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Abstract. Let R be a prime ring, I be a nonzero ideal of R , Q be its maximal right ring of
quotients and C be its extended centroid. The aim of this paper is to show that if R admits
a nonzero b-generalized derivation F such that [F (xm)xn + xnF (xm),xr]k = 0 for all x ∈ I ,
where m,n,r,k are fixed positive integers, then there exists λ ∈ C such that F (x) = λx unless
R ∼= M2(GF(2)), the 2×2 matrix ring over the Galois field GF(2) of two elements.
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1. INTRODUCTION

In all that follows, unless specially stated, R always denotes an associative ring
with center Z(R ). A ring R is called prime if aR b = (0) (where a,b ∈ R ) implies
a = 0 or b = 0. We denote by Q maximal right ring of quotients of R and C is
the center of Q which is called the extended centroid of R see [5, Chapter 2] for
more details. As usual the symbol [x,y] will denote the commutator xy− yx. Given
x,y ∈ R set [x,y]1 = xy−yx and inductively [x,y]k = [[x,y]k−1,y] for k > 1. Note that

Engel condition is a polynomial [x,y]k =
k
∑

i=0
(−1)i

(
k
i

)
yixyk−i in noncommutative

indeterminates x,y and [x+ y,z]k = [x,z]k +[y,z]k.
An additive mapping d : R → R is said to be a derivation of R if d(xy) = d(x)y+

xd(y) for all x,y ∈ R . An additive mapping G : R → R is called a generalized
derivation of R if there exists a derivation d of R such that G(xy) = G(x)y+ xd(y)
for all x,y∈R . Obviously, any derivation is a generalized derivation, but the converse
is not true in general. A significative example is a map of the form G(x) = ax+ xb
for some a,b ∈ R ; such generalized derivations are called inner. Over the last few
decades, several authors have studied on rings with generalized derivations (viz.;
[1, 2, 6–8, 10, 15] and references therein).

In a recent paper [12], Koşan and Lee proposed the following new definition. Let
d : R →Q be an additive mapping and b∈Q. An additive map F : R →Q is called a
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left b-generalized derivation, with associated mapping d, if F (xy) = F (x)y+bxd(y),
for all x,y ∈ R . In the same paper, it is proved that, if R is a prime ring, then d is
a derivation of R . For simplicity of notation, this mapping F will be called a b-
generalized derivation with associated pair (b,d). Clearly, any generalized derivation
with associated derivation d is a b-generalized derivation with associated pair (1,d).
Similarly, the mapping x 7→ ax+b[x,c], for a,b,c ∈ Q, is a b-generalized derivation
with associated pair (b,ad(c)), where ad(c)(x) = [x,c] denotes the inner derivation
of R induced by the element c. More generally, the mapping x 7→ ax + qxc, for
a,q,c∈Q, is a b-generalized derivation with associated pair (q,ad(c)). This mapping
is called inner b-generalized derivation.

Recently, Alahmadi et al. [1] proved the following result:

Theorem 1 ([1, Theorem 1.1]). Let R be a noncommutative prime ring with ex-
tended centroid C and k,m,n,r be fixed positive integers. If there exists a generalized
derivation G of R such that [G(xm)xn + xnG(xm),xr]k = 0 for all x ∈ R , then there
exists λ ∈C such that G(x) = λx for all x ∈ R .

In this paper, we investigate the above result for b-generalized derivation.

Theorem 2. Let R be a noncommutative prime ring and I be a nonzero ideal
of R . If R admits a nonzero b-generalized derivation F associated with the map
d such that [F (xm)xn + xnF (xm),xr]k = 0 for all x ∈ I , where m,n,k,r are fixed
positive integers, then there exists λ ∈ C such that F (x) = λx for all x ∈ R unless
R ∼= M2(GF(2)), the 2×2 matrix ring over the Galois field GF(2) of two elements.

The following example shows that any b-generalized derivation F may satisfy
all conditions of Theorem 2 on the ring R which is isomorphic to the 2× 2 matrix
ring over the Galois field GF(2) of two elements, but F may not be of the form in
Theorem 2.

Example 1. Let R = M2(GF(2)) be the 2× 2 matrix ring over the Galois field
GF(2) of two elements. The set of matrix units in R will be denoted by {ei j | 1 ≤
i, j ≤ 2}. Define a mapping F : R → R such that F (X) = aX + bXc for all X ∈
R , where a = e11 + e21,b = e21 and c = e11 + e12. Clearly, F is a b-generalized
derivation of R . A simple calculation gives that F (X)X + XF (X) = 0 for X ∈
{0,e11,e21,e22,e11 + e22,e11 + e21,e11 + e12,e12 + e22,e21 + e22} and X6 ∈ Z(R ) for
the remaining elements of R . Thus, for any positive integers r and k, it can be easily
verified that [F (X)X +XF (X),X6r]k = 0 for all X ∈ R . However, F is not of the
form described in Theorem 2.

Let ρ be an automorphism of R . It is well known that any automorphism ρ of
R can be uniquely extended to an automorphism of Q. The automorphism ρ of
R is said to be X-inner if there exists a unit a ∈ Q such that ρ(x) = axa−1 for all
x ∈ R . An additive mapping d : R → R is called a ρ-derivation of R if d(xy) =
d(x)y+ρ(x)d(y) for all x,y ∈ R . An additive mapping F : R → R is said to be a
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generalized ρ-derivation of R if there exists a ρ-derivation d of R such that F (xy) =
F (x)y+ρ(x)d(y) for all x,y ∈ R . In particular, for X-inner automorphism ρ induced
by a ∈ Q, any generalized ρ-derivation F of R becomes an a-generalized derivation
of R with associated map a−1d. Because of the above observations, we have the
following result, which is an application of Theorem 2.

Corollary 1. Let R be a noncommutative prime ring and I be a nonzero ideal of
R . If R admits a nonzero ρ-generalized derivation F associated with an X-inner
automorphism ρ of R such that [F (xm)xn + xnF (xm),xr]k = 0 for all x ∈ I , where
m,n,k,r are fixed positive integers, then there exists λ ∈C such that F (x) = λx for
all x ∈ R unless R ∼= M2(GF(2)), the 2×2 matrix ring over the Galois field GF(2)
of two elements.

2. THE LEMMAS

To prove Theorem 2, we prove the following sequence of lemmas

Lemma 1. Let V be an infinite dimensional vector space over a field F and let
R be a dense subring of End(FV ). Suppose that a,b,c ∈End(FV ) such that [(axm +
bxmc)xn + xn(axm + bxmc),xr]k = 0 for all x ∈ R , where m,n,r,k are fixed positive
integers. If b 6= 0, then c ∈ F · IV and a+ bc ∈ F · IV , where IV denotes the identity
transformation of V.

Proof. We have

[(axm +bxmc)xn + xn(axm +bxmc),xr]k = 0 for all x ∈ R . (2.1)

Claim 1: c ∈ F · IV . Assume on the contrary that c 6∈ F · IV . By [4, Lemma 7.1],
there is v ∈V such that v and cv are linearly independent over F . We divide
the proof into two cases.

Case 1: bV 6= F · v. Since b 6= 0 and dimFV = ∞, there exists u ∈ V such
that u,v,cv are linearly independent over F and bu,v are linearly inde-
pendent over F . Write bu = αcv+ βv+ γu+ δw, where α,β,γ,δ ∈ F
and w /∈ F · cv+F · v+F · u. Clearly, α,γ,δ are not all zero. Choose
v−1,v0,v1, ...,vm+n+rk+1 ∈ V such that v−1,v0,v1, ...,vm+n+rk+1 are lin-
early independent over F and v−1 = v,v0 = cv,vm = u,vm+1 = w. Then
v = v−1,cv−1 = v0 and bvm = αv0 +βv−1 + γvm + δvm+1. By the dens-
ity of R , there exist x,r ∈ R such that xv−1 = 0 and xvi = vi+1 for all
i = 0,1,2, ...,m+n+ rk. From (2.1), we have

0 = [(axm +bxmc)xn + xn(axm +bxmc),xr]kv

=
k

∑
i=0

kCi(−1)ixri {(axm +bxmc)xn + xn(axm +bxmc)}xrk−riv−1

= (−1)kxkr+nbxmcv−1 = (−1)kxkr+nbxmcv
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= (−1)kxkr+nbxmv0 = (−1)kxkr+nbvm

= (−1)kxkr+n(αv0 +βv−1 + γvm +δvm+1)

= (−1)k(αvkr+n + γvm+n+kr +δvm+n+kr+1),

which gives a contradiction. Thus, c ∈ F · IV .
Case 2: bV = F ·v. Choose w ∈V such that w /∈ F ·v+F ·cv. Then w,v,cv

are linearly independent over F. Suppose first that w and cw are lin-
early independent over F. Clearly, bV = F ·v 6= F ·w. By the same proof
of Case 1, there exists x ∈ R such that [(axm + bxmc)xn + xn(axm +
bxmc),xr]kw 6= 0, a contradiction. Suppose next that w and cw are lin-
early dependent over F. Write cw = αw, for some α ∈ F. Then c(v+
w) = cv+ cw = cv+αw. Hence, c(v+w) and v+w are linearly in-
dependent over F as w,v,cv are linearly independent over F. Clearly,
bV = F ·v 6= F ·(w+v). By the same proof of Case 1, there exists x ∈R
such that [(axm + bxmc)xn + xn(axm + bxmc),xr]k(w+ v) 6= 0, a contra-
diction. This proves Claim 1.

Claim 2: a+bc ∈ F · IV . By Claim 1, (2.1) reduces to

[(a+bc)xm+n + xn(a+bc)xm,xr]k = 0 for all x ∈ R . (2.2)

Suppose on contrary that a+bc /∈ F · IV . Then by [4, Lemma 7.1], v,(a+bc)v
are linearly independent over F for some v ∈V. Choose v1, ...,vm+2 ∈V such
that v1, ...,vm+2 are linearly independent over F and vm+1 = v, vm+2 = (a+
bc)v. By the density of R there exists x ∈ R such that xvi = vi+1 for all
i = 1,2, ...,m, xvm+1 = 0, xvm+2 = vm+2. Therefore from (2.2), we have

0 = [(a+bc)xm+n + xn(a+bc)xm,xr]kv1

=
k

∑
i=0

kCi(−1)ixri{(a+bc)xm+n + xn(a+bc)xm}xr(k−i)v1

= (−1)kxrk+n(a+bc)xmv1 = (−1)kxrk+n(a+bc)vm+1

= (−1)kxrk+n(a+bc)v = (−1)kxrk+nvm+2 = (−1)kvm+2

= (−1)k(a+bc)v,

which gives a contradiction, and hence a+bc ∈ F · IV .
�

Lemma 2. Let R = Ms(F) be the s× s matrix ring over a field F, where s≥ 3 is
an integer. Suppose a,b,c ∈ R such that [(axm +bxmc)xn + xn(axm +bxmc),xr]k = 0
for all x ∈ R , where m,n,r,k are fixed positive integers. If b 6= 0, then c ∈ F · Is and
a+bc ∈ F · Is, where Is denotes the identity matrix of R .

Proof. By the assumption we have

[(axm +bxmc)xn + xn(axm +bxmc),xr]k = 0 for all x ∈ R . (2.3)
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Let ψ be an F-linear automorphism of R . Then

[(ψ(a)ym +ψ(b)ym
ψ(c))yn + yn(ψ(a)ym +ψ(b)ym

ψ(c)),yr]k = 0 for all y ∈ R .
(2.4)

Claim 1: c∈F ·Is. Write c=Σs
i, j=1ci jei j and b=Σs

i, j=1bi jei j, where bi j,ci j ∈F.
It can be easily conclude that [(axm + bxmc)xn + xn(axm + bxmc),xr]2k+1 =
0 for all x ∈ R . So we may assume that k is an odd integer. Also, for any
idempotent e of R , [x,e]3 = [x,e] for all x ∈ R Therefore [x,e]2k+1 = [x,e]
for all x ∈ R . Putting x = eii, where i is an integer with 1≤ i≤ s in (2.3) and
using the fact that [x,e]2k+1 = [x,e], we get

0 = [(aem
ii +bem

ii c)en
ii + en

ii(aem
ii +bem

ii c),er
ii]k

= [(aeii +beiic)eii + eii(aeii +beiic),eii]k

= [aeii +beiiceii + eiiaeii + eiibeiic,eii]

= aeii +beiiceii− eiiaeii− eiibeiic.

Now, multiplying by e j j from right, we get

eiibeiice j j = 0. (2.5)

This implies that

biici j = 0 for all j 6= i and 1≤ i, j ≤ s. (2.6)

Again, putting x = eii +e ji, where i, j are distinct integers with 1≤ i, j ≤ s in
(2.3), we obtain

0 = [(a(eii + e ji)
m +b(eii + e ji)

mc)(eii + e ji)
n

+(eii + e ji)
n(a(eii + e ji)

m +b(eii + e ji)
mc),(eii + e ji)

r]k

= [(a(eii + e ji)+b(eii + e ji)c)(eii + e ji)

+(eii + e ji)(a(eii + e ji)+b(eii + e ji)c),(eii + e ji)]

= a(eii + e ji)+b(eii + e ji)c(eii + e ji)

− (eii + e ji)a(eii + e ji)− (eii + e ji)b(eii + e ji)c

= a(eii + e ji)+b(eii + e ji)c(eii + e ji)

− (eii + e ji)a(eii + e ji)− (eii + e ji)b(eii + e ji)c.

Multiplying by ell from right, we get

(eii + e ji)b(eii + e ji)cell = 0.

Again multiply by eii from left and using (2.5), we conclude that

0 = eiibe jicell = bi jcile jl for all j 6= i.

This implies that
bi jcil = 0 for all j 6= i. (2.7)
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Thus, from (2.6) and (2.7), we conclude that

if cil 6= 0 for some i 6= l, then bi j = 0 for all j = 1,2, ...s. (2.8)

First we need to show that c is a diagonal matrix. Suppose c is not a diagonal
matrix and assume that c21 6= 0. Then by [16, Lemma 2.1], there exists an in-
ner automorphism ψ of R induced by q such that ψ(c)= qcq−1 =Σs

i, j=1cψ

i jei j,

where cψ

i j ∈ F and

cψ

21 6= 0, cψ

31 6= 0, ...,cψ

s1 6= 0, cψ

1s 6= 0. (2.9)

Write ψ(b) = Σs
i, j=1bψ

i jei j, where bψ

i j ∈ F . Combining (2.4), (2.8) and (2.9),
we find that bψ

i j = 0 for all i, j with 1 ≤ i, j ≤ s. Therefore ψ(b) = 0 and
hence b = 0, which is a contradiction. Thus c is a diagonal matrix that is,
c = Σs

i=1ciieii. Let j be an integer with 2 ≤ j ≤ s and let φ be an F-linear
automorphism of R defined by φ(x) = (Is + e1 j)x(Is− e1 j) for all x ∈ R .
Then φ(c) = (c j j− c11)e1 j +Σs

i=1ciieii. Since b 6= 0, so φ(b) 6= 0. In view of
(2.4) and using the same arguments as we have used above, we find that φ(c)
is a diagonal matrix. Thus c j j− c11 = 0 for all 2 ≤ j ≤ s. This implies that
c ∈ F · Is.

Claim 2: a + bc ∈ F · Is. From (2.3) and Claim 1, we have [(a+ bc)xm+n +
xn(a+bc)xm,xr]k = 0 for all x ∈ R . This implies that

0 = [(xm+n)t(a+bc)t +(xm)t(a+bc)t(xn)t ,(xr)t ]k

= [(xt)m+n(a+bc)t +(xt)m(a+bc)t(xt)n,(xt)r]k,

where xt denotes the usual matrix transpose of x in R . Substituting xt for x
and using the fact that (xt)t = x, we get [b′xmc′xn + xnb′xmc′,xr]k = 0 for all
x ∈R , where c′ = (a+bc)t and b′ = Is, the identity matrix of R . Again from
(2.3) and by the same arguments as above we have used, we get (a+bc)t ∈
F · Is. This implies that a+bc ∈ F · Is.

�

Lemma 3. Let R = M2(F) be the 2×2 matrix ring over a field F and a,b,c ∈ R .
Suppose that b 6= 0 and [(axm + bxmc)xn + xn(axm + bxmc),xr]k = 0 for all x ∈ R ,
where m,n,r,k are fixed positive integers. If c is not a diagonal matrix, then b is not
an invertible matrix and F = {0,1}.

Proof. We have

[(axm +bxmc)xn + xn(axm +bxmc),xr]k = 0 (2.10)

for all x ∈ R . Let φ be a F-linear automorphism of R . Then from (2.10), we have

[(ψ(a)ym +ψ(b)ym
ψ(c))yn + yn(ψ(a)ym +ψ(b)ym

ψ(c)),yr]k = 0
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for all y ∈ R . It follows from (2.6) that

if cil 6= 0 for some i 6= l, then bi j = 0 for all i, j ∈ {1,2}. (2.11)

Let c,b ∈M2(F). Then c = Σs
i, j=1ci jei j and b = Σs

i, j=1bi jei j, where bi j,ci j ∈ F and
i, j ∈ {1,2}. By hypothesis, c is not a diagonal matrix, we may assume c12 6= 0. Thus,
from (2.11), we have b11 = b12 = 0. If c21 6= 0, then b21 = b22 = 0. This implies b= 0,
a contradiction. Hence, we have c21 = 0. So

c12 6= 0, c21 = 0, b11 = b12 = 0. (2.12)

It is clear from above that b is not an invertible matrix. Let us define, for α ∈ F ,
φα be an F-linear automorphism of R such that φα(x) = (I2 + αe21)x(I2 − αe21)
for all x ∈ R . If φα(b) = Σs

i, j=1bα
i jei j and φα(c) = Σs

i, j=1cα
i jei j, where bα

i j,c
α
i j ∈ F ,

then it follows from above that bα
21 = b21−αb22 and cα

21 = α(c11− c22)−α2c12. If
cα

21 6= 0, then we see from (2.11) that bα
21 = b21−αb22 = 0 and bα

22 = b22 = 0. Thus,
b21 = b22 = 0. Now, from (2.12), we have b = 0. This leads to a contradiction.
Therefore,

cα
21 = α(c11− c22)−α

2c12 = 0 (2.13)

for all α ∈ F . Suppose, if F has more than two elements then from (2.13), we can
conclude that c12 = 0, which gives a contradiction b = 0. Therefore, F can not have
more than two elements i.e., F = {0,1}. This completes the proof of Lemma. �

Lemma 4. Let R = M2(F) be the 2×2 matrix ring over a field F and a,b,c ∈ R
such that b 6= 0 and [(axm +bxmc)xn + xn(axm +bxmc),xr]k = 0 for all x ∈ R , where
m,n,r,k are fixed positive integers. If b 6= 0, then c ∈ F.I2 and a+ cb ∈ F.I2, unless
F ∼= GF(2), the Galois field of two elements.

Proof. Assume that F � GF(2). In view of Lemma 3, we have c is a diagonal
matrix, and hence c = Σ2

i=1ciieii, where cii ∈ F . Let φ be a F-linear automorphism of
R , defined by φ(x) = (I2 + e12)x(I2− e12) for all x ∈ R . Hence, φ(c) = Σ2

i=1ciieii +
(c22− c11)e12. Obviously, φ(b) 6= 0 and [(φ(a)xm + φ(b)xmφ(c))xn + xn(φ(a)xm +
φ(b)xmφ(c)),xr]k = 0 for all x ∈ R . It follows from Lemma 3 that φ(c) is a diagonal
matrix. This gives c22−c11 = 0, and hence c = c11I2 ∈ F.I2. Now, by the assumption,
we have [(a+bc)xm+n + xn(a+bc)xm,xr]k = 0 for all x ∈ R . This implies that

0 = [(xm+n)t(a+bc)t +(xm)t(a+bc)t(xn)t ,(xr)t ]k

= [(xt)m+n(a+bc)t +(xt)m(a+bc)t(xt)n,(xt)r]k,

where xt denotes the usual matrix transpose of x in R . Substituting xt for x and using
the fact that (xt)t = x, we get [b′xmc′xn + xnb′xmc′,xr]k = 0 for all x ∈ R , where c′ =
(a+bc)t and b′ = I2, the identity matrix of R . Again by using the same arguments as
we have used in the above, we get c′ = (a+bc)t ∈ F · I2. This implies that a+bc ∈
F · I2. �
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3. PROOF OF THEOREM 2

Now, we are in position to prove our theorem.
Suppose first that b = 0. Then F (xy) = F (x)y for all x,y ∈ R . In view of [3, Lemma
2.3], there is a ∈Q such that F (x) = ax for all x ∈ R . In this case, by the hypothesis,
we have

[axm+n + xnaxm,xr]k = 0
for all x ∈ I and hence for all x ∈ R . In view of [1, Corollary 1.7], we get a ∈ C,
which gives the required result.
Now, we assume that b 6= 0. By [12, Theorem 2.3], d : R → Q is a derivation and
there exists a′ ∈ Q such that F (x) = a′x+bd(x) for all x ∈ R . It is known that d can
be uniquely extended to a derivation of Q [14, Lemma 2]. By the assumption we have

[F (xm)xn + xnF (xm),xr]k = 0 for all x ∈ I . (3.1)

We divide the proof into two cases.
Case 1: d is Q-inner. That is, there exists c′ ∈ Q such that d(x) = [c′,x] for all

x∈R . So F (x) = a′x+bd(x) = a′x+b[c′,x] = ax+bxc for all x∈R , where
a = a′+bc′ and c =−c′. By (3.1), we have

[(axm +bxmc)xn + xn(axm +bxmc),xr]k = 0 for all x ∈ I . (3.2)

Since I , R and Q satisfies the same polynomial identities by [5, Theorem
6.4.4]. Therefore, [(axm + bxmc)xn + xn(axm + bxmc),xr]k = 0 for all x ∈ Q.
If c ∈C and a+ cb ∈C, then g(x) = λx for all x ∈ R , where λ = a+ cb and
d = 0 as c = −c′ ∈ C, proving the theorem. Now we assume that c /∈ C or
a+cb /∈C. Let ϕ(x)= [(axm+bxmc)xn+xn(axm+bxmc),xr]k Clearly, if c∈C
and a+cb /∈C, then ϕ(x) is a nonzero GPI of Q by (3.2). Suppose c /∈C. Then
by (3.2) ϕ(x) is a nonzero GPI of Q as b 6= 0. So we conclude that ϕ(x) is a
nonzero GPI of Q. Let F be the algebraic closure of C if C is infinite and set
F =C for C finite. Clearly, the map r ∈Q 7→ r⊗1 ∈Q⊗C F gives a ring em-
bedding. So we may assume Q is a subring of Q⊗C F. By [13, Proposition],
ϕ(x) is also a nonzero GPI of Q⊗C F. Moreover, in view of [9, Theorem 3.5],
Q⊗C F is a prime ring with F as its extended centroid. Thus, Q = Q⊗C F
is a prime ring satisfies a nonzero GPI ϕ(x) and its extended centroid F is
either an algebraically closed field or a finite field. By Martindale’s The-
orem [5, Theorem 6.1.6], Q is a primitive ring having nonzero socle with F
as its associated division ring. Moreover, Q is a dense subring of End(FV ),
where V is a vector space over F. If dimFV = 1, then Q is commutative and
hence R is commutative, a contradiction. So dimFV ≥ 2. Firstly, we suppose
dimFV = 2. Then Q =End(FV ) ∼= M2(F). Application of Lemma 4 yields
that c ∈ F and a+ bc ∈ F or F ∼= GF(2). In first case, we have F (x) = λx,
where λ = a+bc ∈C in the other case, we have C = F ∼= GF(2) and hence
R = Q∼= M2(GF(2)). This proves the theorem. Next, if dimFV ≥ 3, then by
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Lemma 2 and Lemma 1, we have c ∈ F and a+bc ∈ F . Therefore, −c′ ∈C
and a+ bc ∈ C and hence F (x) = λx for all x ∈ R , where λ = a+ bc ∈ C,
which is the required form of F .

Case 2: d is not Q-inner. From (3.1), we have

[a′xm+n +bd(xm)xn + xna′xm + xnbd(xm),xr]k = 0

for all x,y ∈ I and thus for all x,y ∈ R [14, Theorem 2]. Now, we set

h(Y,X) =
m−1
∑

i=0
X iY Xm−1−i, a polynomial in two non commuting variables X

and Y . Note that d(xm) = h(d(x),x). Then the above expression becomes as
[a′xm+n +bh(d(x),x)xn + xna′xm + xnbh(d(x),x),xr]k = 0 for all x ∈ R .

Applying Kharchenko’s theorem [11], we obtain

[a′xm+n +bh(y,x)xn + xna′xm + xnbh(y,x),xr]k = 0

for all x,y ∈ R and hence for all x,y ∈Q by [5, Theorem 6.4.4]. In particular
choose u /∈C and take y = [u,x] and using the fact that h([u,x],x) = [u,xm] in
the above expression we get In particular for y = 0, we have

[a′xm+n +b[u,xm]xn + xna′xm + xnb[u,xm],xr]k = 0 for all x ∈ Q.

This can be rewritten as

[(axm +bxmc)xn + xn(axm +bxmc),xr]k = 0 for all x ∈ R , (3.3)

where a= a′+bu and c=−u. Since c=−u /∈C, so in view of (3.2) and (3.3),
we obtain the required result from Case 1. Thereby the proof is completed.
�
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