where
B =E;xs Wwherei=1,23rs =1,2,...,12,
E1q = —PA—A], + 0Py + R}, +91S) +132152+5P1 +?1T+ﬁ151 + 0857
92 132 132

,62
+1921([1+192171T+71‘U1+71(U1T+ rV I‘VI

+e FTF4+&LTL,

=1L, Ei3=03P1—0WP1—P+Q, Eis=—-K—03P,

E15 = PiWo+ouPy +R},, Er6=PuW, Ei7=0s5P —04P,
E18=—0sP1, E19=-GC, Ejjo=PuWa, Ejn1= —0uAT Py 4 Py,
Ein=—0sA"Pi +Ps, Erp=Ih,, Ey3=Ih3 Eysa=1Iy4,
Eo6=1Ile, E33=1IL3, E37=II37, E311=1II311, E312=1II312,
E4a=—R},, Eag=-R}), Es11=—Pu, Zs10=—Pss,

E 5=R22+d253+ﬁ%s4+ﬁ%155—el, Es11 = 04Wy Pii + Pas,
Eso=0asWy Pii+Pis, Zee=—(1—u)R3 —&, Ee11=0uW Py,

—_ T —_ —_ T
Ee2=0sW/ P1, E77=—Ry+Ry+R3, EF711=—Pu+Ps,

7

= = 3 T =
E712= —FPas+Pss, Egg =Ry, Egi=—Fs, Egia=—PFss,
E © 6T = TAT =
299 = —€3, X911 =—-—ouyC' G s :'9,12:*065C G . Ei010= *S3,
':‘10711 :(X’4W2 P117 510,12:0(5W2 Pll’ Lll,ll:_Szh :'1212:_857
~ . P~ —~ 92 R
g = [21 (—ﬁlfP—215—61‘u ETPy 9147 Py ;XT Py SETPy
03 9 9 -
AP SETPy FlETPn P %S 7111 :

~ 192 13 ﬁ ~
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,62_,82 _,83 N 19_2_,[92/\

2 14T 2 14T T 2 1 T
—5 APy ———A Py O9E" Py —5 E" Py
93— 93 o 992

| 5T 2 1
G ———E' P Q 97T Vi,

~ HB-¥~ B 133 .
B = [22 (—13219{— > LT — g ‘V> E"P, 9,AT P

192—1(}2 '63—133 R
2_LATpy, %A\TPII O ET Py

B arp BV
—FE' Py —E'P
D) 11 6 11

2
~ 19‘2—192 ﬁZ_ﬁZN
R 2_ATp, 21|,
2 2
82 93
331.:{—19151 < 61T1—2T3—61T5> — Py %(=2P+Th)
oF o) i
7<_2P11_|_T3) 7(_2P11+T5) ﬁl(—2P11+Zl) ?(—2P11+Z3)
193 ﬁZ
Fl(—2P11+Zs) —Z1 —%Z; —225}

-9 -9
3%2{—192152 (-ﬁlez— 22 Ly — =2 g 1T6> — Py O (2P +1)
192 13 -9
> L(—2P +Ty) 26 L(—2P) +Tg) O (—2P11 +2,)

‘82—13'2 193—133
1(—2P11—|—Z4) 2 3 1(—2P11+Z6)

03— 0

—Zy —OZy —

2_,&2 19 ,83
Egz{—ﬁzlsz (—ﬁlez— 22 Ly, — =2 g 1T6> — Py 91 (—2P11 +T>)

192 ﬁ 92—
L(—2P; +Ty) %(—2P11+T6) B2 (—2P11 +2Z)

2
‘82 _ ,62 ’83 _ 63
%(—ZPU +Z4) %(—2P11 +ZG)
2
—7Zr — V91724 — ﬁ Z :|

2
X = |:<191P22 — O(Q‘BIATP“ — 08— 21‘Ul>
(—91Pn+01Py3) — 1Py (0 Wy Pii+91Py) oo W/ Py
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(—ﬂ]PZC‘—i—ﬁlPZTS) —191P2TS —062191CTGT 0(2191W2TP11 0 0],

, 8 — 2
Y = [<ﬁ211’23 — 030 AT Py — 0 T — 2 > L 'Vl)

92 — 9?2
(—132172— 2 7 L

(0302 Wy Pii+021Py) 0O W\ Py (021P5s — 21 Pyy) — 021 Pss
o301 CT G a3 Wy Py 0 0],

E=[E E 00 Hy H 000 H, 00],

A=[A000W W, 00 —P'GC W, 0 0].

Furthermore, the gain matrix K of the state estimator of (2.4) can be designed as
K=P'G.

rVz) (021P33 — 021 Pa3) — V21 P33

Proof. Defining P;1K = G, Piy = 0P, (y =2,3,4,5). Pre and post multiplying
15 times
. TR 1 -1 ~1 -1
Hl m (3l)by dlag{ I,.‘.,I ,P“Tl ,P11T3 ,P11T5 ,P“Zl s
15 times
Pzt Pzt 1,11} and di -1 - -1 ot
1WZy ,PuZs 11,1} and diag{ 1,...,I1 ,T; Py, T5 P11, T Py, Z; Piy,
Zy 'p 1,Zs UANNN } respectively. As well as pre and post multiplying IT,,I13 in
15 times
T —1 1 -1 -1 1
(3.1)bydiag{ 1,....1 ,PyT, ", PuT, ", PuTg ",PuZ, ,PnZ,
15 times
-1 TS el -1 -1 -1 -1
P]]Z ,I,I,I} anddlag{ I,...,I,Tz P]],T4 P117T6 P11,Z2 P]],Z4 P]l,
Ze 1Pl 1,1,1,1} respectively. Then, through the inequalities (see [1])
(2P +T;) > —P11Tq_1P11, (—2Pn+2,) > —PUZq_IP“, (g=1,2,...,6),

=i, (i=1,2,3) in (3.6) can be obtained. From Theorem 1, the error system (2.4) is
asymptotically stable. g

4. EXAMPLES

A numerical example is given in this section. For convenience, denote f;;(t) =
Fi(xj(1) = xile), £ij( = 0(0)) = £(x;(t = 8(1))) —xi(r) and
it =d(0)) = Ji—a@) Fi(xj(s))ds) = xi(2)).

Example 1. Consider a two-dimensional MSNNs (2.2):
_0207 fll(t) \1/75‘6 (t_p7t];

wii(t) =< 0.17, fu(t) t,se(t—p,tl;
lim,_,,- W(1)1(S)> f11(s) unchage s € (r —p,t],
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0.15,
—0.19,

0.30,
w9, (1) = < 0.12,

0.10,
—0.45,

0.15,
wi (1) = { 0.56,

0.35,
—0.26,

limg_,,- W%Q(S),

—0.14,
0.35,

lim,_,,- wél (s),

0.25,
wi, (1) = { 0.05,
lim,_,,— wh, (s),

0.20,
—0.13,

lim,_,,- w%l (s),

—0.01,
~0.52,

lim,_,,- w3, (s),

0.30,
0.05,

lim,_,,- w%l (s),

limg_,,- w(l)2 (s),

limg_,,- wgl (s),

limg_,,- wgz (s),

limg_,,- wh (s),

fia(t) Jys € (t—p,t);

fa(t) ts€(t—p,t);

f12(s) unchage s € (t —p, 1],

f21(t) \L,SE(t—p, ]

fa(t) tos€(t—p,t);

f21(s) unchage s € (r —p,t],

fa(t) s € (t—p,t;

fa(t) Tys € (t—p,1;

f22(s) unchage s € (t — p, 1],
fm@=0.7) l,set—p,t;
fiu1(t—=0.7) t,s€ (t —p,t];

f11(t —0.7) unchage s € (r —p, 1],
fa(t=0.7) |,s€(t—p,1;
Sia(t=0.7) 1,5 € (1 —p.1);
f12(s —0.7) unchage s € (t — p, 1],
fa(t=0.7) |,s€(t—p,i;
fa(t=0.7) 1,5 € (1 —p.1);
f21(s —0.7) unchage s € (t — p, 1],
f2(t=0.7) Lise(—p,t;
f22(t ) T,SE(I—p,t];
f22(s —0.7) unchage s € (t — p, 1],
fu(t=02) |,se(t—p.1);
fu(t=0.7) 1,5 € (1 —p.1);
f11(s —0.7) unchage s € (t — p, 1],
fia(t=0.2) |, s€(t—p.1);
fi2(t=0.2) 1,5 € (t—p,t);
f12(s—0.2) unchage s € (t —p, 1],
fa(1=02) |,s€(t—p.1);
fu(t=02) ts€(t—p,t);

(

f(s—0.

2) unchage s € (t —p, 1],
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0.40,
0.14,

lim,_,,- wl, (s),
0.12,

—0.20,
limg_,,- 19, (s),
0.02,

—0.21,
limg_,,- 1Y, (s),
0.30,

0.25,

limg_,,- 19, (s),
~0.09,

0.12,

lim ;- h9,(s),
—0.11,
—0.03,
limg ;- h{,(s),
0.20,

0.10,

limg_,,— il (s),
~0.15,
~0.10,
limg - 13, (s),
0.20,

—0.05,
limg_,,— 1, (s),
0.22,

~0.19,

limg_,,— 13, (s),

bl
Se
=
I
—N— —— —— —— —— —— —

f2(t—=02) lse(t—p,t;

fzz(l‘ —0.2) T,S S (t — p,t];

f22(t —0.2) unchage s € (r —p, 1],
fu(t) 1,s€(t—p,tl;

fu(t) Tse(t—p,tl;

f11(s) unchage s € (r —p, 1],
fr2t) 1,s€(t—p,t];

fi2(t) s € (t—p,tl;

f12(s) unchage s € (t — p, 1],

fu(t) L,se(t—p,tl;

(1) T,s€(t—p.t;

f21(s) unchage s € (r —p,t],

fa(t) 1,se(t—p,t;

fa(t) T,s€(t—p,t);

f22(s) unchage s € (r —p,t],
- 07) bs€(t—p,t;

fl (t ) T,SG(I—p,t],
f11(s —0.7) unchage s € (t — p, 1],
f12(t=0.7) |,s € (t—p,t];
f12(t ) T,SE(l—p,t];
f12(s —0.7) unchage s € (t — p, 1],
f21(t ) \L,SG(I—p,t];
fu(t=0.7) s € (t—p,t);
f21(s—0.7) unchage s € (t — p, 1],
f22(t ) \L,SG(l—p,t];
f2(t=0.7) s € (t—p,t);
f22(s—0.7) unchage s € (t —p,1],
fll(t ) \L,SE(l—p,l];
f11(t=0.2) tse(t—p,i);

f11(s —0.2) unchage s € (t — p, 1],
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—-0.10, f12(t—0.2) |,s€(t—p,t;

h%Z(t): 0733 le(t_Oz) T,se(t—p,t];
lim,_,,- h%z(s), f12(s —0.2) unchage s € (t —p,1],
0.10, f1(t=0.2) {5 € (t—p,t];

13 (1) = § —0.26, fu(t—=02) 1,5 € (t—p,i];
lim, ., 12,(s), far(s—0.2) unchage s € (1 — p,.
0.50, f2(t—=0.2) |,se(t—p,1];

W3, (1) = { —0.14, fo(t—0.2) t,s € (t—p,1];
limg_,,- 13,(s), fo2(s—0.2) unchage s € (t — p,1],

with the activation function f;(x;(-)),j = 1,2. and L = 0.5I, F =1, C = 0.5I,
ar=2,ap=1,be? =0.2,¢3 =0.3, e}, =0.1,el, = —0.1,e}; = —0.05,¢}, = 0.0,
then, by solving the LMI in Theorem 2 with d = 0.2,8; = 02,8, = 0.7, o, =
o3 =0y = 05 = 0.1, and u = 0.5 the estimator gain matrix is obtained as K =
[0.2283, —0.0035;0.0577, 0.0808], which verifies the feasibility of Theorem 2.

5. CONCLUSION

In this article, the state estimation problem for MSNNs with mixed variable delays
via a new quadruple stochastic integral LKF has been investigated. A novel state
estimation analysis have been considered in terms of LMIs. A desired state estimator
gain matrix is obtained by solving LMIs. An example is provided to explain the
usefulness of the proposed approach. In the future, it is possible to extend this results
to the delayed bidirectional associative memory stochastic NNs.
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