

HU e-ISSN 1787-2413 DOI: 10.18514/MMN.2023.4014

BLOW-UP OF WEAK SOLUTIONS FOR A HIGHER-ORDER HEAT EQUATION WITH LOGARITHMIC NONLINEARITY

TUĞRUL CÖMERT AND ERHAN PIŞKIN

Received 05 December, 2021

Abstract. This paper deal with the initial boundary value problem for a higher-order heat equation with logarithmic source term

$$u_t + (-\Delta)^m u - \Delta u_t = u^{k-2} u \ln |u|.$$

We obtain blow-up of weak solutions in the finite time, by employing potential well technique and concave technique. In addition, the upper bound of blow-up time is considered. This improves and extends some previous studies.

2010 Mathematics Subject Classification: 35B40; 35G25; 35K35

Keywords: blow-up, heat equation, higher-order, logarithmic nonlinearity, nehari functional, weak solutions

1. INTRODUCTION

In this article, we consider the blow up of solutions for the higher-order heat equation with logarithmic nonlinearity

$$\begin{cases} u_t + Au - \Delta u_t = |u|^{k-2} u \ln |u|, & x \in \Omega, \quad t > 0; \\ D^{\gamma} u(x,t) = 0, & |\gamma| \le m - 1, \quad x \in \partial \Omega, \quad t > 0; \\ u(x,0) = u_0(x), & x \in \Omega; \end{cases}$$
(1.1)

where $A = (-\Delta)^m$, $m \ge 1$ a positive integer, Ω is a bound domain in \mathbb{R}^n with smooth boundary $\partial \Omega$, $\gamma = (\gamma_1, \gamma_2, ..., \gamma_n)$ is multi-index, γ_i (i = 1, 2, ..., n) are nonnegative integers, $|\gamma| = \gamma_1 + \gamma_2 + \cdots + \gamma_n$, $D^{\gamma} = \frac{\partial^{|\gamma|}}{\partial x_1^{\gamma_1} \partial x_2^{\gamma_2} \dots \partial x_n^{\gamma_n}}$ are multi-index derivative operator, $\Delta = \sum_{i=1}^n \frac{\partial^2}{\partial x_i^2}$ is the Laplace operator. The parameter *k* satisfies

$$\begin{cases} 2 \le k \le +\infty, & n \le 2m, \\ 2 \le k \le \frac{2n}{n-2m}, & n > 2m. \end{cases}$$

© 2023 Miskolc University Press

Peng and Zhou [11] studied the following parabolic equation with logarithmic source term

$$u_t - \Delta u = u^{k-2} u \ln |u|.$$

They studied by employing energy technique and potential well technique, the global existence of solutions and blow-up in finite time. In addition, the upper bound of blow-up time is considered under appropriate conditions.

When m = 1, in the equation (1.1), becomes a heat equation as follows

$$u_t - \Delta u - \Delta u_t = u^{k-2} u \ln |u|,$$

where $2 \le k$, was considered by many authors [2–4,7,16]. In the case of k = 2, Chen and Tian [3] studied by employing the logarithmic Sobolev inequality and potantial well method, the global existence of solutions and blow-up of solutions at $+\infty$. In the case of 2 < k, Ding and Zhou [4] studied the blow-up of solutions in finite time, by using eigenfunction method. Also, the upper bound of the blow-up time is studied under appropriate conditions.

Recently many other authors investigated higher-order hyperbolic and parabolic type equation [5, 6, 8, 10, 13-15, 17, 18]. Ishige et al. [8] studied the Cauchy problem for nonlinear higher-order heat equation as follows

$$u_t + (-\Delta)^m u = |u|^k$$

They obtained existence of solutions of the Cauchy problem by introducing a new majorizing kernel. In addition, they studied the local existence of solutions under the different conditions. Xiao and Li [15] considered the following initial boundary value problem for nonlinear higher-order heat equations

$$u_t + (-\Delta)^m u_t + (-\Delta)^m u = f(u).$$

They established the existence of weak solution to the static problem, via the potential well technique.

Motivated by the above studies, in this work, we investigate the finite time blow-up of weak solutions for the Eq. (1.1).

The remainder of our work is organized as follows. In Section2, some important Lemmas are given. In Section 3, the main result is proved.

2. PRELIMINARIES

We material needed for proving the main result is introduced. Let $||u||_{H^m(\Omega)} =$

 $\left(\sum_{|\gamma| \le m} \|D^{\gamma}u\|_{L^{2}(\Omega)}^{2}\right)^{\frac{1}{2}} \text{ denote } H^{m}(\Omega) \text{ norm, let } H_{0}^{m}(\Omega) \text{ denote the closure in } H^{m}(\Omega)$

of $C_0^{\infty}(\Omega)$. Let $\|.\|_r$ and $\|.\|$ denote the usual $L^r(\Omega)$ norm and $L^2(\Omega)$ norm (see [1, 12], for details).

For $u \in H_0^m(\Omega) \setminus \{0\}$, we define the energy functional

$$J(u) = \frac{1}{2} \left\| A^{\frac{1}{2}} u \right\|^2 - \frac{1}{k} \int_{\Omega} |u|^k \ln |u| \, dx + \frac{1}{k^2} \left\| u \right\|_k^k, \tag{2.1}$$

and Nehari functional

$$I(u) = \left\| A^{\frac{1}{2}} u \right\|^{2} - \int_{\Omega} |u|^{k} \ln |u| \, dx.$$
(2.2)

Combining (2.1) and (2.2), we obtain

$$J(u) = \frac{1}{k}I(u) + \left(\frac{1}{2} - \frac{1}{k}\right) \left\|A^{\frac{1}{2}}u\right\|^{2} + \frac{1}{k^{2}} \left\|u\right\|_{k}^{k}.$$
 (2.3)

Let

$$\mathcal{N} = \{ u \in H_0^m(\Omega) \setminus \{0\} : I(u) = 0 \},$$

be the Nehari manifold. Also, we may define

$$d = \inf_{u \in \mathcal{N}} J(u), \tag{2.4}$$

and

$$V = \{ u \in H_0^m(\Omega) \mid J(u) < d, I(u) < 0 \}.$$

We refer to V as the potential well and d as the depth of the well.

Lemma 1 (Theorem 4.31 in [1]). Let q be a number with $2 \le q < +\infty$, $n \le 2m$ and $2 \le q \le \frac{2n}{n-2m}$, n > 2m. Then there is a constant C depending

$$\|u\|_q \leq C \left\|A^{\frac{1}{2}}u\right\|, \quad \forall u \in H_0^m(\Omega)$$

Lemma 2. J(t) is a nonincreasing function for $t \ge 0$ and

$$J'(u) = -\int_{\Omega} \left(u_t^2 + \nabla u_t^2 \right) dx \le 0.$$

Proof. Multiplying the equation (1.1) by u_t and integrating on Ω , we get

$$\int_{\Omega} u_t^2 dx + \int_{\Omega} Au u_t dx + \int_{\Omega} \nabla u_t^2 dx = \int_{\Omega} u^{k-1} u_t \ln |u| dx.$$

By straightforward calculation, we obtain

$$\int_{\Omega} u_t^2 dx + \frac{1}{2} \frac{d}{dt} \left\| A^{\frac{1}{2}} u \right\|^2 + \int_{\Omega} \nabla u_t^2 dx = \frac{1}{k} \frac{d}{dt} \int_{\Omega} |u|^k \ln|u| \, dx - \frac{1}{k^2} \frac{d}{dt} \|u\|_k^k,$$

which yields that

$$\frac{1}{2}\frac{d}{dt}\left\|A^{\frac{1}{2}}u\right\|^{2} - \frac{1}{k}\frac{d}{dt}\int_{\Omega}\left|u\right|^{k}\ln\left|u\right|dx + \frac{1}{k^{2}}\frac{d}{dt}\left\|u\right\|_{k}^{k} = -\int_{\Omega}u_{t}^{2}dx - \int_{\Omega}\nabla u_{t}^{2}dx.$$

Thus we get

$$\frac{d}{dt}\left(\frac{1}{2}\left\|A^{\frac{1}{2}}u\right\|^{2}-\frac{1}{k}\int_{\Omega}\left|u\right|^{k}\ln\left|u\right|dx+\frac{1}{k^{2}}\left\|u\right\|_{k}^{k}\right)=-\int_{\Omega}\left(u_{t}^{2}+\nabla u_{t}^{2}\right)dx.$$
(2.5)

By (2.1) and (2.5), we obtain

$$\frac{d}{dt}J(u) = -\int_{\Omega} \left(u_t^2 + \nabla u_t^2\right) dx.$$
(2.6)

Moreover, Integrating (2.6) with respect to t on [0, t], we obtain

$$\int_0^t \|u_s(s)\|_{H_0^1(\Omega)}^2 ds + J(u(t)) = J(u_0).$$

Lemma 3. Let $u \in H_0^m(\Omega) \setminus \{0\}$. We contract the function $h: \beta \to J(\beta u)$ for $\beta > 0$. Then we get

- (i) $\lim_{\beta\to 0^+} h(\beta) = 0$ and $\lim_{\beta\to +\infty} h(\beta) = -\infty$;
- (ii) there is a unique $\overline{\beta}_1 > 0$ such that $h'(\overline{\beta}_1) = 0$;
- (iii) $h(\beta)$ is increasing on $(0,\overline{\beta}_1)$, decreasing on $(\overline{\beta}_1,+\infty)$ and taking the maximum at $\overline{\beta}_1$; $I(\beta u) = \beta h'(\beta)$ and

$$I(\beta u) \begin{cases} >0, & 0<\beta<\overline{\beta}_1, \\ =0, & \beta=\overline{\beta}_1, \\ <0, & \overline{\beta}_1<\beta<+\infty. \end{cases}$$

Proof. By the definition of h, for $u \in H_0^m(\Omega) \setminus \{0\}$, we have

$$h(\beta) = \frac{1}{2} \left\| A^{\frac{1}{2}}(\beta u) \right\|^{2} - \frac{1}{k} \int_{\Omega} |\beta u|^{k} \ln |\beta u| \, dx + \frac{1}{k^{2}} \|\beta u\|_{k}^{k}$$
$$= \frac{\beta^{2}}{2} \left\| A^{\frac{1}{2}} u \right\|^{2} - \frac{\beta^{k}}{k} \int_{\Omega} |u|^{k} \ln |u| \, dx - \frac{\beta^{k}}{k} \ln \beta \|u\|_{k}^{k} + \frac{\beta^{k}}{k^{2}} \|u\|_{k}^{k}$$

We see that (i) holds due to $||u||_k^k \neq 0$. We obtain

$$\begin{aligned} \frac{d}{d\beta}h(\beta) &= \beta \left\| A^{\frac{1}{2}}u \right\|^2 - \beta^{k-1} \int_{\Omega} |u|^k \ln |u| \, dx \\ &- \beta^{k-1} \ln \beta \|u\|_k^k - \frac{\beta^{k-1}}{k} \|u\|_k^k + \frac{\beta^{k-1}}{k} \|u\|_k^k \\ &= \beta \left(\left\| A^{\frac{1}{2}}u \right\|^2 - \beta^{k-2} \int_{\Omega} |u|^k \ln |u| \, dx - \beta^{k-2} \ln \beta \|u\|_k^k \right). \end{aligned}$$

Let $\zeta(\beta) = \beta^{-1}h'(\beta)$, thus we get

$$\begin{aligned} \zeta(\beta) &= \beta^{-1} h'(\beta) \\ &= \beta^{-1} \beta \left(\left\| A^{\frac{1}{2}} u \right\|^2 - \beta^{k-2} \int_{\Omega} |u|^k \ln |u| \, dx - \beta^{k-2} \ln \beta \|u\|_k^k \right) \\ &= \left\| A^{\frac{1}{2}} u \right\|^2 - \beta^{k-2} \int_{\Omega} |u|^k \ln |u| \, dx - \beta^{k-2} \ln \beta \|u\|_k^k. \end{aligned}$$

Then

$$\zeta'(\beta) = -(k-2)\beta^{k-3} \int_{\Omega} |u|^k \ln|u| \, dx - (k-2)\beta^{k-3} \ln\beta \, \|u\|_k^k - \beta^{k-3} \, \|u\|_k^k,$$

which yields that there exists a $\overline{\beta}_1 > 0$ such that $\zeta'(\beta) > 0$ on $(0,\overline{\beta}_1)$, $\zeta'(\beta) < 0$ on $(\overline{\beta}_1, +\infty)$ and $\zeta'(\beta) = 0$. So $\zeta(\beta)$ is increasing on $(0,\overline{\beta}_1)$, decreasing on $(\overline{\beta}_1, +\infty)$. Since $\lim_{\beta\to 0^+} \zeta(\beta) = \left\|A^{\frac{1}{2}}u\right\|^2 > 0$, $\lim_{\beta\to +\infty} \zeta(\beta) = -\infty$, there exists a unique $\overline{\beta}_1 > 0$ such that $\zeta(\overline{\beta}_1) = 0$, i.e. $h'(\overline{\beta}_1) = 0$. So *(ii)* holds. Then, $h'(\beta) = \beta\zeta(\beta)$ is positive on $(0,\overline{\beta}_1)$, negative on $(\overline{\beta}_1, +\infty)$. Thus $h(\beta)$ is increasing on $(0,\overline{\beta}_1)$, decreasing on $(\overline{\beta}_1, +\infty)$ and taking the maximum at $\overline{\beta}_1$. From (2.2), we get

$$I(\beta u) = \left\| A^{\frac{1}{2}}(\beta u) \right\|^{2} - \int_{\Omega} |\beta u|^{k} \ln |\beta u| dx$$

= $\beta^{2} \left\| A^{\frac{1}{2}} u \right\|^{2} - \beta^{k} \int_{\Omega} |u|^{k} \ln |u| dx - \beta^{k} \ln \beta \|u\|_{k}^{k}$
= $\beta \left(\beta \left\| A^{\frac{1}{2}} u \right\|^{2} - \beta^{k-1} \int_{\Omega} |u|^{k} \ln |u| dx - \beta^{k-1} \ln \beta \|u\|_{k}^{k} \right)$
= $\beta h'(\beta).$

Thus $I(\beta u) > 0$ for $0 < \beta < \overline{\beta}_1$, $I(\beta u) < 0$ for $\overline{\beta}_1 < \beta < +\infty$ and $I(\overline{\beta}_1 u) = 0$. So (*iii*) holds. For this reason, the proof is completed.

Lemma 4. *d* defined by (2.4) is positive and there exists a positive function $u \in \mathcal{N}$ such that J(u) = d.

Proof. By (2.4), we suppose $\{u_r\}_r^{\infty} \subset N$ is a minimizing sequence of J. Since $\{u_r\}_r^{\infty} \subset N$ is also a minimizing sequence of J, we consider the case where $u_r > 0$ a.e. in Ω , $r \in N$ without loss of generality. Thus

$$\lim_{r \to \infty} J(u_r) = d, \tag{2.7}$$

which implies that $\{J(u_r)\}_r^{\infty}$ is bounded, i.e. there exists a constant $C_1 > 0$ such that $|J(u_r)| \le C_1$. Using (2.3), $I(u_r) = d$ and $|J(u_r)| \le C_1$, we obtain

$$\left(\frac{1}{2} - \frac{1}{k}\right) \left\| A^{\frac{1}{2}} u_r \right\|^2 + \frac{1}{k^2} \left\| u_r \right\|_k^k \le C_1.$$
(2.8)

From (2.8), we get

$$\left\|A^{\frac{1}{2}}u_r\right\|^2 \le \left(\frac{1}{2} - \frac{1}{k}\right)^{-1} C_1.$$
(2.9)

By (2.9) and Lemma 1, we obtain

$$||u_r||^2 \le C ||A^{\frac{1}{2}}u_r||^2 \le \left(\frac{1}{2} - \frac{1}{k}\right)^{-1} C_1.$$

Moreover, we have already observed that J is coercive on \mathcal{N} which satisfies that $\{u_r\}_r^{\infty}$ is bounded in $H_0^m(\Omega)$. Let $\mu > 0$ be small enough such that $k + \mu < \frac{2n}{n-2m}$. Since $H_0^m(\Omega) \hookrightarrow L^{k+\mu}(\Omega)$ is compact, so there exists a function u and a subsequence of $\{u_r\}_r^{\infty}$, still denote by $\{u_r\}_r^{\infty}$, such that

$$u_r \to u$$
 weakly in $H_0^m(\Omega)$,
 $u_r \to u$ strongly in $L^{k+\mu}(\Omega)$,
 $u_r(x) \to u(x)$ a.e. in Ω .

Also, $u \ge 0$ a.e. in Ω . First, we prove $u \ne 0$. From the dominated convergence theorem, we have

$$\int_{\Omega} |u|^k \ln |u| \, dx = \lim_{r \to \infty} \int_{\Omega} |u_r|^k \ln |u_r| \, dx \tag{2.10}$$

and

$$\int_{\Omega} |u|^k dx = \lim_{r \to \infty} \int_{\Omega} |u_r|^k dx.$$
(2.11)

From the weak lower semicontinuity of $H_0^m(\Omega)$, we get

$$\left\|A^{\frac{1}{2}}u\right\|^{2} \le \liminf_{r \to \infty} \left\|A^{\frac{1}{2}}u_{r}\right\|^{2}.$$
 (2.12)

Then it follows from (2.1), (2.7), (2.10), (2.11) and (2.12) that

$$J(u) = \frac{1}{2} \left\| A^{\frac{1}{2}} u \right\|^{2} - \frac{1}{k} \int_{\Omega} |u|^{k} \ln |u| dx + \frac{1}{k^{2}} \|u\|_{k}^{k}$$

$$\leq \liminf_{r \to \infty} \frac{1}{2} \left\| A^{\frac{1}{2}} u_{r} \right\|^{2} - \lim_{r \to \infty} \frac{1}{k} \int_{\Omega} |u_{r}|^{k} \ln |u_{r}| dx + \lim_{r \to \infty} \frac{1}{k^{2}} \|u_{r}\|_{k}^{k}$$

$$= \liminf_{r \to \infty} \left(\frac{1}{2} \left\| A^{\frac{1}{2}} u_{r} \right\|^{2} - \frac{1}{k} \int_{\Omega} |u_{r}|^{k} \ln |u_{r}| dx + \frac{1}{k^{2}} \|u_{r}\|_{k}^{k} \right)$$

$$= \liminf_{r \to \infty} J(u_{r}) = d.$$
(2.13)

Using (2.2), (2.10) and (2.12), we have

$$I(u) = \left\| A^{\frac{1}{2}} u \right\|^{2} - \int_{\Omega} |u|^{k} \ln |u| dx$$

$$\leq \liminf_{r \to \infty} \left\| A^{\frac{1}{2}} u_{r} \right\|^{2} - \lim_{r \to \infty} \int_{\Omega} |u_{r}|^{k} \ln |u_{r}| dx$$

$$= \liminf_{r \to \infty} \left(\left\| A^{\frac{1}{2}} u_{r} \right\|^{2} - \int_{\Omega} |u_{r}|^{k} \ln |u_{r}| dx \right)$$

$$= \liminf_{r \to \infty} I(u_{r}) = 0.$$
(2.14)

Since $u_r \in \mathcal{N}$, we have $I(u_r) = 0$. So by using Lemma 1 and the fact $x^{-\mu} \ln x \le (e\mu)^{-1}$ for $x \ge 1$, we get

$$\begin{split} \left| A^{\frac{1}{2}} u_r \right|^2 &= \int_{\Omega} |u_r|^k \ln |u_r| \, dx \\ &\leq (e\mu)^{-1} \int_{\Omega} |u_r|^{k+\mu} \, dx \\ &= (e\mu)^{-1} \|u_r\|_{k+\mu}^{k+\mu} \\ &\leq C \left\| A^{\frac{1}{2}} u_r \right\|_2^{k+\mu}, \end{split}$$

where C is Sobolev embedding constant. This satisfies that

$$\int_{\Omega} |u_r|^k \ln |u_r| \, dx = \left\| A^{\frac{1}{2}} u_r \right\|^2 \ge C.$$
(2.15)

By (2.10) and (2.15), we have

$$\int_{\Omega} |u|^k \ln |u| \, dx \ge C.$$

Thus we have $u \in H_0^m(\Omega) \setminus \{0\}$.

If $I(u_r) < 0$, from Lemma 3, there exists a $\overline{\beta}_1$ such that $I(\overline{\beta}_1 u) = 0$ and $0 < \overline{\beta}_1 < 1$. Thus $\overline{\beta}_1 u \in \mathcal{N}$. It follows from (2.3), (2.4), (2.11) and (2.12) that

$$\begin{split} d &\leq J(\overline{\beta}_{1}u) \\ &= \frac{1}{k}I(\overline{\beta}_{1}u) + \left(\frac{1}{2} - \frac{1}{k}\right) \left\| A^{\frac{1}{2}}\left(\overline{\beta}_{1}u\right) \right\|^{2} + \frac{1}{k^{2}} \left\| \overline{\beta}_{1}u \right\|_{k}^{k} \\ &= \left(\frac{1}{2} - \frac{1}{k}\right) \left\| A^{\frac{1}{2}}\left(\overline{\beta}_{1}u\right) \right\|^{2} + \frac{1}{k^{2}} \left\| \overline{\beta}_{1}u \right\|_{k}^{k} \\ &= (\overline{\beta}_{1})^{2} \left(\frac{1}{2} - \frac{1}{k}\right) \left\| A^{\frac{1}{2}}u \right\|^{2} + (\overline{\beta}_{1})^{k} \left(\frac{1}{k^{2}}\right) \left\| u \right\|_{k}^{k} \\ &\leq (\overline{\beta}_{1})^{2} \left[\left(\frac{1}{2} - \frac{1}{k}\right) \left\| A^{\frac{1}{2}}u \right\|^{2} + \frac{1}{k^{2}} \left\| u \right\|_{k}^{k} \right] \end{split}$$

$$\leq (\overline{\beta}_1)^2 \liminf_{r \to \infty} \left[\left(\frac{1}{2} - \frac{1}{k} \right) \left\| A^{\frac{1}{2}} u_r \right\|^2 + \frac{1}{k^2} \left\| u_r \right\|_k^k \right]$$

= $(\overline{\beta}_1)^2 \liminf_{r \to \infty} J(u_r)$
= $(\overline{\beta}_1)^2 d,$

which indicates $\overline{\beta}_1 \ge 1$ by d > 0. It contradicts $0 < \overline{\beta}_1 < 1$. By (2.14), we have I(u) = 0. For this reason, $u \in \mathcal{N}$. From (2.7), we have $J(u) \ge d$. From (2.13), we have $J(u) \le d$. So J(u) = d.

Lemma 5 (Theorem 2 in [9]). Let $\phi(t)$ be a nonnegative function C^2 , which satisfies, for t > 0, inequality

$$\phi(t)\phi''(t) - (1+\gamma)\left[\phi'(t)\right]^2 \ge 0,$$

with some $\gamma > 0$. If $\phi(0) > 0$ and $\phi'(0) > 0$, then there exist a time

$$T \leq \frac{\phi(0)}{\beta \phi'(0)},$$

such that

$$\lim_{t\to T^-}\phi(t)=\infty.$$

3. MAIN RESULTS

Definition 1. (Weak Solution). We say that function u(t) is weak solution of the problem (1.1) on $\Omega \times [0,T]$, if $u \in L^{\infty}(0,T;H_0^m(\Omega))$ with $u_t \in L^2(0,T;H_0^m(\Omega))$ and implies the initial condition $u(0) = u_0 \in H_0^m(\Omega) \setminus \{0\}$, and the follow equality

$$(u_t, w) + \left(A^{\frac{1}{2}}u, A^{\frac{1}{2}}w\right) + (\nabla u_t, \nabla w) = \left(|u|^{r-2} u \ln |u|, w\right)$$

for all $w \in H_0^m(\Omega)$ holds for a.e. $t \in [0,T]$, and (.,.) means the inner product $(.,.)_{L^2(\Omega)}$, that is

$$(\eta,\xi) = \int_{\Omega} \eta(x)\xi(x)dx.$$

Theorem 1 (Blow up). Suppose that $u_0 \in V$. Then u(t) blows up at finite time in the sence of $T_* > 0$ and

$$\lim_{t \to T_*} \|u(t)\|_{H^1_0(\Omega)}^2 = \infty.$$

Furthermore, the upper bound for blow up time T_* is given by

$$T_* \leq \frac{4 \|u_0\|_{H_0^1(\Omega)}^2}{(k-2)^2 (d-J(u_0))}.$$

Proof. Let $u(t) \in V$ for $t \in [0, T_{\max}]$. We prove that u(t) blows up in the finite time. By employing contradiction, we assume that u(t) is global. We consider a function $P: [0,T) \to \mathbb{R}^+$, and

$$P(t) = \int_0^t \|u(s)\|_{H_0^1(\Omega)}^2 ds + (T_* - t) \|u_0\|_{H_0^1(\Omega)}^2 + \phi(t + \psi)^2, \quad t \in [0, T), \quad (3.1)$$

where ϕ,ψ are two positive fixed which will be specified later.

Then, for any $t \in [0, T)$, a straightforward calculation gives

$$P'(t) = \|u(t)\|_{H_0^1(\Omega)}^2 - \|u_0\|_{H_0^1(\Omega)}^2 + 2\phi(t+\psi)$$

= $2\int_0^t \int_{\Omega} (u_s u + \nabla u_s \nabla u) \, dx \, ds + 2\phi(t+\psi),$ (3.2)

and

$$P''(t) = 2 \int_{\Omega} (u_s u + \nabla u_s \nabla u) dx + 2\phi$$

= $2 \int_{\Omega} u (u_s - \Delta u_s) dx + 2\phi$
= $2 \int_{\Omega} |u|^k \ln |u| - 2 \left\| A^{\frac{1}{2}} u \right\|^2 + 2\phi$
= $-2I(u) + 2\phi.$ (3.3)

By (3.3) and I(u) < 0, we obtain P''(t) > 0. From (2.3) and (3.3) that it follows

$$P''(t) = -2I(u) + 2\phi$$

$$\geq -2kJ(u) + (k-2) \left\| A^{\frac{1}{2}}u \right\|^{2} + \frac{2}{k} \|u\|_{k}^{k}$$

$$\geq -2kJ(u_{0}) + 2k \int_{0}^{t} \|u_{s}(s)\|_{H_{0}^{1}(\Omega)}^{2} ds + (k-2) \left\| A^{\frac{1}{2}}u \right\|^{2} + \frac{2}{k} \|u\|_{k}^{k}.$$
(3.4)

Since $u(t) \in V$, $t \in [0,T]$, so I(u) < 0. By Lemma 3, there exists a $\overline{\beta}_1 \in (0,1)$ such that $I(\overline{\beta}_1 u(t)) = 0$. By (2.3) and the definition of *d*, we obtain

$$d = \inf_{u \in \mathcal{N}} J(u) \leq J(\overline{\beta}_{1}u(t))$$

$$= \frac{1}{k} I(\overline{\beta}_{1}u) + \left(\frac{1}{2} - \frac{1}{k}\right) \left\| A^{\frac{1}{2}} \left(\overline{\beta}_{1}u\right) \right\|^{2} + \frac{1}{k^{2}} \left\| \overline{\beta}_{1}u \right\|_{k}^{k}$$

$$= \left(\frac{1}{2} - \frac{1}{k}\right) \left\| A^{\frac{1}{2}} \left(\overline{\beta}_{1}u\right) \right\|^{2} + \frac{1}{k^{2}} \left\| \overline{\beta}_{1}u \right\|_{k}^{k}$$

$$= (\overline{\beta}_{1})^{2} \left(\frac{1}{2} - \frac{1}{k}\right) \left\| A^{\frac{1}{2}}u \right\|^{2} + (\overline{\beta}_{1})^{k} \left(\frac{1}{k^{2}}\right) \|u\|_{k}^{k}$$

$$\leq \left(\frac{1}{2} - \frac{1}{k}\right) \left\| A^{\frac{1}{2}}u \right\|^{2} + \frac{1}{k^{2}} \|u\|_{k}^{k}.$$

(3.5)

From (3.4) and (3.5), we obtain

$$P''(t) \geq -2kJ(u_0) + 2k \int_0^t \|u_s(s)\|_{H_0^1(\Omega)}^2 ds + (k-2) \left\|A^{\frac{1}{2}}u\right\|^2 + \frac{2}{k} \|u\|_k^k$$

= $-2kJ(u_0) + 2k \int_0^t \|u_s(s)\|_{H_0^1(\Omega)}^2 ds + 2k \left[\frac{k-2}{2k} \left\|A^{\frac{1}{2}}u\right\|^2 + \frac{1}{k^2} \|u\|_k^k\right] \quad (3.6)$
 $\geq 2k (d - J(u_0)) + 2k \int_0^t \|u_s(s)\|_{H_0^1(\Omega)}^2 ds.$

Thus we have

$$P(t) \ge P(0) > 0, \quad t \in [0, T_*].$$

Let

$$\rho(t) := \left(\int_0^t \|u(s)\|_{H_0^1(\Omega)}^2 ds \right)^{\frac{1}{2}}, \quad \sigma(t) := \left(\int_0^t \|u_s(s)\|_{H_0^1(\Omega)}^2 ds \right)^{\frac{1}{2}}.$$

By employing Hölder's inequality, we get

$$\begin{split} & \left[\int_{0}^{t} \|u(s)\|_{H_{0}^{1}(\Omega)}^{2} ds + \phi(t+\psi)^{2} \right] \left[\int_{0}^{t} \|u_{s}(s)\|_{H_{0}^{1}(\Omega)}^{2} ds + \phi \right] \\ & - \left[\frac{1}{2} \left(\|u\|_{H_{0}^{1}(\Omega)}^{2} - \|u_{0}\|_{H_{0}^{1}(\Omega)}^{2} \right) + \phi(t+\psi) \right]^{2} \\ & = \left[\rho^{2}(t) + \phi(t+\psi)^{2} \right] \left[\sigma^{2}(t) + \phi \right] - \left[\frac{1}{2} \int_{0}^{t} \frac{d}{ds} \|u\|_{H_{0}^{1}(\Omega)}^{2} ds + \phi(t+\psi) \right]^{2} \\ & \geq \left[\rho^{2}(t) + \phi(t+\psi)^{2} \right] \left[\sigma^{2}(t) + \phi \right] - \left[\int_{0}^{t} \|u\|_{H_{0}^{1}(\Omega)} \|u_{s}\|_{H_{0}^{1}(\Omega)} ds + \phi(t+\psi) \right]^{2} \\ & = \left[\sqrt{\phi}\rho(t) \right]^{2} - 2\phi(t+\psi)\rho(t)\sigma(t) + \left[\sqrt{\phi}(t+\psi)\sigma(t) \right]^{2} \\ & = \left[\sqrt{\phi}\rho(t) - \sqrt{\phi}(t+\psi)\sigma(t) \right]^{2} \geq 0. \end{split}$$

Then, by (3.2), we get

$$\frac{1}{4} (P'(t))^{2} = \left[\frac{1}{2} \left(\|u(t)\|_{H_{0}^{1}(\Omega)}^{2} - \|u_{0}\|_{H_{0}^{1}(\Omega)}^{2} \right) + \phi(t + \psi) \right]^{2} \\
= \left[\frac{1}{2} \left(\|u(t)\|_{H_{0}^{1}(\Omega)}^{2} - \|u_{0}\|_{H_{0}^{1}(\Omega)}^{2} \right) + \phi(t + \psi) \right]^{2} \\
+ \left(\int_{0}^{t} \|u(\tau)\|_{H_{0}^{1}(\Omega)}^{2} d\tau + \phi(t + \psi)^{2} \right) \left(\int_{0}^{t} \|u_{s}(s)\|_{H_{0}^{1}(\Omega)}^{2} ds + \phi \right) \quad (3.7) \\
- \left[P(t) - (T_{*} - t) \|u_{0}\|_{H_{0}^{1}(\Omega)}^{2} \right] \left(\int_{0}^{t} \|u_{s}(s)\|_{H_{0}^{1}(\Omega)}^{2} ds + \phi \right) \\
\leq P(t) \left(\int_{0}^{t} \|u_{s}(s)\|_{H_{0}^{1}(\Omega)}^{2} ds + \phi \right).$$

So it follows from (3.6) and (3.7) that

$$P(t)P''(t) - \frac{k}{2} (P'(t))^2 \ge P(t) \left[P''(t) - 2k \left(\int_0^t \|u_s(s)\|_{H_0^1(\Omega)}^2 ds + \phi \right) \right]$$

$$\ge P(t) \left[2k (d - J(u_0)) - 2k \phi \right].$$

We choose $\boldsymbol{\phi}$ sufficiently small, such that

$$\phi \in \left(0, \frac{\mu}{2k}\right],\tag{3.8}$$

where

$$\mu := 2k \left(d - J(u_0) \right) > 0,$$

then it follows that

$$P(t)P''(t) - \frac{k}{2}\left(P'(t)\right)^2 \ge 0.$$

Let $\omega(t) = P(t)^{-\frac{k-2}{2}}$ for $t \in [t_0, T]$, then by P(t) > 0, P'(t) > 0, k > 2 and the definition of $\omega(t)$, we have

$$\omega'(t) = -\frac{k-2}{2}P(t)^{-\frac{k}{2}}P'(t).$$
(3.9)

By (3.9), we obtain

$$\omega''(t) = \frac{k(k-2)}{4} P(t)^{-\frac{k+2}{2}} P'(t)^2 - \frac{k-2}{2} P(t)^{-\frac{k}{2}} P''(t)$$

= $\frac{k-2}{2} P(t)^{-\frac{k+2}{2}} \left[\frac{k}{2} P'(t)^2 - P(t) P''(t) \right] < 0 \quad \text{for all } t \in [t_0, T].$ (3.10)

We see that, for any large enough $T > t_0$, $\omega(t)$ is a concave function in $[t_0, T]$. Since $\omega(t_0) > 0$ and $\omega''(t_0) < 0$, there exists a finite time T_* such that

$$\lim_{t\to T^-_*}\omega(t)=0,$$

which yields

$$\lim_{t\to T^-_*} P(t) = \infty.$$

Moreover, we obtain

$$\lim_{t \to T_*^-} \|u(s)\|_{H^1_0(\Omega)}^2 = \infty$$

This is a contradiction to our assumption. Thus u(t) blows up at finite time.

Now, we give an upper bound estimate of T_* . By (3.10) and $\omega''(t) \le 0$, we obtain

$$\omega(T) - \omega(0) = T \int_0^1 \omega'(\theta T) d\theta \le \omega'(0) T.$$
(3.11)

From (3.1) and the definition of $\omega(t)$, we obtain

$$\omega(0) = P(0)^{-\frac{k-2}{2}} > 0,$$

$$\omega(T) = P(T)^{-\frac{k-2}{2}} > 0,$$

$$\omega'(0) = -\frac{k-2}{2}P(0)^{-\frac{k}{2}}P'(0) < 0.$$

It follows from (3.11) that

$$T \le \frac{\omega(T) - \omega(0)}{\omega'(0)} < -\frac{\omega(0)}{\omega'(0)} = \frac{2P(0)}{(k-2)P'(0)}.$$
(3.12)

By (3.1) and (3.2), we obtain

$$P(0) = T \|u_0\|_{H_0^1(\Omega)}^2 + \phi \psi^2$$

and

$$P'(0) = 2\phi\psi.$$

By Lemma 5 and (3.12), we get

$$T_* \le \frac{T \|u_0\|_{H_0^1(\Omega)}^2}{(k-2)\phi\psi} + \frac{\psi}{(k-2)} \quad \text{for all } T \in [0, T_*).$$
(3.13)

Moreover, letting $T \rightarrow T_*$, we obtain

$$T_* \leq \frac{\|u_0\|_{H_0^1(\Omega)}^2}{(k-2)\,\phi\psi}T_* + \frac{\psi}{(k-2)}.$$

Let $\boldsymbol{\psi}$ be sufficiently large such that

$$\Psi \in \left(\frac{\|u_0\|_{H_0^1(\Omega)}^2}{(k-2)\phi}, +\infty\right).$$
(3.14)

From (3.13), we obtain

$$T_* \le \frac{\phi \psi^2}{(k-2)\phi \psi - \|u_0\|_{H_0^1(\Omega)}^2}.$$
(3.15)

With respect to (3.8) and (3.14), we define

$$\begin{split} \varphi &= \left\{ (\phi, \psi) : \phi \in \left(0, \frac{\mu}{2k}\right], \psi \in \left(\frac{\|u_0\|_{H_0^1(\Omega)}^2}{(k-2)\phi}, +\infty\right) \right\} \\ &= \left\{ (\psi, \phi) : \psi \in \left(\frac{2k \|u_0\|_{H_0^1(\Omega)}^2}{(k-2)\mu}, +\infty\right), \phi \in \left(\frac{\|u_0\|_{H_0^1(\Omega)}^2}{(k-2)\psi}, \frac{\mu}{2k}\right] \right\} \end{split}$$

and then

$$T_* \leq \inf \frac{\phi \Psi^2}{(k-2) \phi \Psi - \|u_0\|_{H^1_0(\Omega)}^2}.$$

Let $\eta = \phi \psi$ (see [11, Theorem 2.8]) and

$$f(\boldsymbol{\psi},\boldsymbol{\eta}) := \frac{\boldsymbol{\eta}\boldsymbol{\psi}}{(k-2)\boldsymbol{\eta} - \|\boldsymbol{u}_0\|_{H_0^1(\Omega)}^2}$$

We see that $f(\Psi, \eta)$ is decreasing with η and we get

$$T_{*} \leq \inf_{\substack{\psi \in \left(\frac{2k\|u_{0}\|_{H_{0}^{1}(\Omega)}^{2}, +\infty\right)}{(k-2)\mu}, +\infty\right)}} f\left(\psi, \frac{\mu\psi}{2k}\right)$$

$$= \inf_{\substack{\psi \in \left(\frac{2k\|u_{0}\|_{H_{0}^{1}(\Omega)}^{2}, +\infty\right)}{(k-2)\mu\psi - 2k\|u_{0}\|_{H_{0}^{1}(\Omega)}^{2}}} \frac{\mu\psi^{2}}{(k-2)\mu\psi - 2k\|u_{0}\|_{H_{0}^{1}(\Omega)}^{2}}$$

$$= \frac{\mu\psi^{2}}{(k-2)\mu\psi - 2k\|u_{0}\|_{H_{0}^{1}(\Omega)}^{2}} |_{\psi = \frac{4k\|u_{0}\|_{H_{0}^{1}(\Omega)}^{2}}{(k-2)\mu}}$$

$$= \frac{8k\|u_{0}\|_{H_{0}^{1}(\Omega)}^{2}}{(k-2)^{2}\mu}.$$
(3.16)

Moreover, by (3.16) and the definition of μ , we obtain

$$T_* \leq \frac{4 \|u_0\|_{H_0^1(\Omega)}^2}{(k-2)^2 (d-J(u_0))}.$$

REFERENCES

- [1] R. A. Adams and J. F. Fournier, *Sobolev Spaces*. Elsevier/Academic Press, Amsterdam, 2003.
- [2] H. Chen, P. Luo, and G. Liu, "Global solution and blow-up of a semilinear heat equation with logarithmic nonlinearity." *Journal of Mathematical Analysis and Applications*, vol. 422, no. 1, pp. 84–98, 2015, doi: 10.1016/j.jmaa.2014.08.030.
- [3] H. Chen and S. Tian, "Initial boundary value problem for a class of semilinear pseudo-parabolic equations with logarithmic nonlinearity." *Journal of Differential Equations*, vol. 258, no. 12, pp. 4424–4442, 2015, doi: 10.1016/j.jde.2015.01.038.
- [4] H. Ding and J. Zhou, "Two new blow-up conditions for a pseudo-parabolic equation with logarithmic nonlinearity." *Bulletin of the Korean Mathematical Society*, vol. 56, no. 5, pp. 1285–1296, 2019, doi: 10.4134/BKMS.b181101.
- [5] S. Gala, M. A. Ragusa, Y. Sawano, and H. Tanaka, "Uniqueness criterion of weak solutions for the dissipative quasi-geostrophic equations in Orlicz–Morrey spaces." *Applicable Analysis*, vol. 93, no. 2, pp. 356–368, 2014, doi: 10.1080/00036811.2013.772582.
- [6] V. A. Galaktionov, "Critical global asymptotics in higher-order semilinear parabolic equations." *International Journal of Mathematics and Mathematical Sciences*, vol. 2003, no. 60, pp. 3809– 3825, 2003, doi: 10.1155/S0161171203210176.
- [7] Y. Han, "Blow-up at infinity of solutions to a semilinear heat equation with logarithmic nonlinearity." *Journal of Mathematical Analysis and Applications*, vol. 474, no. 1, pp. 513–517, 2019, doi: 10.1016/j.jmaa.2019.01.059.
- [8] K. Ishige, T. Kawakami, and S. Okabe, "Existence of solutions for a higher-order semilinear parabolic equation with singular initial data." *Annales de l'Institut Henri Poincaré C, Analyse non linéaire*, vol. 37, no. 5, pp. 1185–1209, 2020, doi: 10.1016/j.anihpc.2020.04.002.

- [9] H. A. Levine, "Some nonexistence and instability theorems for solutions of formally parabolic equations of the form $Pu_t = -Au + F(u)$." Archive for Rational Mechanics and Analysis, vol. 51, no. 5, pp. 371–386, 1973, doi: 10.1007/BF00263041.
- [10] I. B. Omrane, S. Gala, and M. A. Ragusa, "A double-logarithmically improved regularity criterion of weak solutions for the 3D MHD equations." *Zeitschrift für angewandte Mathematik und Physik*, vol. 72, no. 3, pp. 1–11, 2021, doi: 10.1007/s00033-021-01543-5.
- [11] J. Peng and J. Zhou, "Global existence and blow-up of solutions to a semilinear heat equation with logarithmic nonlinearity." *Applicable Analysis*, pp. 1–21, 2019, doi: 10.1080/00036811.2019.1698726.
- [12] E. Pişkin and B. Okutmuştur, An Introduction to Sobolev Spaces. Bentham Science, 2021.
- [13] E. Pişkin and N. Polat, "On the decay of solutions for a nonlinear higher-order Kirchhoff-type hyperbolic equation." *Journal of Advanced Research in Applied Mathematics*, vol. 5, no. 2, pp. 107–116, 2013.
- [14] L. H. K. Son, L. T. P. Ngoc, and N. T. Long, "Existence, blow-up and exponential decay estimates for the nonlinear Kirchhoff-carrier wave equation in an annular with nonhomogeneous Dirichlet conditions." *Filomat*, vol. 33, no. 17, pp. 5561–5588, 2019, doi: 10.2298/FIL1917561S.
- [15] L. Xiao and M. Li, "Initial boundary value problem for a class of higher-order n-dimensional nonlinear pseudo-parabolic equations." *Boundary Value Problems*, vol. 2021, no. 1, pp. 1–24, 2021, doi: 10.1186/s13661-020-01482-6.
- [16] L. Yan and Z. Yang, "Blow-up and non-extinction for a nonlocal parabolic equation with logarithmic nonlinearity." *Boundary Value Problems*, vol. 2018, no. 1, pp. 1–11, 2018, doi: 10.1186/s13661-018-1042-7.
- [17] Y. Ye, "Existence and asymptotic behavior of global solutions for a class of nonlinear higherorder wave equation." *Journal of Inequalities and Applications*, vol. 2010, pp. 1–14, 2010, doi: 10.1155/2010/394859.
- [18] J. Zhou, X. Wang, X. Song, and C. Mu, "Global existence and blowup of solutions for a class of nonlinear higher-order wave equations." *Zeitschrift für angewandte Mathematik und Physik*, vol. 63, no. 3, pp. 461–473, 2012, doi: 10.1007/s00033-011-0165-9.

Authors' addresses

Tuğrul Cömert

(**Corresponding author**) Dicle University, Department of Mathematics, 21280 Diyarbakır, Turkey *E-mail address:* tugrulcomertt@gmail.com

Erhan Pişkin

Dicle University, Department of Mathematics, 21280 Diyarbakır, Turkey *E-mail address:* episkin@dicle.edu.tr