

AN ENGEL CONDITION WITH *b*-GENERALIZED DERIVATIONS IN PRIME RINGS

MOHAMMAD SALAHUDDIN KHAN AND ABDUL NADIM KHAN

Received 23 November, 2021

Abstract. Let \mathcal{R} be a prime ring, I be a nonzero ideal of \mathcal{R} , Q be its maximal right ring of quotients and C be its extended centroid. The aim of this paper is to show that if \mathcal{R} admits a nonzero *b*-generalized derivation \mathcal{F} such that $[\mathcal{F}(x^m)x^n + x^n\mathcal{F}(x^m), x^r]_k = 0$ for all $x \in I$, where m, n, r, k are fixed positive integers, then there exists $\lambda \in C$ such that $\mathcal{F}(x) = \lambda x$ unless $\mathcal{R} \cong M_2(GF(2))$, the 2×2 matrix ring over the Galois field GF(2) of two elements.

2010 Mathematics Subject Classification: 16N60; 16W25

Keywords: prime ring, b-generalized derivation

1. INTRODUCTION

In all that follows, unless specially stated, \mathcal{R} always denotes an associative ring with center $Z(\mathcal{R})$. A ring \mathcal{R} is called prime if $a\mathcal{R}b = (0)$ (where $a, b \in \mathcal{R}$) implies a = 0 or b = 0. We denote by Q maximal right ring of quotients of \mathcal{R} and C is the center of Q which is called the extended centroid of \mathcal{R} see [5, Chapter 2] for more details. As usual the symbol [x, y] will denote the commutator xy - yx. Given $x, y \in \mathcal{R}$ set $[x, y]_1 = xy - yx$ and inductively $[x, y]_k = [[x, y]_{k-1}, y]$ for k > 1. Note that Engel condition is a polynomial $[x, y]_k = \sum_{i=0}^k (-1)^i {k \choose i} y^i x y^{k-i}$ in noncommutative indeterminates x, y and $[x+y, z]_k = [x, z]_k + [y, z]_k$.

An additive mapping $d: \mathcal{R} \to \mathcal{R}$ is said to be a derivation of \mathcal{R} if d(xy) = d(x)y + xd(y) for all $x, y \in \mathcal{R}$. An additive mapping $G: \mathcal{R} \to \mathcal{R}$ is called a generalized derivation of \mathcal{R} if there exists a derivation d of \mathcal{R} such that G(xy) = G(x)y + xd(y) for all $x, y \in \mathcal{R}$. Obviously, any derivation is a generalized derivation, but the converse is not true in general. A significative example is a map of the form G(x) = ax + xb for some $a, b \in \mathcal{R}$; such generalized derivations are called inner. Over the last few decades, several authors have studied on rings with generalized derivations (viz.; [1, 2, 6-8, 10, 15] and references therein).

In a recent paper [12], Koşan and Lee proposed the following new definition. Let $d: \mathcal{R} \to Q$ be an additive mapping and $b \in Q$. An additive map $\mathcal{F}: \mathcal{R} \to Q$ is called a

© 2023 Miskolc University Press

left *b*-generalized derivation, with associated mapping *d*, if $\mathcal{F}(xy) = \mathcal{F}(x)y + bxd(y)$, for all $x, y \in \mathcal{R}$. In the same paper, it is proved that, if \mathcal{R} is a prime ring, then *d* is a derivation of \mathcal{R} . For simplicity of notation, this mapping \mathcal{F} will be called a *b*generalized derivation with associated pair (b,d). Clearly, any generalized derivation with associated derivation *d* is a *b*-generalized derivation with associated pair (1,d). Similarly, the mapping $x \mapsto ax + b[x,c]$, for $a,b,c \in Q$, is a *b*-generalized derivation with associated pair (b,ad(c)), where ad(c)(x) = [x,c] denotes the inner derivation of \mathcal{R} induced by the element *c*. More generally, the mapping $x \mapsto ax + qxc$, for $a,q,c \in Q$, is a *b*-generalized derivation with associated pair (q,ad(c)). This mapping is called inner *b*-generalized derivation.

Recently, Alahmadi et al. [1] proved the following result:

Theorem 1 ([1, Theorem 1.1]). Let \mathcal{R} be a noncommutative prime ring with extended centroid C and k, m, n, r be fixed positive integers. If there exists a generalized derivation G of \mathcal{R} such that $[G(x^m)x^n + x^nG(x^m), x^r]_k = 0$ for all $x \in \mathcal{R}$, then there exists $\lambda \in C$ such that $G(x) = \lambda x$ for all $x \in \mathcal{R}$.

In this paper, we investigate the above result for *b*-generalized derivation.

Theorem 2. Let \mathcal{R} be a noncommutative prime ring and I be a nonzero ideal of \mathcal{R} . If \mathcal{R} admits a nonzero b-generalized derivation \mathcal{F} associated with the map d such that $[\mathcal{F}(x^m)x^n + x^n \mathcal{F}(x^m), x^r]_k = 0$ for all $x \in I$, where m, n, k, r are fixed positive integers, then there exists $\lambda \in C$ such that $\mathcal{F}(x) = \lambda x$ for all $x \in \mathcal{R}$ unless $\mathcal{R} \cong M_2(\mathrm{GF}(2))$, the 2×2 matrix ring over the Galois field $\mathrm{GF}(2)$ of two elements.

The following example shows that any *b*-generalized derivation \mathcal{F} may satisfy all conditions of Theorem 2 on the ring \mathcal{R} which is isomorphic to the 2 × 2 matrix ring over the Galois field GF(2) of two elements, but \mathcal{F} may not be of the form in Theorem 2.

Example 1. Let $\mathcal{R} = M_2(GF(2))$ be the 2×2 matrix ring over the Galois field GF(2) of two elements. The set of matrix units in \mathcal{R} will be denoted by $\{e_{ij} \mid 1 \leq i, j \leq 2\}$. Define a mapping $\mathcal{F} : \mathcal{R} \to \mathcal{R}$ such that $\mathcal{F}(X) = aX + bXc$ for all $X \in \mathcal{R}$, where $a = e_{11} + e_{21}, b = e_{21}$ and $c = e_{11} + e_{12}$. Clearly, \mathcal{F} is a b-generalized derivation of \mathcal{R} . A simple calculation gives that $\mathcal{F}(X)X + X\mathcal{F}(X) = 0$ for $X \in \{0, e_{11}, e_{22}, e_{11} + e_{22}, e_{11} + e_{21}, e_{11} + e_{12}, e_{12} + e_{22}, e_{21} + e_{22}\}$ and $X^6 \in \mathbb{Z}(\mathcal{R})$ for the remaining elements of \mathcal{R} . Thus, for any positive integers r and k, it can be easily verified that $[\mathcal{F}(X)X + X\mathcal{F}(X), X^{6r}]_k = 0$ for all $X \in \mathcal{R}$. However, \mathcal{F} is not of the form described in Theorem 2.

Let ρ be an automorphism of \mathcal{R} . It is well known that any automorphism ρ of \mathcal{R} can be uniquely extended to an automorphism of Q. The automorphism ρ of \mathcal{R} is said to be *X*-inner if there exists a unit $a \in Q$ such that $\rho(x) = axa^{-1}$ for all $x \in \mathcal{R}$. An additive mapping $d: \mathcal{R} \to \mathcal{R}$ is called a ρ -derivation of \mathcal{R} if $d(xy) = d(x)y + \rho(x)d(y)$ for all $x, y \in \mathcal{R}$. An additive mapping $\mathcal{F}: \mathcal{R} \to \mathcal{R}$ is said to be a

generalized ρ -derivation of \mathcal{R} if there exists a ρ -derivation d of \mathcal{R} such that $\mathcal{F}(xy) = \mathcal{F}(x)y + \rho(x)d(y)$ for all $x, y \in \mathcal{R}$. In particular, for *X*-inner automorphism ρ induced by $a \in Q$, any generalized ρ -derivation \mathcal{F} of \mathcal{R} becomes an *a*-generalized derivation of \mathcal{R} with associated map $a^{-1}d$. Because of the above observations, we have the following result, which is an application of Theorem 2.

Corollary 1. Let \mathcal{R} be a noncommutative prime ring and I be a nonzero ideal of \mathcal{R} . If \mathcal{R} admits a nonzero ρ -generalized derivation \mathcal{F} associated with an X-inner automorphism ρ of \mathcal{R} such that $[\mathcal{F}(x^m)x^n + x^n\mathcal{F}(x^m), x^r]_k = 0$ for all $x \in I$, where m, n, k, r are fixed positive integers, then there exists $\lambda \in C$ such that $\mathcal{F}(x) = \lambda x$ for all $x \in \mathcal{R}$ unless $\mathcal{R} \cong M_2(GF(2))$, the 2×2 matrix ring over the Galois field GF(2) of two elements.

2. The Lemmas

To prove Theorem 2, we prove the following sequence of lemmas

Lemma 1. Let V be an infinite dimensional vector space over a field F and let \mathcal{R} be a dense subring of $End(_FV)$. Suppose that $a, b, c \in End(_FV)$ such that $[(ax^m + bx^m c)x^n + x^n(ax^m + bx^m c), x^r]_k = 0$ for all $x \in \mathcal{R}$, where m, n, r, k are fixed positive integers. If $b \neq 0$, then $c \in F \cdot I_V$ and $a + bc \in F \cdot I_V$, where I_V denotes the identity transformation of V.

Proof. We have

$$[(ax^m + bx^m c)x^n + x^n (ax^m + bx^m c), x^r]_k = 0 \text{ for all } x \in \mathcal{R}.$$
 (2.1)

- **Claim 1:** $c \in F \cdot I_V$. Assume on the contrary that $c \notin F \cdot I_V$. By [4, Lemma 7.1], there is $v \in V$ such that v and cv are linearly independent over F. We divide the proof into two cases.
 - **Case 1:** $bV \neq F \cdot v$. Since $b \neq 0$ and $\dim_F V = \infty$, there exists $u \in V$ such that u, v, cv are linearly independent over F and bu, v are linearly independent over F. Write $bu = \alpha cv + \beta v + \gamma u + \delta w$, where $\alpha, \beta, \gamma, \delta \in F$ and $w \notin F \cdot cv + F \cdot v + F \cdot u$. Clearly, α, γ, δ are not all zero. Choose $v_{-1}, v_0, v_1, \dots, v_{m+n+rk+1} \in V$ such that $v_{-1}, v_0, v_1, \dots, v_{m+n+rk+1}$ are linearly independent over F and $v_{-1} = v, v_0 = cv, v_m = u, v_{m+1} = w$. Then $v = v_{-1}, cv_{-1} = v_0$ and $bv_m = \alpha v_0 + \beta v_{-1} + \gamma v_m + \delta v_{m+1}$. By the density of \mathcal{R} , there exist $x, r \in \mathcal{R}$ such that $xv_{-1} = 0$ and $xv_i = v_{i+1}$ for all $i = 0, 1, 2, \dots, m+n+rk$. From (2.1), we have

$$0 = [(ax^{m} + bx^{m}c)x^{n} + x^{n}(ax^{m} + bx^{m}c), x^{r}]_{k}v$$

$$= \sum_{i=0}^{k} {}^{k}C_{i}(-1)^{i}x^{ri} \{(ax^{m} + bx^{m}c)x^{n} + x^{n}(ax^{m} + bx^{m}c)\}x^{rk-ri}v_{-1}$$

$$= (-1)^{k}x^{kr+n}bx^{m}cv_{-1} = (-1)^{k}x^{kr+n}bx^{m}cv$$

$$= (-1)^{k} x^{kr+n} b x^{m} v_{0} = (-1)^{k} x^{kr+n} b v_{m}$$

= $(-1)^{k} x^{kr+n} (\alpha v_{0} + \beta v_{-1} + \gamma v_{m} + \delta v_{m+1})$
= $(-1)^{k} (\alpha v_{kr+n} + \gamma v_{m+n+kr} + \delta v_{m+n+kr+1}),$

which gives a contradiction. Thus, $c \in F \cdot I_V$.

Case 2: $bV = F \cdot v$. Choose $w \in V$ such that $w \notin F \cdot v + F \cdot cv$. Then w, v, cv are linearly independent over F. Suppose first that w and cw are linearly independent over F. Clearly, $bV = F \cdot v \neq F \cdot w$. By the same proof of Case 1, there exists $x \in \mathcal{R}$ such that $[(ax^m + bx^mc)x^n + x^n(ax^m + bx^mc),x^r]_k w \neq 0$, a contradiction. Suppose next that w and cw are linearly dependent over F. Write $cw = \alpha w$, for some $\alpha \in F$. Then $c(v + w) = cv + cw = cv + \alpha w$. Hence, c(v + w) and v + w are linearly independent over F as w, v, cv are linearly independent over F. Clearly, $bV = F \cdot v \neq F \cdot (w + v)$. By the same proof of Case 1, there exists $x \in \mathcal{R}$ such that $[(ax^m + bx^mc)x^n + x^n(ax^m + bx^mc), x^r]_k(w + v) \neq 0$, a contradiction. This proves Claim 1.

Claim 2: $a + bc \in F \cdot I_V$. By Claim 1, (2.1) reduces to

$$[(a+bc)x^{m+n} + x^n(a+bc)x^m, x^r]_k = 0 \text{ for all } x \in \mathcal{R}.$$
(2.2)

Suppose on contrary that $a + bc \notin F \cdot I_V$. Then by [4, Lemma 7.1], v, (a+bc)v are linearly independent over F for some $v \in V$. Choose $v_1, ..., v_{m+2} \in V$ such that $v_1, ..., v_{m+2}$ are linearly independent over F and $v_{m+1} = v, v_{m+2} = (a + bc)v$. By the density of \mathcal{R} there exists $x \in \mathcal{R}$ such that $xv_i = v_{i+1}$ for all $i = 1, 2, ..., m, xv_{m+1} = 0, xv_{m+2} = v_{m+2}$. Therefore from (2.2), we have

$$0 = [(a+bc)x^{m+n} + x^{n}(a+bc)x^{m}, x^{r}]_{k}v_{1}$$

= $\sum_{i=0}^{k} {}^{k}C_{i}(-1)^{i}x^{ri} \{(a+bc)x^{m+n} + x^{n}(a+bc)x^{m}\}x^{r(k-i)}v_{1}$
= $(-1)^{k}x^{rk+n}(a+bc)x^{m}v_{1} = (-1)^{k}x^{rk+n}(a+bc)v_{m+1}$
= $(-1)^{k}x^{rk+n}(a+bc)v = (-1)^{k}x^{rk+n}v_{m+2} = (-1)^{k}v_{m+2}$
= $(-1)^{k}(a+bc)v,$

which gives a contradiction, and hence $a + bc \in F \cdot I_V$.

Lemma 2. Let $\mathcal{R} = M_s(F)$ be the $s \times s$ matrix ring over a field F, where $s \ge 3$ is an integer. Suppose $a, b, c \in \mathcal{R}$ such that $[(ax^m + bx^m c)x^n + x^n(ax^m + bx^m c), x^r]_k = 0$ for all $x \in \mathcal{R}$, where m, n, r, k are fixed positive integers. If $b \ne 0$, then $c \in F \cdot I_s$ and $a + bc \in F \cdot I_s$, where I_s denotes the identity matrix of \mathcal{R} .

Proof. By the assumption we have

$$[(ax^{m} + bx^{m}c)x^{n} + x^{n}(ax^{m} + bx^{m}c), x^{r}]_{k} = 0 \text{ for all } x \in \mathcal{R}.$$
(2.3)

Let ψ be an *F*-linear automorphism of \mathcal{R} . Then

$$(\Psi(a)y^m + \Psi(b)y^m\Psi(c))y^n + y^n(\Psi(a)y^m + \Psi(b)y^m\Psi(c)), y^r]_k = 0 \text{ for all } y \in \mathcal{R}.$$
(2.4)

Claim 1: $c \in F \cdot I_s$. Write $c = \sum_{i,j=1}^{s} c_{ij}e_{ij}$ and $b = \sum_{i,j=1}^{s} b_{ij}e_{ij}$, where $b_{ij}, c_{ij} \in F$. It can be easily conclude that $[(ax^m + bx^mc)x^n + x^n(ax^m + bx^mc), x^r]_{2k+1} = 0$ for all $x \in \mathcal{R}$. So we may assume that k is an odd integer. Also, for any idempotent e of \mathcal{R} , $[x, e]_3 = [x, e]$ for all $x \in \mathcal{R}$. Therefore $[x, e]_{2k+1} = [x, e]$ for all $x \in \mathcal{R}$. Putting $x = e_{ii}$, where i is an integer with $1 \le i \le s$ in (2.3) and using the fact that $[x, e]_{2k+1} = [x, e]$, we get

$$0 = [(ae_{ii}^{m} + be_{ii}^{m}c)e_{ii}^{n} + e_{ii}^{n}(ae_{ii}^{m} + be_{ii}^{m}c), e_{ii}^{r}]_{k}$$

= $[(ae_{ii} + be_{ii}c)e_{ii} + e_{ii}(ae_{ii} + be_{ii}c), e_{ii}]_{k}$
= $[ae_{ii} + be_{ii}ce_{ii} + e_{ii}ae_{ii} + e_{ii}be_{ii}c, e_{ii}]$
= $ae_{ii} + be_{ii}ce_{ii} - e_{ii}ae_{ii} - e_{ii}be_{ii}c.$

Now, multiplying by e_{ii} from right, we get

$$e_{ii}be_{ii}ce_{jj} = 0.$$
 (2.5)

This implies that

$$b_{ii}c_{ij} = 0$$
 for all $j \neq i$ and $1 \le i, j \le s$. (2.6)

Again, putting $x = e_{ii} + e_{ji}$, where *i*, *j* are distinct integers with $1 \le i, j \le s$ in (2.3), we obtain

$$\begin{aligned} 0 &= [(a(e_{ii} + e_{ji})^m + b(e_{ii} + e_{ji})^m c)(e_{ii} + e_{ji})^n \\ &+ (e_{ii} + e_{ji})^n (a(e_{ii} + e_{ji})^m + b(e_{ii} + e_{ji})^m c), (e_{ii} + e_{ji})^r]_k \\ &= [(a(e_{ii} + e_{ji}) + b(e_{ii} + e_{ji})c)(e_{ii} + e_{ji}) \\ &+ (e_{ii} + e_{ji})(a(e_{ii} + e_{ji}) + b(e_{ii} + e_{ji})c), (e_{ii} + e_{ji})] \\ &= a(e_{ii} + e_{ji}) + b(e_{ii} + e_{ji})c(e_{ii} + e_{ji}) \\ &- (e_{ii} + e_{ji})a(e_{ii} + e_{ji}) - (e_{ii} + e_{ji})b(e_{ii} + e_{ji})c \\ &= a(e_{ii} + e_{ji}) + b(e_{ii} + e_{ji})c(e_{ii} + e_{ji}) \\ &- (e_{ii} + e_{ji})a(e_{ii} + e_{ji}) - (e_{ii} + e_{ji})b(e_{ii} + e_{ji})c. \end{aligned}$$

Multiplying by e_{ll} from right, we get

$$(e_{ii}+e_{ji})b(e_{ii}+e_{ji})ce_{ll}=0.$$

Again multiply by e_{ii} from left and using (2.5), we conclude that

 $0 = e_{ii}be_{ji}ce_{ll} = b_{ij}c_{il}e_{jl}$ for all $j \neq i$.

This implies that

$$b_{ij}c_{il} = 0 \text{ for all } j \neq i. \tag{2.7}$$

Thus, from (2.6) and (2.7), we conclude that

if
$$c_{il} \neq 0$$
 for some $i \neq l$, then $b_{ij} = 0$ for all $j = 1, 2, \dots s$. (2.8)

First we need to show that *c* is a diagonal matrix. Suppose *c* is not a diagonal matrix and assume that $c_{21} \neq 0$. Then by [16, Lemma 2.1], there exists an inner automorphism ψ of \mathcal{R} induced by *q* such that $\psi(c) = qcq^{-1} = \sum_{i,j=1}^{s} c_{ij}^{\psi} e_{ij}$, where $c_{ij}^{\psi} \in F$ and

$$c_{21}^{\Psi} \neq 0, \ c_{31}^{\Psi} \neq 0, ..., c_{s1}^{\Psi} \neq 0, \ c_{1s}^{\Psi} \neq 0.$$
 (2.9)

Write $\Psi(b) = \sum_{i,j=1}^{s} b_{ij}^{\Psi} e_{ij}$, where $b_{ij}^{\Psi} \in F$. Combining (2.4), (2.8) and (2.9), we find that $b_{ij}^{\Psi} = 0$ for all i, j with $1 \le i, j \le s$. Therefore $\Psi(b) = 0$ and hence b = 0, which is a contradiction. Thus c is a diagonal matrix that is, $c = \sum_{i=1}^{s} c_{ii} e_{ii}$. Let j be an integer with $2 \le j \le s$ and let ϕ be an F-linear automorphism of \mathcal{R} defined by $\phi(x) = (I_s + e_{1j})x(I_s - e_{1j})$ for all $x \in \mathcal{R}$. Then $\phi(c) = (c_{jj} - c_{11})e_{1j} + \sum_{i=1}^{s} c_{ii}e_{ii}$. Since $b \ne 0$, so $\phi(b) \ne 0$. In view of (2.4) and using the same arguments as we have used above, we find that $\phi(c)$ is a diagonal matrix. Thus $c_{jj} - c_{11} = 0$ for all $2 \le j \le s$. This implies that $c \in F \cdot I_s$.

Claim 2: $a + bc \in F \cdot I_s$. From (2.3) and Claim 1, we have $[(a + bc)x^{m+n} + x^n(a + bc)x^m, x^r]_k = 0$ for all $x \in \mathcal{R}$. This implies that

$$0 = [(x^{m+n})^t (a+bc)^t + (x^m)^t (a+bc)^t (x^n)^t, (x^r)^t]_k$$

= $[(x^t)^{m+n} (a+bc)^t + (x^t)^m (a+bc)^t (x^t)^n, (x^r)^r]_k$,

where x^t denotes the usual matrix transpose of x in \mathcal{R} . Substituting x^t for xand using the fact that $(x^t)^t = x$, we get $[b'x^mc'x^n + x^nb'x^mc', x^r]_k = 0$ for all $x \in \mathcal{R}$, where $c' = (a+bc)^t$ and $b' = I_s$, the identity matrix of \mathcal{R} . Again from (2.3) and by the same arguments as above we have used, we get $(a+bc)^t \in$ $F \cdot I_s$. This implies that $a+bc \in F \cdot I_s$.

Lemma 3. Let $\mathcal{R} = \mathbf{M}_2(F)$ be the 2×2 matrix ring over a field F and $a, b, c \in \mathcal{R}$. Suppose that $b \neq 0$ and $[(ax^m + bx^mc)x^n + x^n(ax^m + bx^mc), x^r]_k = 0$ for all $x \in \mathcal{R}$, where m, n, r, k are fixed positive integers. If c is not a diagonal matrix, then b is not an invertible matrix and $F = \{0, 1\}$.

Proof. We have

$$[(ax^{m} + bx^{m}c)x^{n} + x^{n}(ax^{m} + bx^{m}c), x^{r}]_{k} = 0$$
(2.10)

for all $x \in \mathcal{R}$. Let ϕ be a *F*-linear automorphism of \mathcal{R} . Then from (2.10), we have

$$[(\mathbf{\psi}(a)y^m + \mathbf{\psi}(b)y^m\mathbf{\psi}(c))y^n + y^n(\mathbf{\psi}(a)y^m + \mathbf{\psi}(b)y^m\mathbf{\psi}(c)), y^r]_k = 0$$

for all $y \in \mathcal{R}$. It follows from (2.6) that

if
$$c_{il} \neq 0$$
 for some $i \neq l$, then $b_{ij} = 0$ for all $i, j \in \{1, 2\}$. (2.11)

Let $c, b \in M_2(F)$. Then $c = \sum_{i,j=1}^{s} c_{ij}e_{ij}$ and $b = \sum_{i,j=1}^{s} b_{ij}e_{ij}$, where $b_{ij}, c_{ij} \in F$ and $i, j \in \{1, 2\}$. By hypothesis, c is not a diagonal matrix, we may assume $c_{12} \neq 0$. Thus, from (2.11), we have $b_{11} = b_{12} = 0$. If $c_{21} \neq 0$, then $b_{21} = b_{22} = 0$. This implies b = 0, a contradiction. Hence, we have $c_{21} = 0$. So

$$c_{12} \neq 0, \ c_{21} = 0, \ b_{11} = b_{12} = 0.$$
 (2.12)

It is clear from above that *b* is not an invertible matrix. Let us define, for $\alpha \in F$, ϕ_{α} be an *F*-linear automorphism of \mathcal{R} such that $\phi_{\alpha}(x) = (I_2 + \alpha e_{21})x(I_2 - \alpha e_{21})$ for all $x \in \mathcal{R}$. If $\phi_{\alpha}(b) = \sum_{i,j=1}^{s} b_{ij}^{\alpha} e_{ij}$ and $\phi_{\alpha}(c) = \sum_{i,j=1}^{s} c_{ij}^{\alpha} e_{ij}$, where $b_{ij}^{\alpha}, c_{ij}^{\alpha} \in F$, then it follows from above that $b_{21}^{\alpha} = b_{21} - \alpha b_{22}$ and $c_{21}^{\alpha} = \alpha(c_{11} - c_{22}) - \alpha^2 c_{12}$. If $c_{21}^{\alpha} \neq 0$, then we see from (2.11) that $b_{21}^{\alpha} = b_{21} - \alpha b_{22} = 0$ and $b_{22}^{\alpha} = b_{22} = 0$. Thus, $b_{21} = b_{22} = 0$. Now, from (2.12), we have b = 0. This leads to a contradiction. Therefore,

$$c_{21}^{\alpha} = \alpha(c_{11} - c_{22}) - \alpha^2 c_{12} = 0$$
(2.13)

for all $\alpha \in F$. Suppose, if *F* has more than two elements then from (2.13), we can conclude that $c_{12} = 0$, which gives a contradiction b = 0. Therefore, *F* can not have more than two elements i.e., $F = \{0, 1\}$. This completes the proof of Lemma.

Lemma 4. Let $\mathcal{R} = M_2(F)$ be the 2×2 matrix ring over a field F and $a, b, c \in \mathcal{R}$ such that $b \neq 0$ and $[(ax^m + bx^m c)x^n + x^n(ax^m + bx^m c), x^r]_k = 0$ for all $x \in \mathcal{R}$, where m, n, r, k are fixed positive integers. If $b \neq 0$, then $c \in F.I_2$ and $a + cb \in F.I_2$, unless $F \cong GF(2)$, the Galois field of two elements.

Proof. Assume that $F \ncong GF(2)$. In view of Lemma 3, we have *c* is a diagonal matrix, and hence $c = \sum_{i=1}^{2} c_{ii}e_{ii}$, where $c_{ii} \in F$. Let ϕ be a *F*-linear automorphism of \mathcal{R} , defined by $\phi(x) = (I_2 + e_{12})x(I_2 - e_{12})$ for all $x \in \mathcal{R}$. Hence, $\phi(c) = \sum_{i=1}^{2} c_{ii}e_{ii} + (c_{22} - c_{11})e_{12}$. Obviously, $\phi(b) \neq 0$ and $[(\phi(a)x^m + \phi(b)x^m\phi(c))x^n + x^n(\phi(a)x^m + \phi(b)x^m\phi(c)), x^r]_k = 0$ for all $x \in \mathcal{R}$. It follows from Lemma 3 that $\phi(c)$ is a diagonal matrix. This gives $c_{22} - c_{11} = 0$, and hence $c = c_{11}I_2 \in F.I_2$. Now, by the assumption, we have $[(a + bc)x^{m+n} + x^n(a + bc)x^m, x^r]_k = 0$ for all $x \in \mathcal{R}$. This implies that

$$0 = [(x^{m+n})^t (a+bc)^t + (x^m)^t (a+bc)^t (x^n)^t, (x^r)^t]_k$$

= $[(x^t)^{m+n} (a+bc)^t + (x^t)^m (a+bc)^t (x^t)^n, (x^t)^r]_k,$

where x^t denotes the usual matrix transpose of x in \mathcal{R} . Substituting x^t for x and using the fact that $(x^t)^t = x$, we get $[b'x^mc'x^n + x^nb'x^mc', x^r]_k = 0$ for all $x \in \mathcal{R}$, where $c' = (a+bc)^t$ and $b' = I_2$, the identity matrix of \mathcal{R} . Again by using the same arguments as we have used in the above, we get $c' = (a+bc)^t \in F \cdot I_2$. This implies that $a+bc \in F \cdot I_2$.

3. PROOF OF THEOREM 2

Now, we are in position to prove our theorem.

Suppose first that b = 0. Then $\mathcal{F}(xy) = \mathcal{F}(x)y$ for all $x, y \in \mathcal{R}$. In view of [3, Lemma 2.3], there is $a \in Q$ such that $\mathcal{F}(x) = ax$ for all $x \in \mathcal{R}$. In this case, by the hypothesis, we have

$$[ax^{m+n} + x^n ax^m, x^r]_k = 0$$

for all $x \in I$ and hence for all $x \in \mathcal{R}$. In view of [1, Corollary 1.7], we get $a \in C$, which gives the required result.

Now, we assume that $b \neq 0$. By [12, Theorem 2.3], $d: \mathcal{R} \to Q$ is a derivation and there exists $a' \in Q$ such that $\mathcal{F}(x) = a'x + bd(x)$ for all $x \in \mathcal{R}$. It is known that d can be uniquely extended to a derivation of Q [14, Lemma 2]. By the assumption we have

$$[\mathcal{F}(x^m)x^n + x^n \mathcal{F}(x^m), x^r]_k = 0 \text{ for all } x \in I.$$
(3.1)

We divide the proof into two cases.

Case 1: *d* is *Q*-inner. That is, there exists $c' \in Q$ such that d(x) = [c', x] for all $x \in \mathcal{R}$. So $\mathcal{F}(x) = a'x + bd(x) = a'x + b[c', x] = ax + bxc$ for all $x \in \mathcal{R}$, where a = a' + bc' and c = -c'. By (3.1), we have

$$[(ax^{m} + bx^{m}c)x^{n} + x^{n}(ax^{m} + bx^{m}c), x^{r}]_{k} = 0 \text{ for all } x \in I.$$
(3.2)

Since I, \mathcal{R} and Q satisfies the same polynomial identities by [5, Theorem 6.4.4]. Therefore, $[(ax^m + bx^m c)x^n + x^n(ax^m + bx^m c), x^r]_k = 0$ for all $x \in Q$. If $c \in C$ and $a + cb \in C$, then $g(x) = \lambda x$ for all $x \in \mathcal{R}$, where $\lambda = a + cb$ and d = 0 as $c = -c' \in C$, proving the theorem. Now we assume that $c \notin C$ or $a+cb \notin C$. Let $\varphi(x) = [(ax^m + bx^m c)x^n + x^n(ax^m + bx^m c), x^r]_k$ Clearly, if $c \in C$ and $a + cb \notin C$, then $\varphi(x)$ is a nonzero GPI of Q by (3.2). Suppose $c \notin C$. Then by (3.2) $\varphi(x)$ is a nonzero GPI of Q as $b \neq 0$. So we conclude that $\varphi(x)$ is a nonzero GPI of Q. Let F be the algebraic closure of C if C is infinite and set F = C for C finite. Clearly, the map $r \in Q \mapsto r \otimes 1 \in Q \otimes_C F$ gives a ring embedding. So we may assume Q is a subring of $Q \otimes_C F$. By [13, Proposition], $\varphi(x)$ is also a nonzero GPI of $Q \otimes_C F$. Moreover, in view of [9, Theorem 3.5], $Q \otimes_C F$ is a prime ring with F as its extended centroid. Thus, $\overline{Q} = Q \otimes_C F$ is a prime ring satisfies a nonzero GPI $\varphi(x)$ and its extended centroid F is either an algebraically closed field or a finite field. By Martindale's Theorem [5, Theorem 6.1.6], \overline{Q} is a primitive ring having nonzero socle with F as its associated division ring. Moreover, \overline{Q} is a dense subring of $End(_FV)$, where V is a vector space over F. If $\dim_F V = 1$, then \overline{Q} is commutative and hence \mathcal{R} is commutative, a contradiction. So dim_{*F*} $V \ge 2$. Firstly, we suppose $\dim_F V = 2$. Then $Q = \operatorname{End}_{FV} \cong M_2(F)$. Application of Lemma 4 yields that $c \in F$ and $a + bc \in F$ or $F \cong GF(2)$. In first case, we have $\mathcal{F}(x) = \lambda x$, where $\lambda = a + bc \in C$ in the other case, we have $C = F \cong GF(2)$ and hence $\mathcal{R} = Q \cong M_2(GF(2))$. This proves the theorem. Next, if dim_FV \geq 3, then by

Lemma 2 and Lemma 1, we have $c \in F$ and $a + bc \in F$. Therefore, $-c' \in C$ and $a + bc \in C$ and hence $\mathcal{F}(x) = \lambda x$ for all $x \in \mathcal{R}$, where $\lambda = a + bc \in C$, which is the required form of \mathcal{F} .

Case 2: d is not Q-inner. From (3.1), we have

$$[a'x^{m+n} + bd(x^m)x^n + x^n a'x^m + x^n bd(x^m), x^r]_k = 0$$

for all $x, y \in I$ and thus for all $x, y \in \mathcal{R}$ [14, Theorem 2]. Now, we set $h(Y,X) = \sum_{i=0}^{m-1} X^i Y X^{m-1-i}$, a polynomial in two non commuting variables X and Y. Note that $d(x^m) = h(d(x), x)$. Then the above expression becomes as $[a'x^{m+n} + bh(d(x), x)x^n + x^n a'x^m + x^n bh(d(x), x), x^r]_k = 0$ for all $x \in \mathcal{R}$.

Applying Kharchenko's theorem [11], we obtain

$$[a'x^{m+n} + bh(y,x)x^n + x^n a'x^m + x^n bh(y,x), x^r]_k = 0$$

for all $x, y \in \mathcal{R}$ and hence for all $x, y \in Q$ by [5, Theorem 6.4.4]. In particular choose $u \notin C$ and take y = [u, x] and using the fact that $h([u, x], x) = [u, x^m]$ in the above expression we get In particular for y = 0, we have

$$[a'x^{m+n} + b[u, x^m]x^n + x^n a'x^m + x^n b[u, x^m], x^r]_k = 0 \text{ for all } x \in Q.$$

This can be rewritten as

$$[(ax^m + bx^m c)x^n + x^n(ax^m + bx^m c), x^r]_k = 0 \text{ for all } x \in \mathcal{R},$$
(3.3)

where a = a' + bu and c = -u. Since $c = -u \notin C$, so in view of (3.2) and (3.3), we obtain the required result from Case 1. Thereby the proof is completed. \Box

ACKNOWLEDGEMENT

The authors are deeply indebted to the learned referee(s) for their careful reading of the manuscript and constructive comments.

REFERENCES

- A. Alahmadi, S. Ali, A. N. Khan, and M. S. Khan, "A characterization of generalized derivations on prime rings," *Comm. Algebra*, vol. 44, pp. 3201–3210, 2016, doi: 10.1080/00927872.2015.1065861.
- [2] A. Albaş, N. Argaç, and V. D. Filippis, "Generalized derivations with Engel conditions on onesided ideals," *Comm. Algebra*, vol. 36, pp. 2063–2071, 2008, doi: 10.1080/00927870801949328.
- [3] K. I. Beidar, "On functional identities and commuting additive mappings," Comm. Algebra, vol. 26, pp. 1819–1850, 1998, doi: 10.1080/00927879808826241.
- [4] K. I. Beidar and M. Brešar, "Extended jacobson density theorem for rings with derivations and automorphisms," *Israel J. Math.*, vol. 122, pp. 317–346, 2001, doi: 10.1007/BF02809906.
- [5] K. I. Beidar, W. S. Martindale III, and A. V. Mikhalev, *Rings with generalized identities*. Basel: Marcel Dekker, New York Basel Hong Kong, 1996.

- [6] M. Brešar, "On the distance of the composition of two derivations to the generalized derivations," *Glasgow Math. J.*, vol. 33, pp. 89–93, 1991, doi: 10.1017/S0017089500008077.
- [7] C. Demir and N. Argaç, "A result on generalized derivations with Engel conditions on one-sided ideals," J. Korean Math. Soc., vol. 47, pp. 483–494, 2010, doi: 10.4134/JKMS.2010.47.3.483.
- [8] B. Dhara and V. D. Filippis, "Engel conditions of generalized derivations on left ideals and Lie ideals in prime rings," *Comm. Algebra*, vol. 48, pp. 154–167, 2020, doi: 10.1080/00927872.2019.1635608.
- [9] T. S. Erickson, W. S. Martindale III, and J. M. Osborn, "Prime nonassociative algebras," *Pacific J. Math.*, vol. 60, pp. 49–63, 1975, doi: 10.2140/pjm.1975.60.49.
- [10] B. Hvala, "Generalized derivations in rings," *Comm. Algebra*, vol. 26, pp. 1147–1166, 1998, doi: 10.1080/00927879808826190.
- [11] V. K. Kharchenko, "Differential identities of semiprime rings," *Algebra and Logic*, vol. 18, pp. 86–119, 1979, doi: 10.1007/BF01669313.
- [12] M. T. Koşan and T.-K. Lee, "b-generalized derivations of semiprime rings having nilpotent values," J. Aust. Math. Soc., vol. 96, pp. 326–337, 2014, doi: 10.1017/S1446788713000670.
- [13] P.-H. Lee and T.-L. Wong, "Derivations cocentralizing Lie ideals," Bull. Inst. Math. Acad. Sinica, vol. 23, pp. 1–5, 1995.
- [14] T.-K. Lee, "Semiprime rings with differential identities," Bull. Inst. Math. Acad. Sinica, vol. 20, pp. 27–38, 1992.
- [15] C.-K. Liu, "Strong commutativity preserving generalized derivations on right ideals," *Monatsh. Math.*, vol. 166, pp. 453–465, 2012, doi: 10.1007/s00605-010-0281-1.
- [16] C.-K. Liu, "An Engel condition with b-generalized derivations," *Linear Multilinear Algebra*, vol. 65, pp. 300–312, 2017, doi: 10.1080/03081087.2016.1183560.

Authors' addresses

Mohammad Salahuddin Khan

Department of Applied Mathematics, Z. H. College of Engineering and Technology, Aligarh Muslim University, Aligarh-202002, India

E-mail address: salahuddinkhan50@gmail.com

Abdul Nadim Khan

(Corresponding author) King Abdulaziz University, College of Science and Arts- Rabigh, Department of Mathematics, Jeddah, Saudi Arabia

E-mail address: abdulnadimkhan@gmail.com