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Abstract. This paper deal with the initial boundary value problem for a higher-order heat equa-
tion with logarithmic source term

ut +(−∆)mu−∆ut = uk−2u ln |u| .
We obtain blow-up of weak solutions in the finite time, by employing potential well technique
and concave technique. In addition, the upper bound of blow-up time is considered. This im-
proves and extends some previous studies.
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1. INTRODUCTION

In this article, we consider the blow up of solutions for the higher-order heat equa-
tion with logarithmic nonlinearity

ut +Au−∆ut = |u|k−2 u ln |u| , x ∈Ω, t > 0;
Dγu(x, t) = 0, |γ| ≤ m−1, x ∈ ∂Ω, t > 0;
u(x,0) = u0(x), x ∈Ω;

(1.1)

where A = (−∆)m, m≥ 1 a positive integer, Ω is a bound domain in Rn with smooth
boundary ∂Ω, γ = (γ1,γ2, . . . ,γn) is multi-index, γi (i = 1,2, . . . ,n) are nonnegative
integers, |γ|= γ1+γ2+ · · ·+γn, Dγ = ∂|γ|

∂xγ1
1 ∂xγ2

2 ...∂xγn
n

are multi-index derivative operator,

∆ =
n
∑

i=1

∂2

∂x2
i

is the Laplace operator. The parameter k satisfies

{
2≤ k ≤+∞, n≤ 2m,

2≤ k ≤ 2n
n−2m , n > 2m.
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Peng and Zhou [11] studied the following parabolic equation with logarithmic source
term

ut −∆u = uk−2u ln |u| .
They studied by employing energy technique and potential well technique, the global
existence of solutions and blow-up in finite time. In addition, the upper bound of
blow-up time is considered under appropriate conditions.

When m = 1, in the equation (1.1), becomes a heat equation as follows

ut −∆u−∆ut = uk−2u ln |u| ,

where 2≤ k, was considered by many authors [2–4,7,16]. In the case of k = 2, Chen
and Tian [3] studied by employing the logarithmic Sobolev inequality and potantial
well method, the global existence of solutions and blow-up of solutions at +∞. In the
case of 2 < k, Ding and Zhou [4] studied the blow-up of solutions in finite time, by
using eigenfunction method. Also, the upper bound of the blow-up time is studied
under appropriate conditions.

Recently many other authors investigated higher-order hyperbolic and parabolic
type equation [5, 6, 8, 10, 13–15, 17, 18]. Ishige et al. [8] studied the Cauchy problem
for nonlinear higher-order heat equation as follows

ut +(−∆)mu = |u|k .

They obtained existence of solutions of the Cauchy problem by introducing a new
majorizing kernel. In addition, they studied the local existence of solutions under
the different conditions. Xiao and Li [15] considered the following initial boundary
value problem for nonlinear higher-order heat equations

ut +(−∆)mut +(−∆)mu = f (u).

They established the existence of weak solution to the static problem, via the potential
well technique.

Motivated by the above studies, in this work, we investigate the finite time blow-up
of weak solutions for the Eq. (1.1).

The remainder of our work is organized as follows. In Section2, some important
Lemmas are given. In Section 3, the main result is proved.

2. PRELIMINARIES

We material needed for proving the main result is introduced. Let ‖u‖Hm(Ω) =(
∑
|γ|≤m
‖Dγu‖2

L2(Ω)

) 1
2

denote Hm(Ω) norm, let Hm
0 (Ω) denote the closure in Hm(Ω)

of C∞
0 (Ω). Let ‖.‖r and ‖.‖ denote the usual Lr(Ω) norm and L2(Ω) norm (see [1,12],

for details).
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For u ∈ Hm
0 (Ω)\{0}, we define the energy functional

J(u) =
1
2

∥∥∥A
1
2 u
∥∥∥2
− 1

k

∫
Ω

|u|k ln |u|dx+
1
k2 ‖u‖

k
k , (2.1)

and Nehari functional

I(u) =
∥∥∥A

1
2 u
∥∥∥2
−

∫
Ω

|u|k ln |u|dx. (2.2)

Combining (2.1) and (2.2), we obtain

J(u) =
1
k

I(u)+
(

1
2
− 1

k

)∥∥∥A
1
2 u
∥∥∥2

+
1
k2 ‖u‖

k
k . (2.3)

Let
N = {u ∈ Hm

0 (Ω)\{0} : I(u) = 0},
be the Nehari manifold. Also, we may define

d = inf
u∈N

J(u), (2.4)

and
V = {u ∈ Hm

0 (Ω) | J (u)< d, I (u)< 0} .
We refer to V as the potential well and d as the depth of the well.

Lemma 1 (Theorem 4.31 in [1]). Let q be a number with 2 ≤ q < +∞, n ≤ 2m
and 2≤ q≤ 2n

n−2m , n > 2m. Then there is a constant C depending

‖u‖q ≤C
∥∥∥A

1
2 u
∥∥∥ , ∀u ∈ Hm

0 (Ω) .

Lemma 2. J(t) is a nonincreasing function for t ≥ 0 and

J′ (u) =−
∫
Ω

(
u2

t +∇u2
t
)

dx≤ 0.

Proof. Multiplying the equation (1.1) by ut and integrating on Ω, we get∫
Ω

u2
t dx+

∫
Ω

Auutdx+
∫
Ω

∇u2
t dx =

∫
Ω

uk−1ut ln |u|dx.

By straightforward calculation, we obtain∫
Ω

u2
t dx+

1
2

d
dt

∥∥∥A
1
2 u
∥∥∥2

+
∫
Ω

∇u2
t dx =

1
k

d
dt

∫
Ω

|u|k ln |u|dx− 1
k2

d
dt
‖u‖k

k ,

which yields that

1
2

d
dt

∥∥∥A
1
2 u
∥∥∥2
− 1

k
d
dt

∫
Ω

|u|k ln |u|dx+
1
k2

d
dt
‖u‖k

k =−
∫
Ω

u2
t dx−

∫
Ω

∇u2
t dx.
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Thus we get

d
dt

(
1
2

∥∥∥A
1
2 u
∥∥∥2
− 1

k

∫
Ω

|u|k ln |u|dx+
1
k2 ‖u‖

k
k

)
=−

∫
Ω

(
u2

t +∇u2
t
)

dx. (2.5)

By (2.1) and (2.5), we obtain

d
dt

J(u) =−
∫
Ω

(
u2

t +∇u2
t
)

dx. (2.6)

Moreover, Integrating (2.6) with respect to t on [0, t], we obtain∫ t

0
‖us(s)‖2

H1
0 (Ω) ds+ J(u(t)) = J(u0).

�

Lemma 3. Let u∈Hm
0 (Ω)\{0}. We contract the function h : β→ J(βu) for β > 0.

Then we get

(i) limβ→0+ h(β) = 0 and limβ→+∞ h(β) =−∞;
(ii) there is a unique β1 > 0 such that h′(β1) = 0;

(iii) h(β) is increasing on (0,β1), decreasing on (β1,+∞) and taking the max-
imum at β1; I(βu) = βh′(β) and

I(βu)


> 0, 0 < β < β1,

= 0, β = β1,

< 0, β1 < β <+∞.

Proof. By the definition of h, for u ∈ Hm
0 (Ω)\{0}, we have

h(β) =
1
2

∥∥∥A
1
2 (βu)

∥∥∥2
− 1

k

∫
Ω

|βu|k ln |βu|dx+
1
k2 ‖βu‖k

k

=
β2

2

∥∥∥A
1
2 u
∥∥∥2
− βk

k

∫
Ω

|u|k ln |u|dx− βk

k
lnβ‖u‖k

k +
βk

k2 ‖u‖
k
k .

We see that (i) holds due to ‖u‖k
k 6= 0. We obtain

d
dβ

h(β) = β

∥∥∥A
1
2 u
∥∥∥2
−β

k−1
∫

Ω

|u|k ln |u|dx

−β
k−1 lnβ‖u‖k

k−
βk−1

k
‖u‖k

k +
βk−1

k
‖u‖k

k

= β

(∥∥∥A
1
2 u
∥∥∥2
−β

k−2
∫

Ω

|u|k ln |u|dx−β
k−2 lnβ‖u‖k

k

)
.
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Let ζ(β) = β−1h′(β), thus we get

ζ(β) = β
−1h′(β)

= β
−1

β

(∥∥∥A
1
2 u
∥∥∥2
−β

k−2
∫

Ω

|u|k ln |u|dx−β
k−2 lnβ‖u‖k

k

)
=
∥∥∥A

1
2 u
∥∥∥2
−β

k−2
∫

Ω

|u|k ln |u|dx−β
k−2 lnβ‖u‖k

k .

Then

ζ
′(β) =−(k−2)βk−3

∫
Ω

|u|k ln |u|dx− (k−2)βk−3 lnβ‖u‖k
k−β

k−3 ‖u‖k
k ,

which yields that there exists a β1 > 0 such that ζ′(β) > 0 on (0,β1), ζ′(β) < 0
on (β1,+∞) and ζ′(β) = 0. So ζ(β) is increasing on (0,β1), decreasing on (β1,+∞).

Since limβ→0+ ζ(β) =
∥∥∥A

1
2 u
∥∥∥2

> 0, limβ→+∞ ζ(β) =−∞, there exists a unique β1 > 0

such that ζ(β1) = 0, i.e. h′(β1) = 0. So (ii) holds. Then, h′(β) = βζ(β) is positive
on (0,β1), negative on (β1,+∞). Thus h(β) is increasing on (0,β1), decreasing on
(β1,+∞) and taking the maximum at β1. From (2.2), we get

I(βu) =
∥∥∥A

1
2 (βu)

∥∥∥2
−

∫
Ω

|βu|k ln |βu|dx

= β
2
∥∥∥A

1
2 u
∥∥∥2
−β

k
∫

Ω

|u|k ln |u|dx−β
k lnβ‖u‖k

k

= β

(
β

∥∥∥A
1
2 u
∥∥∥2
−β

k−1
∫

Ω

|u|k ln |u|dx−β
k−1 lnβ‖u‖k

k

)
= βh′(β).

Thus I(βu)> 0 for 0 < β < β1, I(βu)< 0 for β1 < β <+∞ and I(β1u) = 0. So (iii)
holds. For this reason, the proof is completed. �

Lemma 4. d defined by (2.4) is positive and there exists a positive function u ∈N
such that J(u) = d.

Proof. By (2.4), we suppose {ur}∞
r ⊂ N is a minimizing sequence of J. Since

{ur}∞
r ⊂ N is also a minimizing sequence of J, we consider the case where ur > 0

a.e. in Ω, r ∈ N without loss of generality. Thus

lim
r→∞

J (ur) = d, (2.7)

which implies that {J (ur)}∞
r is bounded, i.e. there exists a constant C1 > 0 such that

|J (ur)| ≤C1. Using (2.3), I (ur) = d and |J (ur)| ≤C1, we obtain(
1
2
− 1

k

)∥∥∥A
1
2 ur

∥∥∥2
+

1
k2 ‖ur‖k

k ≤C1. (2.8)
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From (2.8), we get ∥∥∥A
1
2 ur

∥∥∥2
≤
(

1
2
− 1

k

)−1

C1. (2.9)

By (2.9) and Lemma 1, we obtain

‖ur‖2 ≤C
∥∥∥A

1
2 ur

∥∥∥2
≤
(

1
2
− 1

k

)−1

C1.

Moreover, we have already observed that J is coercive on N which satisfies that
{ur}∞

r is bounded in Hm
0 (Ω). Let µ > 0 be small enough such that k + µ < 2n

n−2m .

Since Hm
0 (Ω) ↪→ Lk+µ(Ω) is compact, so there exists a function u and a subsequence

of {ur}∞
r , still denote by {ur}∞

r , such that

ur→ u weakly in Hm
0 (Ω),

ur→ u strongly in Lk+µ(Ω),

ur(x)→ u(x) a.e. in Ω.

Also, u ≥ 0 a.e. in Ω. First, we prove u 6= 0. From the dominated convergence
theorem, we have ∫

Ω

|u|k ln |u|dx = lim
r→∞

∫
Ω

|ur|k ln |ur|dx (2.10)

and ∫
Ω

|u|k dx = lim
r→∞

∫
Ω

|ur|k dx. (2.11)

From the weak lower semicontinuity of Hm
0 (Ω), we get∥∥∥A

1
2 u
∥∥∥2
≤ liminf

r→∞

∥∥∥A
1
2 ur

∥∥∥2
. (2.12)

Then it follows from (2.1), (2.7), (2.10), (2.11) and (2.12) that

J(u) =
1
2

∥∥∥A
1
2 u
∥∥∥2
− 1

k

∫
Ω

|u|k ln |u|dx+
1
k2 ‖u‖

k
k

≤ liminf
r→∞

1
2

∥∥∥A
1
2 ur

∥∥∥2
− lim

r→∞

1
k

∫
Ω

|ur|k ln |ur|dx+ lim
r→∞

1
k2 ‖ur‖k

k

= liminf
r→∞

(
1
2

∥∥∥A
1
2 ur

∥∥∥2
− 1

k

∫
Ω

|ur|k ln |ur|dx+
1
k2 ‖ur‖k

k

)
= liminf

r→∞
J(ur) = d.

(2.13)



BLOW-UP OF WEAK SOLUTIONS FOR A HIGHER-ORDER HEAT EQUATION 755

Using (2.2), (2.10) and (2.12), we have

I(u) =
∥∥∥A

1
2 u
∥∥∥2
−

∫
Ω

|u|k ln |u|dx

≤ liminf
r→∞

∥∥∥A
1
2 ur

∥∥∥2
− lim

r→∞

∫
Ω

|ur|k ln |ur|dx

= liminf
r→∞

(∥∥∥A
1
2 ur

∥∥∥2
−

∫
Ω

|ur|k ln |ur|dx
)

= liminf
r→∞

I(ur) = 0.

(2.14)

Since ur ∈N , we have I(ur) = 0. So by using Lemma 1 and the fact x−µ lnx≤ (eµ)−1

for x≥ 1, we get ∥∥∥A
1
2 ur

∥∥∥2
=

∫
Ω

|ur|k ln |ur|dx

≤ (eµ)−1
∫

Ω

|ur|k+µ dx

= (eµ)−1 ‖ur‖k+µ
k+µ

≤C
∥∥∥A

1
2 ur

∥∥∥k+µ

2
,

where C is Sobolev embedding constant. This satisfies that∫
Ω

|ur|k ln |ur|dx =
∥∥∥A

1
2 ur

∥∥∥2
≥C. (2.15)

By (2.10) and (2.15), we have ∫
Ω

|u|k ln |u|dx≥C.

Thus we have u ∈ Hm
0 (Ω)\{0}.

If I(ur)< 0, from Lemma 3, there exists a β1 such that I(β1u) = 0 and 0 < β1 < 1.
Thus β1u ∈N . It follows from (2.3), (2.4), (2.11) and (2.12) that

d ≤ J(β1u)

=
1
k

I(β1u)+
(

1
2
− 1

k

)∥∥∥A
1
2

(
β1u
)∥∥∥2

+
1
k2

∥∥∥β1u
∥∥∥k

k

=

(
1
2
− 1

k

)∥∥∥A
1
2

(
β1u
)∥∥∥2

+
1
k2

∥∥∥β1u
∥∥∥k

k

= (β1)
2
(

1
2
− 1

k

)∥∥∥A
1
2 u
∥∥∥2

+(β1)
k
(

1
k2

)
‖u‖k

k

≤ (β1)
2
[(

1
2
− 1

k

)∥∥∥A
1
2 u
∥∥∥2

+
1
k2 ‖u‖

k
k

]
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≤ (β1)
2liminf

r→∞

[(
1
2
− 1

k

)∥∥∥A
1
2 ur

∥∥∥2
+

1
k2 ‖ur‖k

k

]
= (β1)

2liminf
r→∞

J(ur)

= (β1)
2d,

which indicates β1 ≥ 1 by d > 0. It contradicts 0 < β1 < 1. By (2.14), we have
I(u) = 0. For this reason, u ∈ N . From (2.7), we have J(u) ≥ d. From (2.13), we
have J(u)≤ d. So J(u) = d. �

Lemma 5 (Theorem 2 in [9]). Let φ(t) be a nonnegative function C2, which satis-
fies, for t > 0, inequality

φ(t)φ
′′ (t)− (1+ γ)

[
φ
′ (t)
]2 ≥ 0,

with some γ > 0. If φ(0)> 0 and φ′ (0)> 0, then there exist a time

T ≤ φ(0)
βφ′ (0)

,

such that
lim

t→T−
φ(t) = ∞.

3. MAIN RESULTS

Definition 1. (Weak Solution). We say that function u(t) is weak solution of the
problem (1.1) on Ω× [0,T ], if u ∈ L∞(0,T ;Hm

0 (Ω)) with ut ∈ L2(0,T ;Hm
0 (Ω)) and

implies the initial condition u(0) = u0 ∈ Hm
0 (Ω)\{0}, and the follow equality

(ut ,w)+
(

A
1
2 u,A

1
2 w
)
+(∇ut ,∇w) =

(
|u|r−2 u ln |u| ,w

)
,

for all w∈Hm
0 (Ω) holds for a.e. t ∈ [0,T ], and (., .) means the inner product (., .)L2(Ω) ,

that is

(η,ξ) =
∫

Ω

η(x)ξ(x)dx.

Theorem 1 (Blow up). Suppose that u0 ∈ V . Then u(t) blows up at finite time in
the sence of T∗ > 0 and

lim
t→T∗
‖u(t)‖2

H1
0 (Ω) = ∞.

Furthermore, the upper bound for blow up time T∗ is given by

T∗ ≤
4‖u0‖2

H1
0 (Ω)

(k−2)2 (d− J(u0))
.
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Proof. Let u(t)∈V for t ∈ [0,Tmax]. We prove that u(t) blows up in the finite time.
By employing contradiction, we assume that u(t) is global. We consider a function
P : [0,T )→ R+, and

P(t) =
∫ t

0
‖u(s)‖2

H1
0 (Ω) ds+(T∗− t)‖u0‖2

H1
0 (Ω)+φ(t +ψ)2 , t ∈ [0,T ), (3.1)

where φ, ψ are two positive fixed which will be specified later.
Then, for any t ∈ [0,T ), a straightforward calculation gives

P′(t) = ‖u(t)‖2
H1

0 (Ω)−‖u0‖2
H1

0 (Ω)+2φ(t +ψ)

= 2
∫ t

0

∫
Ω

(usu+∇us∇u)dxds+2φ(t +ψ) ,
(3.2)

and

P′′(t) = 2
∫

Ω

(usu+∇us∇u)dx+2φ

= 2
∫

Ω

u(us−∆us)dx+2φ

= 2
∫

Ω

|u|k ln |u|−2
∥∥∥A

1
2 u
∥∥∥2

+2φ

=−2I(u)+2φ.

(3.3)

By (3.3) and I(u)< 0, we obtain P′′(t)> 0. From (2.3) and (3.3) that it follows

P′′(t) =−2I(u)+2φ

≥−2kJ(u)+(k−2)
∥∥∥A

1
2 u
∥∥∥2

+
2
k
‖u‖k

k

≥−2kJ(u0)+2k
∫ t

0
‖us(s)‖2

H1
0 (Ω) ds+(k−2)

∥∥∥A
1
2 u
∥∥∥2

+
2
k
‖u‖k

k .

(3.4)

Since u(t) ∈ V, t ∈ [0,T ], so I(u) < 0. By Lemma 3, there exists a β1 ∈ (0,1) such
that I(β1u(t)) = 0. By (2.3) and the definition of d, we obtain

d = inf
u∈N

J(u)≤ J(β1u(t))

=
1
k

I(β1u)+
(

1
2
− 1

k

)∥∥∥A
1
2

(
β1u
)∥∥∥2

+
1
k2

∥∥∥β1u
∥∥∥k

k

=

(
1
2
− 1

k

)∥∥∥A
1
2

(
β1u
)∥∥∥2

+
1
k2

∥∥∥β1u
∥∥∥k

k

= (β1)
2
(

1
2
− 1

k

)∥∥∥A
1
2 u
∥∥∥2

+(β1)
k
(

1
k2

)
‖u‖k

k

≤
(

1
2
− 1

k

)∥∥∥A
1
2 u
∥∥∥2

+
1
k2 ‖u‖

k
k .

(3.5)
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From (3.4) and (3.5), we obtain

P′′(t)≥−2kJ(u0)+2k
∫ t

0
‖us(s)‖2

H1
0 (Ω) ds+(k−2)

∥∥∥A
1
2 u
∥∥∥2

+
2
k
‖u‖k

k

=−2kJ(u0)+2k
∫ t

0
‖us(s)‖2

H1
0 (Ω) ds+2k

[
k−2

2k

∥∥∥A
1
2 u
∥∥∥2

+
1
k2 ‖u‖

k
k

]
≥ 2k (d− J(u0))+2k

∫ t

0
‖us(s)‖2

H1
0 (Ω) ds.

(3.6)

Thus we have
P(t)≥ P(0)> 0, t ∈ [0,T∗].

Let

ρ(t) :=
(∫ t

0
‖u(s)‖2

H1
0 (Ω) ds

) 1
2

, σ(t) :=
(∫ t

0
‖us(s)‖2

H1
0 (Ω) ds

) 1
2

.

By employing Hölder’s inequality, we get[∫ t

0
‖u(s)‖2

H1
0 (Ω) ds+φ(t +ψ)2

][∫ t

0
‖us(s)‖2

H1
0 (Ω) ds+φ

]
−
[

1
2

(
‖u‖2

H1
0 (Ω)−‖u0‖2

H1
0 (Ω)

)
+φ(t +ψ)

]2

=
[
ρ

2(t)+φ(t +ψ)2
][

σ
2(t)+φ

]
−
[

1
2

∫ t

0

d
ds
‖u‖2

H1
0 (Ω) ds+φ(t +ψ)

]2

≥
[
ρ

2(t)+φ(t +ψ)2
][

σ
2(t)+φ

]
−
[∫ t

0
‖u‖H1

0 (Ω) ‖us‖H1
0 (Ω) ds+φ(t +ψ)

]2

=
[√

φρ(t)
]2
−2φ(t +ψ)ρ(t)σ(t)+

[√
φ(t +ψ)σ(t)

]2

=
[√

φρ(t)−
√

φ(t +ψ)σ(t)
]2
≥ 0.

Then, by (3.2), we get

1
4
(
P′(t)

)2
=

[
1
2

(
‖u(t)‖2

H1
0 (Ω)−‖u0‖2

H1
0 (Ω)

)
+φ(t +ψ)

]2

=

[
1
2

(
‖u(t)‖2

H1
0 (Ω)−‖u0‖2

H1
0 (Ω)

)
+φ(t +ψ)

]2

+

(∫ t

0
‖u(τ)‖2

H1
0 (Ω) dτ+φ(t +ψ)2

)(∫ t

0
‖us(s)‖2

H1
0 (Ω) ds+φ

)
−
[
P(t)− (T∗− t)‖u0‖2

H1
0 (Ω)

](∫ t

0
‖us(s)‖2

H1
0 (Ω) ds+φ

)
≤ P(t)

(∫ t

0
‖us(s)‖2

H1
0 (Ω) ds+φ

)
.

(3.7)
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So it follows from (3.6) and (3.7) that

P(t)P′′(t)− k
2
(
P′(t)

)2 ≥ P(t)
[

P′′(t)−2k
(∫ t

0
‖us(s)‖2

H1
0 (Ω) ds+φ

)]
≥ P(t) [2k (d− J(u0))−2kφ] .

We choose φ sufficiently small, such that

φ ∈
(

0,
µ
2k

]
, (3.8)

where
µ := 2k (d− J(u0))> 0,

then it follows that

P(t)P′′(t)− k
2
(
P′(t)

)2 ≥ 0.

Let ω(t)=P(t)−
k−2

2 for t ∈ [t0,T ], then by P(t)> 0, P′(t)> 0, k > 2 and the definition
of ω(t), we have

ω
′(t) =−k−2

2
P(t)−

k
2 P′(t). (3.9)

By (3.9), we obtain

ω
′′(t) =

k(k−2)
4

P(t)−
k+2

2 P′(t)2− k−2
2

P(t)−
k
2 P′′(t)

=
k−2

2
P(t)−

k+2
2

[
k
2

P′(t)2−P(t)P′′(t)
]
< 0 for all t ∈ [t0,T ].

(3.10)

We see that, for any large enough T > t0, ω(t) is a concave function in [t0,T ]. Since
ω(t0)> 0 and ω′′(t0)< 0, there exists a finite time T∗ such that

lim
t→T−∗

ω(t) = 0,

which yields
lim

t→T−∗
P(t) = ∞.

Moreover, we obtain
lim

t→T−∗
‖u(s)‖2

H1
0 (Ω) = ∞.

This is a contradiction to our assumption. Thus u(t) blows up at finite time.
Now, we give an upper bound estimate of T∗. By (3.10) and ω′′(t)≤ 0, we obtain

ω(T )−ω(0) = T
∫ 1

0
ω
′(θT )dθ≤ ω

′(0)T. (3.11)

From (3.1) and the definition of ω(t), we obtain

ω(0) = P(0)−
k−2

2 > 0,

ω(T ) = P(T )−
k−2

2 > 0,
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ω
′(0) =−k−2

2
P(0)−

k
2 P′(0)< 0.

It follows from (3.11) that

T ≤ ω(T )−ω(0)
ω′(0)

<− ω(0)
ω′(0)

=
2P(0)

(k−2)P′(0)
. (3.12)

By (3.1) and (3.2), we obtain

P(0) = T ‖u0‖2
H1

0 (Ω)+φψ
2

and
P′(0) = 2φψ.

By Lemma 5 and (3.12), we get

T∗ ≤
T ‖u0‖2

H1
0 (Ω)

(k−2)φψ
+

ψ

(k−2)
for all T ∈ [0,T∗). (3.13)

Moreover, letting T → T∗, we obtain

T∗ ≤
‖u0‖2

H1
0 (Ω)

(k−2)φψ
T∗+

ψ

(k−2)
.

Let ψ be sufficiently large such that

ψ ∈

(
‖u0‖2

H1
0 (Ω)

(k−2)φ
,+∞

)
. (3.14)

From (3.13), we obtain

T∗ ≤
φψ2

(k−2)φψ−‖u0‖2
H1

0 (Ω)

. (3.15)

With respect to (3.8) and (3.14), we define

ϕ =

{
(φ,ψ) : φ ∈

(
0,

µ
2k

]
,ψ ∈

(
‖u0‖2

H1
0 (Ω)

(k−2)φ
,+∞

)}

=

{
(ψ,φ) : ψ ∈

(
2k‖u0‖2

H1
0 (Ω)

(k−2)µ
,+∞

)
,φ ∈

(
‖u0‖2

H1
0 (Ω)

(k−2)ψ
,

µ
2k

]}
and then

T∗ ≤ inf
φψ2

(k−2)φψ−‖u0‖2
H1

0 (Ω)

.

Let η = φψ (see [11, Theorem 2.8]) and

f (ψ,η) :=
ηψ

(k−2)η−‖u0‖2
H1

0 (Ω)

.
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We see that f (ψ,η) is decreasing with η and we get

T∗ ≤ inf

ψ∈

 2k‖u0‖2
H1

0 (Ω)

(k−2)µ ,+∞


f
(

ψ,
µψ

2k

)

= inf

ψ∈

 2k‖u0‖2
H1

0 (Ω)

(k−2)µ ,+∞


µψ2

(k−2)µψ−2k‖u0‖2
H1

0 (Ω)

=
µψ2

(k−2)µψ−2k‖u0‖2
H1

0 (Ω)

|
ψ=

4k‖u0‖2
H1

0 (Ω)

(k−2)µ

=
8k‖u0‖2

H1
0 (Ω)

(k−2)2 µ
.

(3.16)

Moreover, by (3.16) and the definition of µ, we obtain

T∗ ≤
4‖u0‖2

H1
0 (Ω)

(k−2)2 (d− J(u0))
.

�
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Dicle University, Department of Mathematics, 21280 Diyarbakır, Turkey
E-mail address: episkin@dicle.edu.tr

http://dx.doi.org/10.1007/BF00263041
http://dx.doi.org/10.1007/s00033-021-01543-5
http://dx.doi.org/10.1080/00036811.2019.1698726
http://dx.doi.org/10.2298/FIL1917561S
http://dx.doi.org/10.1186/s13661-020-01482-6
http://dx.doi.org/10.1186/s13661-018-1042-7
http://dx.doi.org/10.1155/2010/394859
http://dx.doi.org/10.1007/s00033-011-0165-9

	1. Introduction
	2. Preliminaries
	3. Main results
	References

