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Abstract. In this article, our objective is to study the oscillation of first order nonlinear delay
differential equation

X () +p(0)f(x(c(1)) = 0, t > 10,
where the functions p(¢) and t(¢) are functions of nonnegative real numbers, 1(¢) is not neces-
sarily monotone such that ©(¢) <t for t > 1, limy_,e.T(t) = oo, f € C(R,R) and xf(x) > 0 for
x # 0. Also, we establish a new oscillation condition involving both limsup and liminf. Finally,
we present two examples to demonstrate the main result.
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1. INTRODUCTION

The paper deals with the first order nonlinear delay differential equation

X(6)+p(O)f(x(2(t)) =0, t = 10, (1.1
where the functions p(¢) and t(¢) are functions of nonnegative real numbers, () is
not necessarily monotone such that

t(t) <t fort > 1y, }Lmr(t) = oo, (1.2)
fe€C(R,R) and xf(x) >0 for x#0 (1.3)
and N .
0 <N :=limsup—— < co. (1.4)
x—0 (x)

By a solution of (1.1), we mean a continuously differentiable function defined on
[T(Tp),e°) for some T > 1o such that (1.1) holds for # > Ty. A solution of (1.1) is called
oscillatory if it has arbitrarily large zeros. Otherwise, it is called nonoscillatory.

The question of obtaining new sufficient conditions for the oscillatory solutions of
these equations has attracted many researchers (see the references section). Further-
more, delay differential equations have numerous applications in the field of applied
sciences and engineering. See the studies in [1,2,10,22,26,27] for more details. The
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reader is referred to monograph [11] for the general information about oscillation
theory.
When f(x) = x, we have the linear form of (1.1)

X (t)+p()x(z(t) =0, 1 > 1. (1.5)
The first study about the oscillation of all solutions of (1.5) was examined by Myshkis
in 1950. Later, Ladas et al. [19], Koplatadze and Chanturija [16], Ladas and Stavrou-
lakis [20], Fukagai and Kusano [9], Ladde et al. [21], Gy&ri and Ladas [1 1] and Erbe

et al. [7] studied (1.5) and obtained some well-known oscillation criteria.
Now, let o and 3 be defined by

t
oc::htn_lglf/p(s)ds (1.6)
(1)
and
t
B:=limsup [ p(s)ds. (1.7)
f—>oo

w(t)
In 1972, Ladas et al. [19] proved that if () is nondecreasing and

t

limsup [ p(s)ds>1, (1.8)
[—>ro0
(1)
then all solutions of (1.5) are oscillatory.
Also, in 1982, Koplatadze and Chanturija [16] established the following result. If

T(¢) is not necessarily monotone and
/ 1
liminf/ p(s)ds > —, (1.9
t—voo e
T(t)

then all solutions of (1.5) are oscillatory.

When the researchers encountered with the equations which do not satisfy the
well-known oscillation criteria (1.8) and (1.9), they tried to obtain new conditions
including both liminf and limsup conditions for the oscillatory solutions of these
equations. The first successful attempt was carried out by Erbe and Zhang [8] in
1988. They established the following condition by using the upper bound of the ratio

% for the nonoscillatory solutions x(z) of (1.5).

If 0 < o < I and (¢) is nondecreasing,

B> 1—(9>2, (1.10)

then all solutions of (1.5) are oscillatory.
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Since then, many authors have tried to obtain better results by improving the upper
bound for *0) Also, in 1991, Chao [+] obtained the following condition for (1.5)
with nondecreasing argument.

o2

2(1-a)°
In 1992 Yu and Wang [30] and Yu et al. [31] found out the following result. If
0 < o < L and 1(¢) is nondecreasing,

B>1- (111)

l—o—vVI—2a—a2
B>1-—2 : oz (1.12)

then all solutions of (1.5) are oscillatory.

When 0 < o < % and 1(¢) is nondecreasing, in 1990, Elbert and Stavroulakis [6]
and in 1991, Kwong [18] established the following criteria for the oscillatory solu-
tions of (1.5) by using different techniques, respectively.

1 \2
p>1-(1- 5 (1
and
B>ln7\.1+1’ (1.14)
M

where A, is the smaller root of equation A = ¢**.

In 1994, Koplatadze and Kvinikadze [17] improved (1.12). Furthermore, in 1998
Philos and Sficas [25], in 1999 Jaros and Stavroulakis [12], in 2000 Kon et al. [15]
and in 2003 Sficas and Stavroulakis [28] established the following conditions for

oscillatory solutions of (1.5) when 0 < o < % and 1(¢) is nondecreasing.

o? o?
l———r——A 1.15
p> i) 2 (1.15)
Inhj+1 1—a—+1-200—0?2
> — , 1.16
p y 5 (1.16)
2
B>20+——1 (1.17)
M
and
Ink; —1++/5—2A1 +20A
>t 12 (1.18)
M
where A, is the smaller root of equation A = ¢**.
Now, we define the function
h(t) =sup{t(s)}, t > 0. (1.19)

s<t

Clearly, A(r) is nondecreasing and t(¢) < h(z) for all t > 0.
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In 2011, Braverman and Karpuz [3] established the following oscillation condition
for (1.5). If (r) is not necessarily monotone and

limsup [ p(s)ds > 1, (1.20)

where h(t) is defined by (1.19), then all solutions of (1.5) are oscillatory.
Moreover, in 2014, Stavroulakis [29] improved the condition (1.20) to the follow-
ing condition for the oscillatory solutions of (1.5). If 0 < a0 < é, 7(¢) is not necessarily

monotone and
t

o 2
limsup p(s)ds>1—<—> , (1.21)
t—ro0 2

h(t)

where A(t) is defined by (1.19), then all solutions of (1.5) are oscillatory. It can be
seen that the right side of (1.21) is smaller than (1.20). Hence, (1.21) improves (1.20).

When the delay argument t(¢) is not necessarily monotone, the results which were
presented by Chatzarakis and Péics [5] and Kili¢ [13] include (1.16) and (1.17), re-
spectively.

On the other hand, in 2017 and 2020, Ocalan et al. [23,24] obtained the following
criteria for the oscillatory solution of (1.1). Assume that (1.2) and (1.3) hold. If t(r)
is not necessarily monotone and

t

limsup [ p(s)ds > K’, 0<N< oo, (1.22)
0
or
t ]’\\“I N
liminf/p(s)ds > 0<N < oo, (1.23)
t—vo0 e

(1)

where N and h(t) are defined by (1.4) and (1.19), respectively, then all solutions of
(1.1) are oscillatory.

The conditions (1.22) and (1.23) which are established for nonlinear delay differ-
ential equations can be considered as equivalent conditions to (1.8) and (1.9) which
are obtained for linear delay differential equations.

As seen above, there are few papers dealing with oscillation of (1.1). In 1984,
Fukagai and Kusano [9] studied (1.1) with nondecreasing delay. They obtained that
if (1.23) holds, then all solutions of (1.1) are oscillatory. Also, see the results in
Ladde et al. [21] for some oscillation criteria for the solutions of (1.1).

In view of this, an important question that arises in the case t(¢) is not necessarily
monotone and (1.22) and (1.23) are not satisfied, is whether we can obtain new os-
cillation condition for (1.1). In the present paper, we will give the positive answer to
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this question. Also, the main purpose of this paper is to modify the condition (1.21)
for the nonlinear delay differential equations. Especially, the present article will be
the first study involving both liminf and limsup integral conditions in the literature

for the nonlinear differential equations with nonmonotone delay by using the ratio
x(h(t))
x(t) -

2. MAIN RESULTS

In this section, we present a new sufficient condition for the oscillation of all solu-
tions of (1.1), under the assumption that the delay argument t(¢) is not necessarily
monotone. The following lemmas will be useful to establish our result.

Lemma 1 ([7], Lemma 2.1.1). Assume that (1.19) holds and

t

liminf [ p(s)ds > 0.

t—ro0

()
Then

t t
hln_l)glf p(s)ds:llgglf/p(s)ds. (2.1)
() h(t)

Lemma 2 ([14], Lemma 2.2). Assume that x(t) is an eventually positive solution

of (1.1). If

t

limsup [ p(s)ds >0, (2.2)
1—ro0

h(t)
then }me(t) =0, where h(t) is defined by (1.19).

Also, assume that x(t) is an eventually negative solution of (1.1). If (2.2) holds,
then tlimx(t) =0.
—>00

Lemma 3. Assume that x(t) is an eventually positive solution of (1.1) and

t
o= litn_1>inf/p(s)ds > 0. (2.3)
(t)
Then, we have
h 2N\ ?
limsupx( ®) (N> , (2.4)
t—00 x(l‘) o

where h(t) is defined by (1.19) and N is a constant with N <N.
Also, assume that x(t) is an eventually negative solution of (1.1). If (2.3) holds,
then we get (2.4).
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Proof. Letx(t) be an eventually positive solution of (1.1). Then, there exists #; > fo
such that x(z), x(t(¢)), x(h(¢)) > O for all # > #;. Thus, from (1.1) we have

X (t) = —p(t) f(x(x(t)) <0
for all # > ¢, which means that x(¢) is an eventually nonincreasing function. Also,
with the help of Lemma 1, (2.3) implies (2.2), then from Lemma 2, we know that
}1_>r£1°x(t) = 0. Then from (1.4), we can choose t, > #; and there exists N with K’ <N
such that

Flx(z(0) > %x(t(t)) fort > 1. 2.5)

Using the fact that x(¢) is nonincreasing, T(¢) < h(z) and the inequality (2.5), from
(1.1) we obtain

1
x(t)+ Np(t)x (h(z)) <O0. (2.6)
Moreover, from (2.3) and Lemma 1, we have
t
/ pls)ds > a—e, € € (0,0), 2.7
h(r)

therefore there exists a #* > ¢ such that

t

/ pls)ds > &

hir')

and / s)ds > — (2.8)

Then, integrating (2.6) from A(¢*) to ¢ and using the fact that x() is nonincreasing,
h(t) is nondecreasing and (2.8), we obtain

x(t) — N / ))ds <0
x(t) — x(h(1*)) + %x(h(t)) [ pts)as <o
h(r*)
and |
x(h(t)) > - (h(0)) % 2.9)

By using the same facts as above, integrating (2.6) from ¢ to ¢*, we have
I*

X(17) = x(t) + - / p(s)x (h(s))ds < 0

t
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or
1 "
(1) = 2(t) + yx (4(t")) [ pls)ds <0
t
and
1 o—¢
— ) ——. 2.1
x(t) > Nx(h(t ) 5 (2.10)
Finally, combining (2.9) and (2.10), we get
o—€ . (a—¢) (a—¢)
x(t) > N x(h(t")) > N3N x(h(1))
or
x(h(1)) 2N \?
<
x(1) (u—eg)
Hence
2
limsupx(h(t)) < ( 2N ) )
el x) ~ \la—e)
because of € is arbitrary, by letting € — 0, we obtain (2.4) and this completes the
proof. O

Theorem 1. Assume that (1.2) and (1.3) hold. If ©(t) is not necessarily monotone,

0<Oc§%and
t

I d 1= (%) 2.11

p:= im sup p(S)S>N[—<2N)], (2.11)
h(t)

then all solutions of (1.1) are oscillatory, where h(t) is defined by (1.19) and N is a

constant with N < N.

Proof. Assume, for the sake of contradiction, that there exists an eventually pos-
itive solution x(¢) of (1.1). If x(¢) is an eventually negative solution of (1.1), the
proof of the theorem can be done similarly. Then, there exists #; > #o such that
x(t), x(t(t)), x(h(t)) > 0 for all t > ¢;. Thus, from (1.1) we have

X(t)=—pt)f(x(2(1) <0
for all t > #;, which means, that x(¢) is an eventually nonincreasing function. Lemma
2 and condition (2.11) imply that }me(t) = 0. Then from (1.4), we can choose t; > 1]

and there exists N with ]?/ < N such that

flx(z(r)) > %x(’c(t)) fort > . (2.12)



848 N. KILIC AND O. OCALAN

Using inequality (2.12), the fact that x(¢) is nonincreasing and t(r) < h(t), from (1.1)
we obtain

Y0+ %p(t)x (h(t)) < 0. 2.13)

Integrating (2.13) from h(z) to t, we have

t

K(0) = x(h0) + [ Ps)a(h(s))ds <0,
h(t)

t

x(t) — x(h(8)) + =x(h(1)) / p(s)ds < 0

N
h(r)
and
1 t
x(t) +x(h(r)) N /p(s)ds—l <0
h(r)
or
1 x(1)
— [ p(s)ds<1—
N / (r(1))
h(t)
and by Lemma 3,
1 A 2.14
. < Naa ‘
ll;iso:lp p(s)ds < [ (2N) ], (2.14)
h(t)
which contradicts to (2.11), so this completes the proof. U

Example 1. We consider the nonlinear delay differential equation

1 /¢t t
')+ —x ()1 (‘ (—)( ):0. 2.15
x()+tx(2.7)n \27)17¢ (2.15)
Then,
N = lims p—x lims pix 1<N=1.01
=h u =l u = = 1.
w0 fx) 0 xIn(x|+e)

and using this, we have

t

1 ~

B=1limsup [ p(s)ds= limsup/ —ds=1In(2.7) = 0.99325 <1 =N,

1—o0 0 t—eo S S
E 27

so condition (1.22) doesn’t hold. But,

~

~0.99325 > N | 1— (<2)] ~ 0.76580.
N



OSCILLATORY SOLUTION 849

We see that condition (2.11) is satisfied and therefore, all solutions of (2.15) are
oscillatory.

Example 2. We consider the nonlinear delay differential equation

x’(t) +(0.09)x(t(¢)) In(|x(t(z))| + 19.02) = 0, (2.16)
where
—t+12k—2, t € [6k,6k+ 1],
4t — 18k —17, t€[6k+1,6k+2],
t(t) = ¢ 0.5t + 3k, t€[6k+2,6k+4], keNy,
[

—6t + 42k +26, 1€ [6k+4,6k+5],
8t —42k—44, 1€ [6k+5,6k+6],

and with the help of (1.19), we obtain

6k —2, t € [6k,6k+1.25],
4t —18k—7, t€[6k+1.25,6k+2],
h(t) :=sup{t(s)} = { 0.5+ 3k, re[6k+2,6k+4],  keN,.
s<t 6k +2, t € [6k+4,6k+5.75],
[

8t — 42k —44, 1€ [6k+5.75,6k+6],

Then, from (1.4), we have

~ . X . X
N= llr)fl_?(l)lp% = hr;lj(l)lpm ~ 0.3395 < N =0.3396.
Also,
t 6k+2 ~
o= litrgglf p(s)ds = litrgglf 0.09ds = 0.09 < g ~0.12489
(1) 6k+1
and
t 6k+5.75
B =1limsup [ p(s)ds=limsup 0.09ds = 0.3375 < N ~ 0.3395,
t—oo W t—oo 62

so, the conditions (1.22) and (1.23) don’t hold.
However,

2
B—=03375>N [1 _ (%) ] ~ 0.33363,

which means, the conditions of Theorem 1 hold. So, all solutions of (2.16) are oscil-
latory.
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