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Abstract. Goal Programming (GP), as a generalization of linear programming, is a proper tech-
nique for handling Multi-Objective Decision-Making (MODM) problems. Using this technique,
we can determine multiple aspiration levels for each objective. The Neutrosophic Set (NS) theory
is a powerful tool to deal with indeterminacy and inconsistent data. This paper provides a new
idea to formulate Neutrosophic Multi-Choice Goal Programming (NMCGP) problems to simu-
late real-life situations more realistically. Also, to show the low computational complexity of the
proposed model, the Space and Time complexity criteria are used in the Python language. Even-
tually, a practical mathematical example is solved to present the effectiveness of the proposed
model.
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1. INTRODUCTION

Goal Programming (GP) is a helpful technique to obtain the optimal solution to
Multi-Objective Decision-Making (MODM) problems with an aspiration level for
each target. GP could also be considered an extension of Linear Programming (LP)
to process multiple, usually conflicting, objective problems. It enables us to set our
aspiration levels for each goal.

The GP problems can be incorporated into two different groups: (1) GP mod-
els for crisp Decision-Making (DM) problems (classical goal programming) and (2)
GP models for decision-making problems under uncertainty. Most of the existing
problems in GP are proposed based on classical goal programming. These kinds of
problems were firstly offered by Charnce and Cooper [5] and then developed by Lee
[11], Ignazio [7], Tamiz et al.[29], Romero [25], and others [3, 12, 20, 22–24]. The
main purpose of GP is to minimize the deviations between the achievement of goals
and their aspiration levels. It can be represented as follows:

Min ∑
n
j=1 | fi(X)−gi| ,

s.t. AX = b, X ≥ 0,
(1.1)
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where gi is the aspiration level of the ith goal. Due to imprecision in determining
aspiration levels of real-world problems, decision-makers are unable to consider a
crisp amount of aspiration level for goal programming problems. In this situation,
we require the approaches that belong to the second group of GP problems. This
group includes the developed approach for goal programming problems under uncer-
tainty. To overcome the current uncertainty, several methods based on fuzzy sets and
their extensions have been proposed. Bankian et al. [1], Hocine et al. [6], Kouais-
sah and Hocine [10], Kamal et al. [8], Maity et al. [13], Keshteli and Nasseri [9],
and many others proposed different techniques to deal with fuzzy goal programming
problems. However, the fuzzy sets are still unable to handle indeterminate and in-
consistent information that commonly exists in natural systems. From this point of
view, Smarandache in [28] suggested a concept of Neutrosophic Set (NS) theory. As
another deployment of FS theory, NS theory is a powerful tool to handle uneven, in-
distinctive, and defective data. The degree of indeterminacy in neutrosophic theory
is considered as an independent factor between zero and one, which has a significant
contribution in decision making. A NS N can be characterized by three membership
functions: truth, indeterminacy, and falsity membership functions that are entirely
independent of each other. Wang et al. [30] proposed the Single-Valued Neutro-
sophic Sets (SVNSs) as an instance of the NSs to handle practical problems from
a scientific and engineering perspective. Recently, SVNS has become an important
research topic and attracted much attention in decision-making problems. By apply-
ing a bidirectional measure on decision-making problems, Ye [32] proposed a new
approach to handle MAGDM problems under a neutrosophic environment. Zhang
et al. [33] presented two aggregation operators based on neutrosophic values, such
as neutrosophic weighted arithmetic operator and neutrosophic weighted geometric
operator, and applied them to multi-criteria decision-making problems. Moreover, Ye
in [31] proposed a correlation coefficient of SVNSs and the cross-entropy measure of
SVNSs and used them for decision-making under the Neutrosophic environment. By
introducing the cosine measures for evaluating linguistic neutrosophic numbers, Shi
and Ye [27] proposed a novel strategy to solve neutrosophic DM problems. Ranking
of the NS is an essential part of the MAGDM process. By defining a score function
for ranking the SVNNs, Sahin [26] proposed a strategy for Multi-Attribute Group
Decision-Making (MAGDM) under the neutrosophic environment. By highlighting
the shortcomings of the existing score functions, Nancy and Garg [19] introduced a
modified score function for ranking the SVNNs and then applied it to neutrosophic
decision-making problems. Using a bidirectional projection measure, Pramanik et
al. [21] proposed a novel neutrosophic approach to handle teacher selection prob-
lems. Nafei et al. [17] proposed a novel approach for decision-making with group
recommendations based on NSs. Meanwhile, Nafei et al. [14], by developing a new
Hamming distance between SVNNs, proposed an extension of the TOPSIS method
for MAGDM based on SVNSs where the information about attributes are expressed
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by decision-makers based on neutrosophic numbers. This research presents a new
method for solving Neutrosophic Multi-Choice Goal Programming (NMCGP) prob-
lems. The advantage of using NMCGP is its ability to simulate all aspects of real-life
situations in our models. The remainder of this research is marshaled as follows.
Section 2 presents some practical definitions of Neutrosophic Sets and other essen-
tial concepts. In Section 3, the Neutrosophic Multi-Choice Goal Programming for-
mulation is described. In Section 4, we first explain our method using a numerical
example and then present the calculation processing of the model. The conclusions
are discussed in Section 5.

2. PRELIMINARIES

This section briefly reviews some necessary backgrounds and preliminaries of
neutrosophic sets, single-valued neutrosophic sets, and other essential details.

Definition 1 ([18]). A neutrosophic set U in domain X (x ∈ X) is characterized by
truth TU (x) : X → ]0−,1+[ , indeterminacy IU (x) : X → ]0−,1+[ and falsity
FU (x) : X → ]0−,1+[ membership functions. There is no restriction on the sum of
TU (x) , IU (x) , and FU (x). Therefore, 0≤ TN (x)+ IN (x)+FN (x)≤ 3+.

Definition 2 ([2,15]). Assume that X is a domain. A Single-Valued Neutrosophic
Set (SVNS) U through X taking the form U = {x,TU(x), IU(x),FU(x);x ∈ X}, where
TU(x) : X → [0,1], IU(x) : X → [0,1] and FU(x) : X → [0,1] with 0≤ TU(x)+ IU(x)+
FU(x)≤ 3 for all x ∈ X . Also, TU(x), IU(x) and FU(x) represent the truth membership
degree, the indeterminacy membership degree and the falsity membership degree,
respectively, of x to U .

Definition 3 ([16]). Assume that U and V are two NSs. For all x∈X , U is included
in V , if and only if:

In f TU(x)≤ In f TV (x),
Sup TU(x)≤ Sup TV (x),
In f IU(x)≥ In f IV (x),
Sup IU(x)≥ Sup IV (x),
In f FU(x)≥ In f FV (x),
Sup FU(x)≥ Sup FV (x).

(2.1)

Definition 4 ([15]). Let U be a neutrosophic set. The complement of U is inter-
preted by Uc and it could be defined as

T c
U (x) = {1+}−TU (x), Ic

U (x) = {1+}− IU (x),Fc
U (x) = {1+}−FU (x), ∀x ∈ X .

Therefore, Uc = {x,FU(x),1− IU(x),TU(x);x ∈ X}.
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3. NEUTROSOPHIC MULTI-CHOICE GOAL PROGRAMMING

Decision-Making is a substantial and essential part of daily life that can be applied
in various areas, such as society, economics, management, military, and engineering
technology. In most cases, it is intricate for decision-makers to accurately reveal a
preference when solving Multi Attribute Decision Making (MADM) problems with
imprecise, vague, and incomplete information.

Multi-Objective Decision-Making as a subset of decision science is an essential
part of daily life that can be applied to various problems. The Goal Programming
approach is a powerful technique to address these kinds of problems. Sometimes,
decision-makers prefer to have more than one aspiration level for each goal be-
cause of some specific situations. To handle this problem, Chang in [4] proposed a
Multi-Choice Goal Programming model that is characterized based on crisp decision-
making problems. In some conditions, the objectives can have an ambiguous level. In
this case, we present the Neutrosophic Multi-Choice Goal Grogramming (NMCGP)
model approach that is a powerful tool to solve this kind of unclear difficulties. A
NMCGP problem could be formulated as follows:

Min ∑
n
i=1 | fi(X)−gi1 or gi2 or ...gim| ,

s.t. AX = b, X ≥ 0,
(3.1)

where fi(X) is a linear function of xi (1 ≤ i ≤ n) for the ith goal and gi j
(1≤ i≤ n and 1≤ j ≤ m) is the jth aspiration level of the ith goal.

FIGURE 1. Neutrosophic aspirational levels for Multi-Objective
Goal Programming problems
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Three different classes for NMCGP problems can be considered as shown in
(Fig. 1):

(I) Problems with one neutrosophic aspiration level for each goal (Part A),
(II) Problems with two neutrosophic aspiration levels for each goal (Part B),

(III) Problems with more than two (multiple) neutrosophic aspiration levels for
each goal (Part C).

In order to model these problems, we present the truth, the indeterminacy, and the
falsity membership functions for the ith neutrosophic goal as follows (Fig. 2):

FIGURE 2. Truth, indeterminacy, and falsity membership functions
for NMCGP

Ti( fi(x)) =


∑

m
j=1

fi(x)−g̃i j
di j1

Si j(B), g̃i j−di j1 ≤ fi(x)≤ g̃i j,

1, fi(x) = g̃i j,

∑
m
j=1

g̃i j− fi(x)
di j2

Si j(B), g̃i j ≤ fi(x)≤ g̃i j +di j2,

0, O.W.

(3.2)

Ii( fi(x)) =


∑

m
j=1

g̃i j− fi(x)
di j2

Si j(B), δ(g̃i j−di j1)+(1−δ)g̃i j ≤ fi(x)≤ g̃i j,

δ, fi(x) = g̃i j,

∑
m
j=1

fi(x)−g̃i j
di j2

Si j(B), g̃i j ≤ fi(x)≤ (1−δ)g̃i j +δ(g̃i j +di j2),

δ, O.W.
(3.3)
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Fi( fi(x)) =


∑

m
j=1

g̃i j− fi(x)
hi j1

Si j(B), g̃i j−hi j1 ≤ fi(x)≤ g̃i j,

0, fi(x) = g̃i j,

∑
m
j=1

fi(x)−g̃i j
hi j2

Si j(B) g̃i j ≤ fi(x)≤ g̃i j +hi j2,

0, O.W.

(3.4)

where di j1 and di j2 are the negative and positive tolerances for the truth membership
function in the jth aspiration level of the ith goal, respectively. While hi j1 and hi j2
are the negative and positive tolerances for the falsity membership function in the jth
aspiration level of the ith goal, respectively. Si j(B) is a function of binary serial num-
bers (i.e., a concept of height-balanced binary tree) attached to different aspiration
levels. As shown in Fig. 3, a binary tree with n binary variables can represent 2n

aspiration levels.

FIGURE 3. The concept of height-balanced binary tree

Nevertheless, the Neutrosophic Multi-Choice Poal Programming problem can be
modeled as follows:

Max Ti( fi(x)), Min Ii( fi(x)), Min Fi( fi(x)),
s.t.

Ti( fi(x))≥ Fi( fi(x)),

Ti( fi(x))≥ Ii( fi(x)),

0≤ Ti( fi(x))+Fi( fi(x))+ Ii( fi(x))≤ 3,

Ti( fi(x)),Fi( fi(x)), Ii( fi(x))≥ 0,
AX ≥ b,
X ≥ 0, x ∈ X , X ∈ F, i = 1, ...,n.
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The previous NMCGP model is reformulated as follows:

Max Ti( fi(x)), Min Ii( fi(x)), Min Fi( fi(x)),
s.t.

Ti( fi(x))≥ Fi( fi(x)),

Ti( fi(x))≥ Ii( fi(x)),

0≤ Ti( fi(x))+Fi( fi(x))+ Ii( fi(x))≤ 3,

Ti( fi(x)),Fi( fi(x)), Ii( fi(x))≥ 0,
AX ≥ b,
X ≥ 0, x ∈ X , X ∈ F, i = 1, ...,n.

Because Max αi is equivalent to Min (1−αi) where 0≤ αi ≤ 1, the above model can
be described as below:

Max Ti( fi(x)), Min Ii( fi(x)), Min Fi( fi(x)),
s.t.

Ti( fi(x))≥ Fi( fi(x)),

Ti( fi(x))≥ Ii( fi(x)),

0≤ Ti( fi(x))+Fi( fi(x))+ Ii( fi(x))≤ 3,

Ti( fi(x)),Fi( fi(x)), Ii( fi(x))≥ 0,
AX ≥ b,
X ≥ 0, x ∈ X , X ∈ F, i = 1, ...,n,

where θi = 1−αi. The summary of the proposed model is shown in Fig. 4. To
present a clear description of the proposed approach for solving the NMCGP prob-
lems, assume that we have three different goals with.
1. Only one neutrosophic aspiration level for each goal. This case can be modeled
as:

Min Z =
3

∑
i=1

(θi +βi + γi) ,

s.t.

θi ≥ 1− f1(x)− g̃1

d−1
, θi ≥ 1− g̃1− f1(x)

d+
1

, β1 ≥
g̃1− f1(x)

d1
,

β1 ≥
f1(x)− g̃1

d+
1

, γ1 ≥
g̃1− f1(x)

h−1
, γ1 ≥

f1(x)− g̃1

h+1
,

α2 ≤
f2(x)− g̃2

d−2
, α2 ≤

g̃2− f2(x)
d+

2
, β2 ≥

g̃2− f2(x)
d2

,
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FIGURE 4. The framework of the proposed model

β2 ≥
f2(x)− g̃2

d+
2

, γ2 ≥
g̃2− f2(x)

h−2
, γ2 ≥

f2(x)− g̃2

h+2
,

α3 ≤
f3(x)− g̃3

d−3
, α3 ≤

g̃3− f3(x)
d+

3
, β3 ≥

g̃3− f3(x)
d3

,

β3 ≥
f3(x)− g̃3

d+
3

, γ3 ≥
g̃3− f3(x)

h−3
, γ3 ≥

f3(x)− g̃3

h+3
,

AX ≥ b, 0≤ (1−θ1)+β1 + γ1 ≤ 3, 0≤ (1−θ2)+β2 + γ2 ≤ 3,

0≤ (1−θ3)+β3 + γ3 ≤ 3, 1−β1 ≥ θ1, 1− γ1 ≥ θ1,

1−β2 ≥ θ2, 1− γ2 ≥ θ2, 1−β3 ≥ θ3,

1−γ3 ≥ θ3, 0≤ θ1,β1,γ1 ≤ 1, 0≤ θ2,β2,γ2 ≤ 1, 0≤ θ3,β3,γ3 ≤ 1,

X ≥ 0, x ∈ X , X ∈ F (F is a feasible set).
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2. Two neutrosophic aspiration levels for each goal. It belongs to a case of neut-
rosophic goal programming problems with an either-or selection. Assume that the
target in the first goal is to select an appropriate Neutrosophic aspiration level from
either g̃1 or g̃5. Also, the target in the second goal is to select an appropriate neutro-
sophic aspiration level from either g̃2 or g̃4. Finally, the third goal’s target is to select
an appropriate neutrosophic aspiration level from either g̃3 or g̃6. This case can be
modeled as follows:

Min Z = (θ1 +β1 + γ1)+(θ2 +β2 + γ2)+(θ3 +β3 + γ3) ,

s.t.

θ1 ≥ 1−
(

f1(x)− g̃1

d−11
y1 +

f1(x)− g̃5

d−15
(1− y1)

)
,

θ1 ≥ 1−
(

g̃1− f1(x)
d+

11
y1 +

g̃5− f1(x)
d+

15
(1− y1)

)
,

β1 ≥
g̃1− f1(x)

d11
y1 +

g̃5− f1(x)
d15

(1− y1),

β1 ≥
f1(x)− g̃1

d+
11

y1 +
f1(x)− g̃5

d+
15

(1− y1),

γ1 ≥
g̃1− f1(x)

h−11
y1 +

g̃5− f1(x)
h−15

(1− y1),

γ1 ≥
f1(x)− g̃1

h+11
y1 +

f1(x)− g̃5

h+15
(1− y1),

θ2 ≥ 1−
(

f2(x)− g̃2

d−22
y2 +

f2(x)− g̃4

d−24
(1− y2)

)
,

θ2 ≥ 1−
(

g̃2− f2(x)
d+

22
y2 +

g̃4− f2(x)
d+

24
(1− y2)

)
,

β2 ≥
g̃2− f2(x)

d22
y2 +

g̃4− f2(x)
d24

(1− y2),

β2 ≥
f2(x)− g̃2

d+
22

y2 +
f2(x)− g̃4

d+
24

(1− y2),

γ2 ≥
g̃2− f2(x)

h−22
y2 +

g̃4− f2(x)
h−24

(1− y2),

γ2 ≥
f2(x)− g̃2

h+22
y2 +

f2(x)− g̃4

h+24
(1− y2),

θ3 ≥ 1−
(

f3(x)− g̃3

d−33
y3 +

f3(x)− g̃6

d−36
(1− y3)

)
,
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θ3 ≥ 1−
(

g̃3− f3(x)
d+

33
y3 +

g̃6− f3(x)
d+

36
(1− y3)

)
,

β3 ≥
g̃3− f3(x)

d33
y3 +

g̃6− f3(x)
d36

(1− y3),

β3 ≥
f3(x)− g̃3

d+
33

y3 +
f3(x)− g̃6

d+
36

(1− y3),

γ3 ≥
g̃3− f3(x)

h−33
y3 +

g̃6− f3(x)
h−36

(1− y3),

γ3 ≥
f3(x)− g̃3

h+33
y3 +

f3(x)− g̃6

h+36
(1− y3),

AX ≥ b,

0≤ (1−θ1)+β1 + γ1 ≤ 3,

0≤ (1−θ2)+β2 + γ2 ≤ 3,

0≤ (1−θ3)+β3 + γ3 ≤ 3,

1−β1 ≥ θ1, 1− γ1 ≥ θ1, 1−β2 ≥ θ2,

1−γ2 ≥ θ2, 1−β3 ≥ θ3, 1− γ3 ≥ θ3,

0≤ θ1,β1,γ1 ≤ 1, 0≤ θ2,β2,γ2 ≤ 1,

0≤ θ3,β3,γ3 ≤ 1, X ≥ 0, x ∈ X ,

X ∈ F (F is a feasible set),

where y1,y2 and y3 represent the binary variables.

3. Multi neutrosophic aspiration levels for each goal. It belongs to the case of neutro-
sophic goal programming problems with multi-choice selection. Here we arbitrarily
considered three neutrosophic aspiration levels for each goal. Assume that the target
in the first goal is to select an appropriate neutrosophic aspiration level between g̃1,
g̃5 and g̃8. Also, the target in the second goal is to select an appropriate neutrosophic
aspiration level between g̃2, g̃4 and g̃7 . Finally, the target in the third goal is to select
an appropriate neutrosophic aspiration level between g̃3, g̃6 and g̃9. This case can be
modeled as follows:

Min Z = (θ1 +β1 + γ1)+(θ2 +β2 + γ2)+(θ3 +β3 + γ3) ,

s.t.

θ1 ≥ 1−
(

f1(x)− g̃1

d−11
y1y2 +

f1(x)− g̃5

d−15
y1(1− y2)+

f1(x)− g̃8

d−18
y2(1− y1)

)
,

θ1 ≥ 1−
(

g̃1− f1(x)
d+

11
y1y2 +

g̃5− f1(x)
d+

15
y1(1− y2)+

g̃8− f1(x)
d+

18
y2(1− y1)

)
,
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β1 ≥
g̃1− f1(x)

d−11
y1y2 +

g̃5− f1(x)
d−15

y1(1− y2)+
g̃8− f1(x)

d−18
y2(1− y1),

β1 ≥
f1(x)− g̃1

d+
11

y1y2 +
f1(x)− g̃5

d+
15

y1(1− y2)+
f1(x)− g̃8

d+
18

y2(1− y1),

γ1 ≥
g̃1− f1(x)

h−11
y1y2 +

g̃5− f1(x)
h−15

y1(1− y2)+
g̃8− f1(x)

h−18
y2(1− y1),

γ1 ≥
f1(x)− g̃1

h+11
y1y2 +

f1(x)− g̃5

h+15
y1(1− y2)+

f1(x)− g̃8

h+18
y2(1− y1),

θ2 ≥ 1−
(

f2(x)− g̃2

d−22
y3y4 +

f2(x)− g̃4

d−24
y3(1− y4)+

f2(x)− g̃7

d−27
y4(1− y3)

)
,

θ2 ≥ 1−
(

g̃2− f2(x)
d+

22
y3y4 +

g̃4− f2(x)
d+

24
y3(1− y4)+

g̃7− f2(x)
d+

27
y4(1− y3)

)
,

β2 ≥
g̃2− f2(x)

d−22
y3y4 +

g̃4− f2(x)
d−24

y3(1− y4)+
g̃7− f2(x)

d−27
y4(1− y3),

β2 ≥
f2(x)− g̃2

d+
22

y3y4 +
f2(x)− g̃4

d+
24

y3(1− y4)+
f2(x)− g̃7

d+
27

y4(1− y3),

γ2 ≥
g̃2− f2(x)

h−22
y3y4 +

g̃4− f2(x)
h−24

y3(1− y4)+
g̃7− f2(x)

h−27
y4(1− y3),

γ2 ≥
f2(x)− g̃2

h+22
y3y4 +

f2(x)− g̃4

h+24
y3(1− y4)+

f2(x)− g̃7

h+27
y4(1− y3),

θ3 ≥ 1−
(

f3(x)− g̃3

d−33
y5y6 +

f3(x)− g̃6

d−36
y5(1− y6)+

f3(x)− g̃9

d−39
y6(1− y5)

)
,

θ3 ≥ 1−
(

g̃3− f3(x)
d+

33
y5y6 +

g̃6− f3(x)
d+

36
y5(1− y6)+

g̃9− f3(x)
d+

39
y6(1− y5)

)
,

β3 ≥
g̃3− f3(x)

d−33
y5y6 +

g̃6− f3(x)
d−36

y5(1− y6)+
g̃9− f3(x)

d−39
y6(1− y5),

β3 ≥
f3(x)− g̃3

d+
33

y5y6 +
f3(x)− g̃6

d+
36

y5(1− y6)+
f3(x)− g̃9

d+
39

y6(1− y5),

γ3 ≥
g̃3− f3(x)

h−33
y5y6 +

g̃6− f3(x)
h−36

y5(1− y6)+
g̃9− f3(x)

h−39
y6(1− y5),

γ3 ≥
f3(x)− g̃3

h+33
y5y6 +

f3(x)− g̃6

h+36
y5(1− y6)+

f3(x)− g̃9

h+39
y6(1− y5),

AX ≥ b,
y1 + y2 ≥ 1, y3 + y4 ≥ 1, y5 + y6 ≥ 1,
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0≤ (1−θ1)+β1 + γ1 ≤ 3, 0≤ (1−θ2)+β2 + γ2 ≤ 3,

0≤ (1−θ3)+β3 + γ3 ≤ 3,

1−β1 ≥ θ1,1− γ1 ≥ θ1, 1−β2 ≥ θ2,

1−γ2 ≥ θ2, 1−β3 ≥ θ3, 1− γ3 ≥ θ3,

0≤ θ1,β1,γ1 ≤ 1, 0≤ θ2,β2,γ2 ≤ 1, 0≤ θ3,β3,γ3 ≤ 1,

X ≥ 0, x ∈ X , X ∈ F (F is a feasible set).

4. NUMERICAL ILLUSTRATION

A factory produces three different products such as P1,P2 and P3. To produce each
product we need three resources as Z1,Z2, and Z3. The value of these resources is
shown in Table 1. Assume that there exist six different markets willing to buy some
products. The information about products and demand for them is presented in Table
2. We expect that the profit earned by selling the products should be at least 2000
dollars. The factory’s policy is to select only one applicant to sell each product.

Remark 1. In this example, the negative and positive tolerances for acceptance and
rejection of each goal are considered equal values.

TABLE 1. The values of required resources to produce a product

Products Markets Demands d h Profit
P1 Market 1

Market 2
Market 3

80
90
50

7
5
4

5
2
1

20

P2 Market 4
Market 5

28
26

4
6

9
7

70

P3 Market 6 10 5 4 85

TABLE 2. Information about products

Resources
Products

P1 P2 P3
Z1 4 5 9
Z2 7 6 2
Z3 3 8 7
Capacity 500 600 400

This NMCGP problem can be formulated as follows:

Min Z = (θ1 +β1 + γ1)+(θ2 +β2 + γ2)+(θ3 +β3 + γ3)
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s.t.

θ1 ≥ 1−
(

P1−80
7

y1y2 +
P1−90

5
y1(1− y2)+

P1−50
4

y2(1− y1)

)
,

θ1 ≥ 1−
(

80−P1

7
y1y2 +

90−P1

5
y1(1− y2)+

50−P1

4
y2(1− y1)

)
,

β1 ≥
80−P1

7
y1y2 +

90−P1

5
y1(1− y2)+

50−P1

4
y2(1− y1),

β1 ≥
P1−80

7
y1y2 +

P1−90
5

y1(1− y2)+
P1−50

4
y2(1− y1),

γ1 ≥
80−P1

5
y1y2 +

90−P1

2
y1(1− y2)+

50−P1

1
y2(1− y1),

γ1 ≥
P1−80

5
y1y2 +

P1−90
2

y1(1− y2)+
P1−50

1
y2(1− y1),

θ2 ≥ 1−
(

P2−28
4

y3 +
P2−26

6
(1− y3)

)
,

θ2 ≥ 1−
(

28−P2

4
y3 +

26−P2

6
(1− y3)

)
,

β2 ≥
28−P2

4
y3 +

26−P2

6
(1− y3),

β2 ≥
P2−28

4
y3 +

P2−26
6

(1− y3),

γ2 ≥
28−P2

9
y3 +

26−P2

7
(1− y3),

γ2 ≥
P2−28

9
y3 +

P2−26
7

(1− y3),

θ3 ≥ 1−
(

P3−10
5

)
, θ3 ≥ 1−

(
10−P3

5

)
, β3 ≥

10−P3

5
,

β3 ≥
P3−10

5
, γ3 ≥

10−P3

4
, γ3 ≥

P3−10
4

,

20P1 +70P2 +85P3 ≥ 2000,
x11 + x12 + x13 ≤ 500, x21 + x22 + x23 ≤ 600, x31 + x32 + x33 ≤ 400,

P1 ≤
x11

4
,P1 ≤

x12

7
,P1 ≤

x13

3
, P2 ≤

x21

5
,P2 ≤

x22

6
,P2 ≤

x23

8
,

P3 ≤
x31

9
,P3 ≤

x32

2
,P3 ≤

x33

7
,

y1 + y2 ≥ 1, 0≤ (1−θ1)+β1 + γ1 ≤ 3,

0≤ (1−θ2)+β2 + γ2 ≤ 3, 0≤ (1−θ3)+β3 + γ3 ≤ 3,

1−β1 ≥ θ1, 1− γ1 ≥ θ1, 1−β2 ≥ θ2,
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1−γ2 ≥ θ2, 1−β3 ≥ θ3, 1− γ3 ≥ θ3,

0≤ θ1,β1,γ1 ≤ 1, 0≤ θ2,β2,γ2 ≤ 1, 0≤ θ3,β3,γ3 ≤ 1,
X ≥ 0, x ∈ X .

The optimal solutions of the given problem are P1 = 0.20,P2 = 5.13,P3 = 22.22,
y1 = 2.87,y2 = 1.23, and y3 = 0.36. In this regard, the obtained degrees for truth, in-
determinacy, and falsity of first, second, and third neutrosophic goals are respectively
obtained as (θ1,β1,γ1) = (0.7,0.4,0.5),(θ2,β2,γ2) = (0.3,0.5,0.5), (θ3,β3,γ3) =
(0.1,0.8,0.8). Subsequently, Z = 4.6.

4.1. Calculation Complexity Analysis

The Space Complexity of our proposed model indicates how much memory space
is required. This is intended to solve computational problems by considering input
functions and typescripts and the amount of space that needs to be run is in Gigabytes.
It is usually used for complex problems with many goals.

The proposed method is implemented on MathPy 2.7.3 on Python 3.03, and Ubuntu
20.0 OS on a virtual machine in VMbox (VM). The simulation machine has 16 G
RAM, Intel i4 processor running at 3.2 GHz. All tests are based on three blocks with
a block size of the 128 MB distributed file system. To investigate the Space Com-
plexity (SC) of the proposed method, we have used Calculation Processing (CP) in
each part of the method. To run the simulation. In this case, the evaluation based
on SC to organize different products has been provided. We have considered differ-
ent cases for P1,P2,P3 and their combinations to evaluate the SC based on memory
usage. The meaning of simulation steps is finishing each part of CP. As shown in
Part A, Fig. 5, the details of memory usage are illustrated. The SCP (Space of CP)
for various Pi (1 ≤ i ≤ 3) is 3 GHz memory and computational execution time is 12
minutes. In this case, we considered 10 steps of calculations for simulation. With
increasing the steps of simulation from 10 to 20, we can observe the increases in SCP
and time complexity (Part B, Fig. 5). Subsequently, by increasing the steps of simu-
lation from 20 to 25steps, we can observe the increases in SC to 10 G and increases
in TC to 32 min (Part C, Fig. 5). In summary, this computational process shows that
the proposed method can be used on ordinary machines by finding many targets and
indicates a low computational Memory and CPU space.

5. CONCLUSION

This paper proposed a new model and a new method for solving Neutrosophic
multi-choice goal programming problems to increase accuracy and reduce doubts
and mistakes in the decision-making process. NMCGP, as a generalization of clas-
sical MCGP and Fuzzy MCGP, is a helpful technique to mark indeterminacy as an in-
dependent component in the Decision-Making process. Using NMCGP, we can con-
sider all aspects of real-world problems in determining our goals’ aspiration levels.
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FIGURE 5. Different steps of calculations for simulation

The proposed approach can help us solve problems in all fields, including transporta-
tion, management, production, marketing, etc. In this respect, a practical example is
presented to illustrate the applicability of the proposed method. The computational
process shows that the proposed model can be used on ordinary machines by finding
many targets and indicates a low computational memory and CPU space.

REFERENCES

[1] B. Bankian-Tabrizi, K. Shahanaghi, and M. S. Jabalameli, “Fuzzy multi-choice goal pro-
gramming,” Applied Mathematical Modelling, vol. 36, no. 4, pp. 1415–1420, 2012, doi:
10.1016/j.apm.2011.08.040.

[2] S. Broumi, A. Dey, M. Talea, A. Bakali, F. Smarandache, D. Nagarajan, M. Lathamaheswari, and
R. Kumar, “Shortest path problem using Bellman algorithm under neutrosophic environment,”
Complex & Intelligent Systems, vol. 5, no. 4, pp. 409–416, 2019, doi: 10.1007/s40747-019-0101-
8.

[3] C.-T. Chang, “On the mixed binary goal programming problems,” Applied Mathematics and Com-
putation, vol. 159, no. 3, pp. 759–768, 2004, doi: 10.1016/j.amc.2003.11.001.

[4] C.-T. Chang, “Multi-choice goal programming,” Omega, vol. 35, no. 4, pp. 389–396, 2007, doi:
doi.org/10.1016/j.omega.2005.07.009.

[5] A. Charmes and W. Cooper, Management models and industrial applications of linear program-
ming. Ed. John Wiley and Sons Inc. New York, 1961.

[6] A. Hocine, Z.-Y. Zhuang, N. Kouaissah, and D.-C. Li, “Weighted-additive fuzzy multi-
choice goal programming (WA-FMCGP) for supporting renewable energy site selection de-
cisions,” European Journal of Operational Research, vol. 285, no. 2, pp. 642–654, 2020, doi:
10.1016/j.ejor.2020.02.009.

[7] J. P. Ignizio, Introduction to linear goal programming. Sage Beverly Hills, CA, 1985.
[8] M. Kamal, S. Gupta, P. Chatterjee, D. Pamucar, and Z. Stevic, “Bi-level multi-objective pro-

duction planning problem with multi-choice parameters: a fuzzy goal programming algorithm,”
Algorithms, vol. 12, no. 7, p. 143, 2019, doi: 10.3390/a12070143.

[9] G. R. Keshteli and S. H. Nasseri, “A multi-parametric approach to solve flexible fuzzy multi-
choice goal programming,” Punjab University Journal of Mathematics, vol. 51, no. 12, 2020.

[10] N. Kouaissah and A. Hocine, “Optimizing sustainable and renewable energy portfolios using a
fuzzy interval goal programming approach,” Computers & Industrial Engineering, vol. 144, p.
106448, 2020, doi: 10.1016/j.cie.2020.106448.

[11] S. M. Lee, Goal programming for decision analysis. Auerbach Publishers Philadelphia, 1972.

http://dx.doi.org/10.1016/j.apm.2011.08.040
http://dx.doi.org/10.1007/s40747-019-0101-8
http://dx.doi.org/10.1007/s40747-019-0101-8
http://dx.doi.org/10.1016/j.amc.2003.11.001
http://dx.doi.org/doi.org/10.1016/j.omega.2005.07.009
http://dx.doi.org/10.1016/j.ejor.2020.02.009
http://dx.doi.org/10.3390/a12070143
http://dx.doi.org/10.1016/j.cie.2020.106448


930 A. NAFEI, C-Y. HUANG, S. M. AZIMI, AND A. JAVADPOUR

[12] H.-L. Li, “An efficient method for solving linear goal programming problems,” Journal of Optim-
ization Theory and Applications, vol. 90, no. 2, pp. 465–469, 1996, doi: 10.1007/BF02190009.

[13] G. Maity and S. K. Roy, “Solving fuzzy transportation problem using multi-choice goal program-
ming,” Discrete Mathematics, Algorithms and Applications, vol. 9, no. 06, p. 1750076, 2017, doi:
10.1142/S1793830917500768.

[14] A. Nafei, Y. Gu, and W. Yuan, “An extension of the TOPSIS for multi-attribute group decision
making under neutrosophic environment,” Miskolc Mathematical Notes, vol. 22, no. 1, pp. 393–
405, 2022, doi: 10.18514/MMN.2021.3332.

[15] A. Nafei, C.-Y. Huang, S. P. Azizi, and S.-C. Chen, “An optimized method for solving
membership-based neutrosophic linear programming problems,” Studies in Informatics and Con-
trol, vol. 31, no. 4, pp. 45–52, 2022, doi: 10.24846/v31i4y202205.

[16] A. Nafei, A. Javadpour, H. Nasseri, and W. Yuan, “Optimized score function and its application
in group multiattribute decision making based on fuzzy neutrosophic sets,” International Journal
of Intelligent Systems, vol. 36, no. 12, pp. 7522–7543, 2021, doi: 10.1002/int.22597.

[17] A. Nafei, W. Yuan, and H. Nasseri, “Group multi-attribute decision making based on interval
neutrosophic sets,” Studies in Informatics and Control, vol. 28, no. 3, pp. 309–316, 2019, doi:
10.24846/v28i3y201907.

[18] A. Nafei, W. Yuan, and H. Nasseri, “A new method for solving interval neutrosophic linear pro-
gramming problems,” Gazi University Journal of Science, vol. 33, no. 4, pp. 796–808, 2020, doi:
10.35378/gujs.689125.

[19] Nancy and H. Garg, “An improved score function for ranking neutrosophic sets and its application
to decision-making process,” International Journal for Uncertainty Quantification, vol. 6, no. 5,
2016, doi: 10.1615/Int.J.UncertaintyQuantification.2016018441.

[20] B. B. Pal, B. N. Moitra, and U. Maulik, “A goal programming procedure for fuzzy multiobjective
linear fractional programming problem,” Fuzzy Sets and Systems, vol. 139, no. 2, pp. 395–405,
2003, doi: 10.1016/S0165-0114(02)00374-3.

[21] S. Pramanik, R. Roy, and T. K. Roy, “Teacher selection strategy based on bidirectional projection
measure in neutrosophic number environment,” Peer Reviewers, p. 29, 2017.

[22] M. A. Ragusa and F. Wu, “Global regularity and stability of solutions to the 3D double-diffusive
convection system with Navier boundary conditions,” Advances in Differential Equations, vol. 26,
no. 7/8, pp. 281–304, 2021, doi: ade/ade026-0708-281.

[23] M. A. Ragusa and F. Wu, “Regularity criteria for the 3D magneto-hydrodynamics equations in
anisotropic Lorentz spaces,” Symmetry, vol. 13, no. 4, p. 625, 2021, doi: 10.3390/sym13040625.

[24] M. A. Ragusa and F. Wu, “Regularity criteria via one directional derivative of the velocity in an-
isotropic Lebesgue spaces to the 3D Navier-Stokes equations,” Journal of Mathematical Analysis
and Applications, vol. 502, no. 2, pp. 125–286, 2021, doi: 10.1016/j.jmaa.2021.125286.

[25] C. Romero, “Extended lexicographic goal programming: a unifying approach,” Omega, vol. 29,
no. 1, pp. 63–71, 2001.
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