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Abstract. In this paper, the generalized differential transform method (GDTM) is used to solve
certain class of nonlinear time-fractional diffusion equation. An efficient recurrence relation
is obtained to solve this problem. Some numerical examples are given for different class of
derivative orders which are analyzed numerically for the specified examples.
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1. INTRODUCTION

Fractional Differential Equations have been the subject of intensive research of
recent years because of their applications in physics and engineering especially in
electromagnetic, electrochemistry, material science, bioengineering, quantum mech-
anics, finance applied problems including diffusion equations (see [22], [9], [5], [10],
[13], [14], [15], [25], [2], [11], [23] and [26]).

Several numerical methods have been generalized to solve this kind of applied
problems such as Variational Iteration Method [8], Adomian Decomposition Method
[17], [27], [20],[16], Fractional Differential Transform Method [3], [21] etc. The
basic idea of differential transform method was first proposed by Zhou [28]. This
method is a numerical method based on the Taylor series expansion which con-
structs an analytical solution in the form of a polynomial. It’s different from the
traditional higher order Taylor series method because it requires symbolic computa-
tion. In 2007, Arikoglu and Ozkol [4] introduced Fractional Differential Transform
Method (FDTM) as a new analytical technique for solving fractional type differential
equations. In [19], the authors developed a new generalization of the two dimensional
differential transform method which is called the Generalized Differential Transform
Method (GDTM) (also see [7], [24], [18] and [8]).
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It is pointed out by Bervillier [6] that the limited improvements of the DTM over
the well-known Taylor-series solution of ODE’s is because of their great similarity.
Beside this, in problems involving fractional derivatives major contribution of the
DTM can be found.

Now, let us give the following necessary definitions and properties which is needed
to summarize the FDTM.

Let Ω = [a,b] be a finite interval on the real axis R and the Riemann-Liouville
fractional integral [12] of order α is defined by

(Iα

a+ f )(x) : =
1

Γ(α)

∫ x

a

f (t)dt
(x− t)1−α

, (x > a; Re(α)> 0), (1.1)

where Γ(α) is the gamma function defined by

Γ(z) =
∫

∞

0
tz−1e−tdt. (1.2)

The Riemann-Liouville fractional derivative [12] of order α is defined by

(Dα

a+ f )(x) :=
(

d
dx

)n (
In−α

a+ f
)
(x), n = [Re(α)]+1; x > a. (1.3)

The following relation holds true for the power function (see p. 418 of [12])(
Dα

a+(t−a)β

)
(x) :=

Γ(β+1)
Γ(β−α+1)

(x−a)β−α, x > a,Re(α)> 0, Re(β)>−1.

(1.4)
The Caputo fractional derivative [12] is defined by

(Cα

a+ f )(x) = (In−α

a+ f (n))(x), x > a, n−1 < α≤ n, n ∈ N. (1.5)

The sequential fractional derivative [1] for a sufficiently smooth function f (t) due
to Miller-Ross [15] is defined by

Dδ f (t) = Dδ1Dδ2 ...Dδk f (t), (1.6)

where δ = (δ1...δk) is a multi-index.
In general, the operator Dδ in (1.6) can either be Riemann-Liouville or Caputo or

any other kind of integro-differential operator.
In [24] Rida, et al. considered the reaction diffusion equation

∂αu
∂tα

= K
∂2u
∂x2 + f (u),0 < α≤ 1, t > 0,x ∈ R (1.7)

where K is the diffusion coefficient and they provide the extension of the GDTM in
order to give its numerical solution. It was noteworthy that for f (u) = 6u(1−u), Eq.
(1.7) reduces to the time-fractional Fisher equation.
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Subsequently, in the year 2013, Cetinkaya and Kiymaz [7], considered the follow-
ing time-fractional diffusion equation

Dβ

t u = λ
∂2u
∂x2 −

∂

∂x
(F(x)u(x, t)) ,0 < β≤ 1,x, t > 0 (1.8)

with initial condition u(x,0) = f (x). Here λ is a positive constant, F(x) is the external
force, u(x, t) represents the probability density function of finding a particle at the
point x in the time t and Dβ

t u(x, t) = I1−β

0

[
∂

∂t u(x, t)
]
. A general recurrence relation

for (1.8) was obtained with the GDTM.
Our main concern in this paper is the following nonlinear time-fractional diffusion

equation. Through the above definitions

Dβ

t u(x, t) = λC(2α
x u(x, t)−Cα

x [F(x)u(x, t)(1−µu(x, t))] ,0 < α,β≤ 1,x, t > 0 (1.9)

with initial condition u(x,0) = f (x). Here C(2α
x represent the Caputo sequential frac-

tional derivatives of order 2α. Also λ and µ is a positive constant, F(x) is the external
force, u(x, t) represents the probability density function of finding a particle at the
point x in the time t and Dβ

t u(x, t) = ∂

∂t

[
I1−β

0 u(x, t)
]
.

Remark 1. If we set α = 1 and µ = 0 in (1.9), we have the time-fractional diffusion
equation which is given by (1.8).

The paper is organized as follows: In Section 2, the GDTM is summarized. In
Section 3, the solution of the general problem is derived. In Section 4, the method
is implemented to a couple of examples and some special cases of the examples are
obtained numerically and graphically. Conclusion is given in the last section.

2. GENERALIZED DIFFERENTIAL TRANSFORM

In this section we shall summarize the GDTM. Consider a function of two vari-
ables u(x, t) and suppose that it can be represented as a product of two single-variable
function, i.e.,

u(x, t) = f (x)g(t). (2.1)

Based on the properties of generalized two-dimensional differential transform, the
function u(x, t) can be represented as

u(x, t) =
∞

∑
i=0

Fα(i)(x− x0)
iα

∞

∑
j=0

Gβ( j)(t− t0) jβ (2.2)

=
∞

∑
i=0

∞

∑
j=0

Uα,β(i, j)(x− x0)
iα(t− t0) jβ

where 0 < α,β≤ 1 and Uα,β(i, j) = Fα(i)Gβ( j) is the spectrum of u(x, t).
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If the function u(x, t) is analytic and differentiable continuously with respect to
time t, then the GDT of the function u(x, t) is defined as follows:

Uα,β(i, j) =
1

Γ(iα+1)Γ( jβ+1)

[(
C(iα

x0

)(
C( jβ

t0

)
u(x, t)

]
(x0,t0)

(2.3)

where
(

C(iα
x0

)
= Cα

x0
Cα

x0
...Cα

x0
, i− times. Besides, equation (2.2) is called the gen-

eralized inverse differential transform of Uα,β(i, j). In the case of α = β = 1, the
generalized two-dimensional differential transform (2.3) reduces to the classical two-
dimensional transform.

Theorem 1. [19] (see also [7]) Suppose that Uα,β(i, j),Vα,β(i, j) and Wα,β(i, j) are
the differential transformations of the function u(x, t), v(x, t) and w(x, t), respectively.
Then the following statements hold true:

(1) If u(x, t) = v(x, t)±w(x, t) then Uα,β(i, j) =Vα,β(i, j)±Wα,β(i, j).
(2) If u(x, t) = λv(x, t),λ ∈ R then Uα,β(i, j) = λVα,β(i, j).
(3) If u(x, t) = v(x, t)w(x, t) then

Uα,β(i, j) =
i

∑
r=0

j

∑
s=0

Vα,β(r, j− s)Wα,β(i− r,s).

(4) If u(x, t) = (x− x0)
nα(t− t0)mβ then Uα,β(i, j) = δ(i−n)δ( j−m).

(5) If u(x, t) = f (x)g(t) and the function f (x) = xλh(x) where λ >−1, h(x) has
the generalized Taylor series expansion

h(x) =
∞

∑
m=0

am(x− x0)
mα

and
(a): β < λ+1 and α arbitrary or
(b): β ≥ λ+1, α arbitrary and am = 0 for m = 0,1, . . . ,n−1 where (n−

1)< β < n, then the generalized differential transform (2.3) becomes

Uα,β(i, j) =
1

Γ(iα+1)Γ( jβ+1)

[
C(iα

x0

(
C( jβ

t0

)
u(x, t)

]
(x0,t0)

.

(6) If u(x, t) =Cγ
x0v(x, t),m−1 < γ≤ m and v(x, t) = f (x)g(t) then

Uα,β(i, j) =
Γ(iα+ γ+1)

Γ(iα+1)
Vα,β(i+

γ

α
, j).

(7) If u(x, t) =Cγ

t0v(x, t),m−1 < γ≤ m and v(x, t) = f (x)g(t) then

Uα,β(i, j) =
Γ( jβ+ γ+1)

Γ( jβ+1)
Vα,β(i, j+

γ

β
).
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(8) If u(x, t) =Cγ
x0C

µ
t0v(x, t),m−1 < γ≤ m,n−1 < µ≤ n and v(x, t) = f (x)g(t)

where the function f (x) and g(t) satisfy the condition given in 5 above then

Uα,β(i, j) =
Γ(iα+ γ+1)

Γ(iα+1)
Γ( jβ+ γ+1)

Γ( jβ+1)
Vα,β(i+

γ

α
, j+

µ
β
).

Proof. The proof is straighthforward using (2.2) and (2.3) and it was given in detail
in [19]. �

3. THE SOLUTION OF THE MAIN PROBLEM

In this section, we obtain a recurrence relation for the coefficients of the solution
u(x, t) of the Eq. (1.9).

Theorem 2. If the function F(x) has the series expansion F(x) = ∑
∞
n=0 an(x−

xo)
nα with a radius of convergence R > 0 where an = 1

Γ(nα+1)

[
C(nα

x0 F(x0)
]

for n =

0,1,2, . . . , then the GDT of the solution of Eq. (1.9) satisfies the following recurrence
relation

Uα,β(i, j+1) =
Γ( jβ+1)

Γ(( j+1)β+1)

[
λ

Γ((i+2)α+1)
Γ(iα+1)

Uα,β(i+2, j) (3.1)

− Γ((i+1)α+1)
Γ(iα+1)

i+1

∑
m=0

ai+1−mUα,β(m, j)

+µ
Γ((i+1)α+1)

Γ(iα+1)

i+1

∑
m=0

m

∑
r=0

j

∑
s=0

ai+1−mUα,β(r, j− s)Uα,β(m− r,s)

]
.

Proof. Suppose that the solution u(x, t) can be represented as a product of two
single-variable functions. Applying the generalized two-dimensional differential trans-
form to both sides of Eq. (1.9) and using theorem (1), Eq. (1.9) transforms to

Γ(( j+1)β+1)
Γ( jβ+1)

Uα,β(i, j+1)

= λ
Γ((i+2)α+1)

Γ(iα+1)
Uα,β(i+2, j)

− Γ((i+1)α+1)
Γ(iα+1)

i+1

∑
m=0

ai+1−mUα,β(m, j)

+µ
Γ((i+1)α+1)

Γ(iα+1)

i+1

∑
m=0

m

∑
r=0

j

∑
s=0

ai+1−mUα,β(r, j− s)Uα,β(m− r,s)

which can be written as

Uα,β(i, j+1) =
Γ( jβ+1)

Γ(( j+1)β+1)

[
λ

Γ((i+2)α+1)
Γ(iα+1)

Uα,β(i+2, j)



678 M. BOZER, M. A. ÖZARSLAN, AND H. DEMEZ

− Γ((i+1)α+1)
Γ(iα+1)

i+1

∑
m=0

ai+1−mUα,β(m, j)

+µ
Γ((i+1)α+1)

Γ(iα+1)

i+1

∑
m=0

m

∑
r=0

j

∑
s=0

ai+1−mUα,β(r, j− s)Uα,β(m− r,s)

]
.

�

We should note that the generalized two-dimensional transform of the initial con-
dition u(x,0) is given by

Uα,β(i,0) =
1

Γ(iα+1)

[(
C(iα

x0

)
u(x,0)

]
, i = 0,1,2, . . . . (3.2)

4. NUMERICAL EXAMPLES

In this section, we have selected two examples which show the simplicity and
effectiveness of the proposed general recurrence relation (3.1) in order to give the
solution of the main problem. We also present the numerical results for each example.

Example 1. Consider the following time-fractional diffusion equation

Dβ

t u(x, t) = λC(2α
x u(x, t)−Cα

x [−(xα)u(x, t)(1−µu(x, t))] ,x, t > 0 (4.1)

where 0 < α,β≤ 1, λ = 1, µ = 1 and subject to the initial condition

u(x,0) = xα. (4.2)

Since F(x) = −(x)α, we have a1 = −1 and an = 0 for n 6= 1. In addition to this,
substituting f (x) = xα in (3.2), we have

Uα,β(1,0) = 1,Uα,β(i,0) = 0 for i 6= 1. (4.3)

Applying the recurrence relation (3.1) and using the transformed initial condition
(4.3), the first few components of Uα,β(i, j) can be calculated as follows:

Uα,β(1,1) =
Γ(2α+1)

Γ(β+1)Γ(α+1)
, Uα,β(i,1) = 0 for i 6= 1, (4.4)

Uα,β(1,2) =
(Γ(2α+1))2

Γ(2β+1)(Γ(α+1))2 , Uα,β(i,2) = 0 for i 6= 1,

Uα,β(1,3) =
(Γ(2α+1))3

Γ(3β+1)(Γ(α+1))3 , Uα,β(i,3) = 0 for i 6= 1,

Uα,β(1,4) =
(Γ(2α+1))4

Γ(4β+1)(Γ(α+1))4 , Uα,β(i,4) = 0 for i 6= 1,

...
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Uα,β(1, j) =
(Γ(2α+1)) j

Γ( jβ+1)(Γ(α+1)) j , Uα,β(i, j) = 0 for i 6= 1.

So the solution u(x, t) of Eq. (4.1) is obtained by

u(x, t) = xα

[
1+

Γ(2α+1)
Γ(β+1)Γ(α+1)

tβ +
(Γ(2α+1))2

Γ(2β+1)(Γ(α+1))2 t2β

+
(Γ(2α+1))3

Γ(3β+1)(Γ(α+1))3 t3β +
(Γ(2α+1))4

Γ(4β+1)(Γ(α+1))4 t4β + . . .

]

= xα
∞

∑
k=0

(Γ(2α+1))k

Γ(kβ+1)(Γ(α+1))k tkβ

= xαEβ

(
Γ(2α+1)
Γ(α+1)

tβ

)
,

u(x, t)
t x α = 0.85, α = 0.9, α = 0.95 α = 1,

β = 0.9 β = 0.95 β = 0.99 β = 1
0.00 0.25 0.3078 0.2872 0.2679 0.2500

0.50 0.5548 0.5359 0.5176 0.5000
0.75 0.7831 0.7719 0.7609 0.7500
1.00 1.0000 1.0000 1.000 1.0000

0.25 0.25 0.5072 0.4651 0.4312 0.4122
0.50 0.9142 0.8678 0.8330 0.8244
0.75 1.2904 1.2500 1.2244 1.2365
1.00 1.6479 1.6194 1.6092 1.6487

0.50 0.25 0.7953 0.7352 0.6906 0.6796
0.50 1.4336 1.3719 1.3341 1.3591
0.75 2.0235 1.9760 1.9610 2.0387
1.00 2.5841 2.5600 2.5773 2.7183

0.75 0.25 1.2347 1.1563 1.1049 1.1204
0.50 2.2255 2.1577 2.1345 2.2408
0.75 3.1413 3.1079 3.1374 3.3613
1.00 4.0115 4.0264 4.1235 4.4817

1.00 0.25 1.9088 1.8148 1.7670 1.8473
0.50 3.4406 3.3866 3.4136 3.6945
0.75 4.8564 4.8780 5.0176 5.5418
1.00 6.2018 6.3196 6.5946 7.3891

TABLE 1. Approximate solution for u(x,t).
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where

Eβ (x) =
∞

∑
k=0

xk

Γ(βk+1)
is the usual Mittag-Leffler function.

It is seen from Figure 1 that u(x, t) increase as t increases for all α and β. However
for fixed t, u(x, t) is found to decrease with the increase in α and β.
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FIGURE 1. The solution u(x,t) vs. point x.

It is also seen from the 3−D figures which are described through Figure 2 that
the variations of u(x, t) are linear with x. However it becomes exponential with t for
different values of α and β as stated in the caption of the figures.

Remark 2. Setting µ = 0 and α = 1 in (4.1) and (4.2) we get the same results given
in [7].
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FIGURE 2. The solution u(x,t) with respect to x and time t.

Example 2. Consider the following time-fractional reaction diffusion equation

Dβ

t u(x, t) = λC(2α
x u(x, t)−Cα

x [Eα(−xα)u(x, t)(1−µu(x, t))] ,x, t > 0 (4.5)

where 0 < α,β≤ 1, λ = 2, µ =−1 subject to the initial condition

u(x,0) = 1+
∞

∑
k=1

xkα

Γ(kα+1)
= Eα(xα). (4.6)

Since F(x) = ∑
∞
k=0

(−1)k(x)kα

Γ(kα+1) , then a0 = 1, a1 =
−1

Γ(α+1) , a2 =
1

Γ(2α+1) , . . . In addition

to this, substituting f (x) = ∑
∞
k=0

(x)kα

Γ(kα+1) in (3.2), we have

Uα,β(i,0) =
1

Γ(iα+1)
, i = 0,1,2, . . . . (4.7)

Applying the recurrence relation (3.1) and using the transformed initial condition
(4.7), the first few components of Uα,β(i, j) can be calculated as follows:

Uα,β(0,0) = 1, Uα,β(1,0) =
1

Γ(α+1)
, Uα,β(2,0) =

1
Γ(2α+1)

, . . .
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Uα,β(0,1) =
1

Γ(β+1)
,Uα,β(0,2) =

1
Γ(2β+1)

, . . .

...

Uα,β(i, j) =
∞

∑
i=0

∞

∑
j=0

1
Γ(iα+1)Γ( jβ+1)

, i, j = 0,1,2, . . .

So the solution u(x, t) of Eq. (4.5) is obtained by

u(x, t) =
∞

∑
i=0

∞

∑
j=0

1
Γ(iα+1)Γ( jβ+1)

xiαt jβ = Eα(xα)Eβ(t
β).

Table 2 shows the approximate solution for Eq. (4.5) obtained for different values of
α and β.

u(x, t)
t x α = 0.85, α = 0.9, α = 0.95, α = 1,

β = 0.9 β = 0.95 β = 0.99 β = 1
0.00 0.25 1.3961 1.3540 1.3169 1.2840

0.50 1.8456 1.7725 1.7073 1.6487
0.75 2.4092 2.3010 2.2042 2.1170
1.00 3.1255 2.9749 2.8400 2.7183

0.25 0.25 1.8903 1.7831 1.6992 1.6487
0.50 2.4990 2.3342 2.2029 2.1170
0.75 3.2620 3.0302 2.8441 2.7183
1.00 4.2319 3.9177 3.6644 3.4903

0.50 0.25 2.4746 2.3116 2.1860 2.1170
0.50 3.2714 3.0261 2.8339 2.7183
0.75 4.2703 3.9284 3.6588 3.4903
1.00 5.5399 5.0790 4.7142 4.4817

0.75 0.25 3.2124 2.9845 2.8099 2.7183
0.50 4.2468 3.9070 3.6428 3.4903
0.75 5.5436 5.0719 4.7032 4.4817
1.00 7.1919 6.5574 6.0598 5.7546

1.00 0.25 4.1533 3.8454 3.6105 3.4903
0.50 5.4906 5.0339 4.6807 4.4817
0.75 7.1671 6.5349 6.0432 5.7546
1.00 9.2982 8.4488 7.7863 7.3891

TABLE 2. Approximate solution for u(x,t).

It is seen from Figure 3 that u(x, t) increase with the increase in t for all α and β.
However it is found to decrease with the increase in α and β.
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FIGURE 3. The solution u(x,t) vs. point x.

It is also seen from the 3−D figures which are described through Figure 2 that the
variations of u(x, t) becomes exponential with x and t for different values of α and β

as stated in the caption of the figures.
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FIGURE 4. The solution u(x,t) with respect to x and time t.

Remark 3. Setting µ= 0, α= 1 and λ= 1 in (4.5) and (4.6) we get the same results
given in [7].

5. CONCLUSION

In this paper, we consider a non-linear time-fractional diffusion equation given in
(1.9) and we applied the GDTM for its solution. The approximate solutions resulting
from the method are shown graphically. Results also show that the numerical scheme
is very effective and convenient for solving non-linear time-fractional diffusion equa-
tion of fractional order. Numerical computations associated with the two examples
discussed above were performed by using Matlab. Another important contribution
of this paper is the observation that, the presence of external force increases the rate
of diffusion in the nonlinear system but the rate becomes slower in the presence of
nonlinear term.
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