Miskolc Mathematical Notes

AN ENGEL CONDITION WITH b-GENERALIZED DERIVATIONS IN PRIME RINGS

MOHAMMAD SALAHUDDIN KHAN AND ABDUL NADIM KHAN

Received 23 November, 2021

Abstract

Let \mathcal{R} be a prime ring, I be a nonzero ideal of \mathcal{R}, Q be its maximal right ring of quotients and C be its extended centroid. The aim of this paper is to show that if \mathcal{R} admits a nonzero b-generalized derivation \mathcal{F} such that $\left[\mathcal{F}\left(x^{m}\right) x^{n}+x^{n} \mathcal{F}\left(x^{m}\right), x^{r}\right]_{k}=0$ for all $x \in I$, where m, n, r, k are fixed positive integers, then there exists $\lambda \in C$ such that $\mathcal{F}(x)=\lambda x$ unless $\mathcal{R} \cong \mathrm{M}_{2}(\mathrm{GF}(2))$, the 2×2 matrix ring over the Galois field $\mathrm{GF}(2)$ of two elements.

2010 Mathematics Subject Classification: 16N60; 16W25
Keywords: prime ring, b-generalized derivation

1. Introduction

In all that follows, unless specially stated, \mathcal{R} always denotes an associative ring with center $\mathrm{Z}(\mathcal{R})$. A ring \mathcal{R} is called prime if $a \mathcal{R} b=(0)$ (where $a, b \in \mathcal{R}$) implies $a=0$ or $b=0$. We denote by Q maximal right ring of quotients of \mathcal{R} and C is the center of Q which is called the extended centroid of \mathcal{R} see [5, Chapter 2] for more details. As usual the symbol $[x, y]$ will denote the commutator $x y-y x$. Given $x, y \in \mathcal{R}$ set $[x, y]_{1}=x y-y x$ and inductively $[x, y]_{k}=\left[[x, y]_{k-1}, y\right]$ for $k>1$. Note that Engel condition is a polynomial $[x, y]_{k}=\sum_{i=0}^{k}(-1)^{i}\binom{k}{i} y^{i} x y^{k-i}$ in noncommutative indeterminates x, y and $[x+y, z]_{k}=[x, z]_{k}+[y, z]_{k}$.

An additive mapping $d: \mathcal{R} \rightarrow \mathcal{R}$ is said to be a derivation of \mathcal{R} if $d(x y)=d(x) y+$ $x d(y)$ for all $x, y \in \mathcal{R}$. An additive mapping $G: \mathcal{R} \rightarrow \mathcal{R}$ is called a generalized derivation of \mathcal{R} if there exists a derivation d of \mathcal{R} such that $G(x y)=G(x) y+x d(y)$ for all $x, y \in \mathcal{R}$. Obviously, any derivation is a generalized derivation, but the converse is not true in general. A significative example is a map of the form $G(x)=a x+x b$ for some $a, b \in \mathcal{R}$; such generalized derivations are called inner. Over the last few decades, several authors have studied on rings with generalized derivations (viz.; [$1,2,6-8,10,15]$ and references therein).

In a recent paper [12], Koşan and Lee proposed the following new definition. Let $d: \mathcal{R} \rightarrow Q$ be an additive mapping and $b \in Q$. An additive map $\mathcal{F}: \mathcal{R} \rightarrow Q$ is called a
left b-generalized derivation, with associated mapping d, if $\mathcal{F}(x y)=\mathcal{F}(x) y+b x d(y)$, for all $x, y \in \mathcal{R}$. In the same paper, it is proved that, if \mathcal{R} is a prime ring, then d is a derivation of \mathcal{R}. For simplicity of notation, this mapping \mathcal{F} will be called a b generalized derivation with associated pair (b, d). Clearly, any generalized derivation with associated derivation d is a b-generalized derivation with associated pair $(1, d)$. Similarly, the mapping $x \mapsto a x+b[x, c]$, for $a, b, c \in Q$, is a b-generalized derivation with associated pair $(b, a d(c))$, where $a d(c)(x)=[x, c]$ denotes the inner derivation of \mathcal{R} induced by the element c. More generally, the mapping $x \mapsto a x+q x c$, for $a, q, c \in Q$, is a b-generalized derivation with associated pair $(q, a d(c))$. This mapping is called inner b-generalized derivation.

Recently, Alahmadi et al. [1] proved the following result:
Theorem 1 ([1, Theorem 1.1]). Let \mathcal{R} be a noncommutative prime ring with extended centroid C and k, m, n, r be fixed positive integers. If there exists a generalized derivation G of \mathcal{R} such that $\left[G\left(x^{m}\right) x^{n}+x^{n} G\left(x^{m}\right), x^{r}\right]_{k}=0$ for all $x \in \mathcal{R}$, then there exists $\lambda \in C$ such that $G(x)=\lambda x$ for all $x \in \mathcal{R}$.

In this paper, we investigate the above result for b-generalized derivation.
Theorem 2. Let \mathcal{R} be a noncommutative prime ring and I be a nonzero ideal of \mathcal{R}. If \mathcal{R} admits a nonzero b-generalized derivation \mathcal{F} associated with the map d such that $\left[\mathcal{F}\left(x^{m}\right) x^{n}+x^{n} \mathcal{F}\left(x^{m}\right), x^{r}\right]_{k}=0$ for all $x \in I$, where m, n, k, r are fixed positive integers, then there exists $\lambda \in C$ such that $\mathcal{F}(x)=\lambda x$ for all $x \in \mathcal{R}$ unless $\mathcal{R} \cong \mathrm{M}_{2}(\mathrm{GF}(2))$, the 2×2 matrix ring over the Galois field $\mathrm{GF}(2)$ of two elements.

The following example shows that any b-generalized derivation \mathcal{F} may satisfy all conditions of Theorem 2 on the ring \mathcal{R} which is isomorphic to the 2×2 matrix ring over the Galois field $\mathrm{GF}(2)$ of two elements, but \mathcal{F} may not be of the form in Theorem 2.

Example 1. Let $\mathcal{R}=\mathrm{M}_{2}(\mathrm{GF}(2))$ be the 2×2 matrix ring over the Galois field $\mathrm{GF}(2)$ of two elements. The set of matrix units in \mathcal{R} will be denoted by $\left\{e_{i j} \mid 1 \leq\right.$ $i, j \leq 2\}$. Define a mapping $\mathcal{F}: \mathcal{R} \rightarrow \mathcal{R}$ such that $\mathcal{F}(X)=a X+b X c$ for all $X \in$ \mathcal{R}, where $a=e_{11}+e_{21}, b=e_{21}$ and $c=e_{11}+e_{12}$. Clearly, \mathcal{F} is a b-generalized derivation of \mathcal{R}. A simple calculation gives that $\mathcal{F}(X) X+X \mathcal{F}(X)=0$ for $X \in$ $\left\{0, e_{11}, e_{21}, e_{22}, e_{11}+e_{22}, e_{11}+e_{21}, e_{11}+e_{12}, e_{12}+e_{22}, e_{21}+e_{22}\right\}$ and $X^{6} \in \mathrm{Z}(\mathcal{R})$ for the remaining elements of \mathcal{R}. Thus, for any positive integers r and k, it can be easily verified that $\left[\mathcal{F}(X) X+X \mathcal{F}(X), X^{6 r}\right]_{k}=0$ for all $X \in \mathcal{R}$. However, \mathcal{F} is not of the form described in Theorem 2.

Let ρ be an automorphism of \mathcal{R}. It is well known that any automorphism ρ of \mathcal{R} can be uniquely extended to an automorphism of Q. The automorphism ρ of \mathcal{R} is said to be X-inner if there exists a unit $a \in Q$ such that $\rho(x)=a x a^{-1}$ for all $x \in \mathcal{R}$. An additive mapping $d: \mathcal{R} \rightarrow \mathcal{R}$ is called a ρ-derivation of \mathcal{R} if $d(x y)=$ $d(x) y+\rho(x) d(y)$ for all $x, y \in \mathcal{R}$. An additive mapping $\mathcal{F}: \mathcal{R} \rightarrow \mathcal{R}$ is said to be a
generalized ρ-derivation of \mathcal{R} if there exists a ρ-derivation d of \mathcal{R} such that $\mathcal{F}(x y)=$ $\mathcal{F}(x) y+\rho(x) d(y)$ for all $x, y \in \mathcal{R}$. In particular, for X-inner automorphism ρ induced by $a \in Q$, any generalized ρ-derivation \mathcal{F} of \mathcal{R} becomes an a-generalized derivation of \mathcal{R} with associated map $a^{-1} d$. Because of the above observations, we have the following result, which is an application of Theorem 2.

Corollary 1. Let \mathcal{R} be a noncommutative prime ring and I be a nonzero ideal of \mathcal{R}. If \mathcal{R} admits a nonzero ρ-generalized derivation \mathcal{F} associated with an X-inner automorphism ρ of \mathcal{R} such that $\left[\mathcal{F}\left(x^{m}\right) x^{n}+x^{n} \mathcal{F}\left(x^{m}\right), x^{r}\right]_{k}=0$ for all $x \in I$, where m, n, k, r are fixed positive integers, then there exists $\lambda \in C$ such that $\mathcal{F}(x)=\lambda x$ for all $x \in \mathcal{R}$ unless $\mathcal{R} \cong \mathrm{M}_{2}(\mathrm{GF}(2))$, the 2×2 matrix ring over the Galois field $\mathrm{GF}(2)$ of two elements.

2. THE LEMMAS

To prove Theorem 2, we prove the following sequence of lemmas
Lemma 1. Let V be an infinite dimensional vector space over a field F and let \mathcal{R} be a dense subring of $\operatorname{End}\left({ }_{F} V\right)$. Suppose that a, $b, c \in \operatorname{End}\left({ }_{F} V\right)$ such that $\left[\left(a x^{m}+\right.\right.$ $\left.\left.b x^{m} c\right) x^{n}+x^{n}\left(a x^{m}+b x^{m} c\right), x^{r}\right]_{k}=0$ for all $x \in \mathcal{R}$, where m, n, r, k are fixed positive integers. If $b \neq 0$, then $c \in F \cdot I_{V}$ and $a+b c \in F \cdot I_{V}$, where I_{V} denotes the identity transformation of V.

Proof. We have

$$
\begin{equation*}
\left[\left(a x^{m}+b x^{m} c\right) x^{n}+x^{n}\left(a x^{m}+b x^{m} c\right), x^{r}\right]_{k}=0 \text { for all } x \in \mathcal{R} . \tag{2.1}
\end{equation*}
$$

Claim 1: $c \in F \cdot I_{V}$. Assume on the contrary that $c \notin F \cdot I_{V}$. By [4, Lemma 7.1], there is $v \in V$ such that v and $c v$ are linearly independent over F. We divide the proof into two cases.

Case 1: $b V \neq F \cdot v$. Since $b \neq 0$ and $\operatorname{dim}_{F} V=\infty$, there exists $u \in V$ such that $u, v, c v$ are linearly independent over F and $b u, v$ are linearly independent over F. Write $b u=\alpha c v+\beta v+\gamma u+\delta w$, where $\alpha, \beta, \gamma, \delta \in F$ and $w \notin F \cdot c v+F \cdot v+F \cdot u$. Clearly, α, γ, δ are not all zero. Choose $v_{-1}, v_{0}, v_{1}, \ldots, v_{m+n+r k+1} \in V$ such that $v_{-1}, v_{0}, v_{1}, \ldots, v_{m+n+r k+1}$ are linearly independent over F and $v_{-1}=v, v_{0}=c v, v_{m}=u, v_{m+1}=w$. Then $v=v_{-1}, c v_{-1}=v_{0}$ and $b v_{m}=\alpha v_{0}+\beta v_{-1}+\gamma v_{m}+\delta v_{m+1}$. By the density of \mathcal{R}, there exist $x, r \in \mathcal{R}$ such that $x v_{-1}=0$ and $x v_{i}=v_{i+1}$ for all $i=0,1,2, \ldots, m+n+r k$. From (2.1), we have

$$
\begin{aligned}
0 & =\left[\left(a x^{m}+b x^{m} c\right) x^{n}+x^{n}\left(a x^{m}+b x^{m} c\right), x^{r}\right]_{k} v \\
& =\sum_{i=0}^{k}{ }^{k} C_{i}(-1)^{i} x^{r i}\left\{\left(a x^{m}+b x^{m} c\right) x^{n}+x^{n}\left(a x^{m}+b x^{m} c\right)\right\} x^{r k-r i} v_{-1} \\
& =(-1)^{k} x^{k r+n} b x^{m} c v_{-1}=(-1)^{k} x^{k r+n} b x^{m} c v
\end{aligned}
$$

$$
\begin{aligned}
& =(-1)^{k} x^{k r+n} b x^{m} v_{0}=(-1)^{k} x^{k r+n} b v_{m} \\
& =(-1)^{k} x^{k r+n}\left(\alpha v_{0}+\beta v_{-1}+\gamma v_{m}+\delta v_{m+1}\right) \\
& =(-1)^{k}\left(\alpha v_{k r+n}+\gamma v_{m+n+k r}+\delta v_{m+n+k r+1}\right),
\end{aligned}
$$

which gives a contradiction. Thus, $c \in F \cdot I_{V}$.
Case 2: $b V=F \cdot v$. Choose $w \in V$ such that $w \notin F \cdot v+F \cdot c v$. Then $w, v, c v$ are linearly independent over F. Suppose first that w and $c w$ are linearly independent over F. Clearly, $b V=F \cdot v \neq F \cdot w$. By the same proof of Case 1 , there exists $x \in \mathcal{R}$ such that $\left[\left(a x^{m}+b x^{m} c\right) x^{n}+x^{n}\left(a x^{m}+\right.\right.$ $\left.\left.b x^{m} c\right), x^{r}\right]_{k} w \neq 0$, a contradiction. Suppose next that w and $c w$ are linearly dependent over F. Write $c w=\alpha w$, for some $\alpha \in F$. Then $c(v+$ $w)=c v+c w=c v+\alpha w$. Hence, $c(v+w)$ and $v+w$ are linearly independent over F as $w, v, c v$ are linearly independent over F. Clearly, $b V=F \cdot v \neq F \cdot(w+v)$. By the same proof of Case 1, there exists $x \in \mathcal{R}$ such that $\left[\left(a x^{m}+b x^{m} c\right) x^{n}+x^{n}\left(a x^{m}+b x^{m} c\right), x^{r}\right]_{k}(w+v) \neq 0$, a contradiction. This proves Claim 1.
Claim 2: $a+b c \in F \cdot I_{V}$. By Claim 1, (2.1) reduces to

$$
\begin{equation*}
\left[(a+b c) x^{m+n}+x^{n}(a+b c) x^{m}, x^{r}\right]_{k}=0 \text { for all } x \in \mathcal{R} \tag{2.2}
\end{equation*}
$$

Suppose on contrary that $a+b c \notin F \cdot I_{V}$. Then by [4, Lemma 7.1], $v,(a+b c) v$ are linearly independent over F for some $v \in V$. Choose $v_{1}, \ldots, v_{m+2} \in V$ such that v_{1}, \ldots, v_{m+2} are linearly independent over F and $v_{m+1}=v, v_{m+2}=(a+$ $b c) v$. By the density of \mathcal{R} there exists $x \in \mathcal{R}$ such that $x v_{i}=v_{i+1}$ for all $i=1,2, \ldots, m, x v_{m+1}=0, x v_{m+2}=v_{m+2}$. Therefore from (2.2), we have

$$
\begin{aligned}
0 & =\left[(a+b c) x^{m+n}+x^{n}(a+b c) x^{m}, x^{r}\right]_{k} v_{1} \\
& =\sum_{i=0}^{k}{ }^{k} C_{i}(-1)^{i} x^{r i}\left\{(a+b c) x^{m+n}+x^{n}(a+b c) x^{m}\right\} x^{r(k-i)} v_{1} \\
& =(-1)^{k} x^{r k+n}(a+b c) x^{m} v_{1}=(-1)^{k} x^{r k+n}(a+b c) v_{m+1} \\
& =(-1)^{k} x^{r k+n}(a+b c) v=(-1)^{k} x^{r k+n} v_{m+2}=(-1)^{k} v_{m+2} \\
& =(-1)^{k}(a+b c) v,
\end{aligned}
$$

which gives a contradiction, and hence $a+b c \in F \cdot I_{V}$.

Lemma 2. Let $\mathcal{R}=\mathrm{M}_{s}(F)$ be the $s \times s$ matrix ring over a field F, where $s \geq 3$ is an integer. Suppose $a, b, c \in \mathcal{R}$ such that $\left[\left(a x^{m}+b x^{m} c\right) x^{n}+x^{n}\left(a x^{m}+b x^{m} c\right), x^{r}\right]_{k}=0$ for all $x \in \mathcal{R}$, where m, n, r, k are fixed positive integers. If $b \neq 0$, then $c \in F \cdot I_{s}$ and $a+b c \in F \cdot I_{s}$, where I_{s} denotes the identity matrix of \mathcal{R}.

Proof. By the assumption we have

$$
\begin{equation*}
\left[\left(a x^{m}+b x^{m} c\right) x^{n}+x^{n}\left(a x^{m}+b x^{m} c\right), x^{r}\right]_{k}=0 \text { for all } x \in \mathcal{R} . \tag{2.3}
\end{equation*}
$$

Let ψ be an F-linear automorphism of \mathcal{R}. Then

$$
\begin{equation*}
\left[\left(\psi(a) y^{m}+\psi(b) y^{m} \psi(c)\right) y^{n}+y^{n}\left(\psi(a) y^{m}+\psi(b) y^{m} \psi(c)\right), y^{r}\right]_{k}=0 \text { for all } y \in \mathcal{R} \tag{2.4}
\end{equation*}
$$

Claim 1: $c \in F \cdot I_{s}$. Write $c=\Sigma_{i, j=1}^{s} c_{i j} e_{i j}$ and $b=\Sigma_{i, j=1}^{s} b_{i j} e_{i j}$, where $b_{i j}, c_{i j} \in F$. It can be easily conclude that $\left[\left(a x^{m}+b x^{m} c\right) x^{n}+x^{n}\left(a x^{m}+b x^{m} c\right), x^{r}\right]_{2 k+1}=$ 0 for all $x \in \mathcal{R}$. So we may assume that k is an odd integer. Also, for any idempotent e of $\mathcal{R},[x, e]_{3}=[x, e]$ for all $x \in \mathcal{R}$ Therefore $[x, e]_{2 k+1}=[x, e]$ for all $x \in \mathcal{R}$. Putting $x=e_{i i}$, where i is an integer with $1 \leq i \leq s$ in (2.3) and using the fact that $[x, e]_{2 k+1}=[x, e]$, we get

$$
\begin{aligned}
0 & =\left[\left(a e_{i i}^{m}+b e_{i i}^{m} c\right) e_{i i}^{n}+e_{i i}^{n}\left(a e_{i i}^{m}+b e_{i i}^{m} c\right), e_{i i}^{r}\right]_{k} \\
& =\left[\left(a e_{i i}+b e_{i i} c\right) e_{i i}+e_{i i}\left(a e_{i i}+b e_{i i} c\right), e_{i i}\right]_{k} \\
& =\left[a e_{i i}+b e_{i i} c e_{i i}+e_{i i} a e_{i i}+e_{i i} b e_{i i} c, e_{i i}\right] \\
& =a e_{i i}+b e_{i i} c e_{i i}-e_{i i} a e_{i i}-e_{i i} b e_{i i} c .
\end{aligned}
$$

Now, multiplying by $e_{j j}$ from right, we get

$$
\begin{equation*}
e_{i i} b e_{i i} c e_{j j}=0 . \tag{2.5}
\end{equation*}
$$

This implies that

$$
\begin{equation*}
b_{i i} c_{i j}=0 \text { for all } j \neq i \text { and } 1 \leq i, j \leq s \tag{2.6}
\end{equation*}
$$

Again, putting $x=e_{i i}+e_{j i}$, where i, j are distinct integers with $1 \leq i, j \leq s$ in (2.3), we obtain

$$
\begin{aligned}
0= & {\left[\left(a\left(e_{i i}+e_{j i}\right)^{m}+b\left(e_{i i}+e_{j i}\right)^{m} c\right)\left(e_{i i}+e_{j i}\right)^{n}\right.} \\
& \left.+\left(e_{i i}+e_{j i}\right)^{n}\left(a\left(e_{i i}+e_{j i}\right)^{m}+b\left(e_{i i}+e_{j i}\right)^{m} c\right),\left(e_{i i}+e_{j i}\right)^{r}\right]_{k} \\
= & {\left[\left(a\left(e_{i i}+e_{j i}\right)+b\left(e_{i i}+e_{j i}\right) c\right)\left(e_{i i}+e_{j i}\right)\right.} \\
& \left.+\left(e_{i i}+e_{j i}\right)\left(a\left(e_{i i}+e_{j i}\right)+b\left(e_{i i}+e_{j i}\right) c\right),\left(e_{i i}+e_{j i}\right)\right] \\
= & a\left(e_{i i}+e_{j i}\right)+b\left(e_{i i}+e_{j i}\right) c\left(e_{i i}+e_{j i}\right) \\
& -\left(e_{i i}+e_{j i}\right) a\left(e_{i i}+e_{j i}\right)-\left(e_{i i}+e_{j i}\right) b\left(e_{i i}+e_{j i}\right) c \\
= & a\left(e_{i i}+e_{j i}\right)+b\left(e_{i i}+e_{j i}\right) c\left(e_{i i}+e_{j i}\right) \\
& -\left(e_{i i}+e_{j i}\right) a\left(e_{i i}+e_{j i}\right)-\left(e_{i i}+e_{j i}\right) b\left(e_{i i}+e_{j i}\right) c .
\end{aligned}
$$

Multiplying by $e_{l l}$ from right, we get

$$
\left(e_{i i}+e_{j i}\right) b\left(e_{i i}+e_{j i}\right) c e_{l l}=0
$$

Again multiply by $e_{i i}$ from left and using (2.5), we conclude that

$$
0=e_{i i} b e_{j i} c e_{l l}=b_{i j} c_{i l} e_{j l} \text { for all } j \neq i
$$

This implies that

$$
\begin{equation*}
b_{i j} c_{i l}=0 \text { for all } j \neq i \tag{2.7}
\end{equation*}
$$

Thus, from (2.6) and (2.7), we conclude that

$$
\begin{equation*}
\text { if } c_{i l} \neq 0 \text { for some } i \neq l, \text { then } b_{i j}=0 \text { for all } j=1,2, \ldots s \tag{2.8}
\end{equation*}
$$

First we need to show that c is a diagonal matrix. Suppose c is not a diagonal matrix and assume that $c_{21} \neq 0$. Then by [16, Lemma 2.1], there exists an inner automorphism ψ of \mathcal{R} induced by q such that $\psi(c)=q c q^{-1}=\Sigma_{i, j=1}^{s} c_{i j}^{\psi} e_{i j}$, where $c_{i j}^{\psi} \in F$ and

$$
\begin{equation*}
c_{21}^{\psi} \neq 0, c_{31}^{\psi} \neq 0, \ldots, c_{s 1}^{\psi} \neq 0, c_{1 s}^{\psi} \neq 0 \tag{2.9}
\end{equation*}
$$

Write $\psi(b)=\Sigma_{i, j=1}^{s} b_{i j}^{\psi} e_{i j}$, where $b_{i j}^{\psi} \in F$. Combining (2.4), (2.8) and (2.9), we find that $b_{i j}^{\psi}=0$ for all i, j with $1 \leq i, j \leq s$. Therefore $\psi(b)=0$ and hence $b=0$, which is a contradiction. Thus c is a diagonal matrix that is, $c=\Sigma_{i=1}^{s} c_{i i} e_{i i}$. Let j be an integer with $2 \leq j \leq s$ and let ϕ be an F-linear automorphism of \mathcal{R} defined by $\phi(x)=\left(I_{s}+e_{1 j}\right) x\left(I_{s}-e_{1 j}\right)$ for all $x \in \mathcal{R}$. Then $\phi(c)=\left(c_{j j}-c_{11}\right) e_{1 j}+\sum_{i=1}^{s} c_{i i} e_{i i}$. Since $b \neq 0$, so $\phi(b) \neq 0$. In view of (2.4) and using the same arguments as we have used above, we find that $\phi(c)$ is a diagonal matrix. Thus $c_{j j}-c_{11}=0$ for all $2 \leq j \leq s$. This implies that $c \in F \cdot I_{s}$.
Claim 2: $a+b c \in F \cdot I_{s}$. From (2.3) and Claim 1, we have $\left[(a+b c) x^{m+n}+\right.$ $\left.x^{n}(a+b c) x^{m}, x^{r}\right]_{k}=0$ for all $x \in \mathcal{R}$. This implies that

$$
\begin{aligned}
0 & =\left[\left(x^{m+n}\right)^{t}(a+b c)^{t}+\left(x^{m}\right)^{t}(a+b c)^{t}\left(x^{n}\right)^{t},\left(x^{r}\right)^{t}\right]_{k} \\
& =\left[\left(x^{t}\right)^{m+n}(a+b c)^{t}+\left(x^{t}\right)^{m}(a+b c)^{t}\left(x^{t}\right)^{n},\left(x^{t}\right)^{r}\right]_{k},
\end{aligned}
$$

where x^{t} denotes the usual matrix transpose of x in \mathcal{R}. Substituting x^{t} for x and using the fact that $\left(x^{t}\right)^{t}=x$, we get $\left[b^{\prime} x^{m} c^{\prime} x^{n}+x^{n} b^{\prime} x^{m} c^{\prime}, x^{r}\right]_{k}=0$ for all $x \in \mathcal{R}$, where $c^{\prime}=(a+b c)^{t}$ and $b^{\prime}=I_{s}$, the identity matrix of \mathcal{R}. Again from (2.3) and by the same arguments as above we have used, we get $(a+b c)^{t} \in$ $F \cdot I_{s}$. This implies that $a+b c \in F \cdot I_{s}$.

Lemma 3. Let $\mathcal{R}=\mathrm{M}_{2}(F)$ be the 2×2 matrix ring over a field F and $a, b, c \in \mathcal{R}$. Suppose that $b \neq 0$ and $\left[\left(a x^{m}+b x^{m} c\right) x^{n}+x^{n}\left(a x^{m}+b x^{m} c\right), x^{r}\right]_{k}=0$ for all $x \in \mathcal{R}$, where m, n, r, k are fixed positive integers. If c is not a diagonal matrix, then b is not an invertible matrix and $F=\{0,1\}$.

Proof. We have

$$
\begin{equation*}
\left[\left(a x^{m}+b x^{m} c\right) x^{n}+x^{n}\left(a x^{m}+b x^{m} c\right), x^{r}\right]_{k}=0 \tag{2.10}
\end{equation*}
$$

for all $x \in \mathcal{R}$. Let ϕ be a F-linear automorphism of \mathcal{R}. Then from (2.10), we have

$$
\left[\left(\psi(a) y^{m}+\psi(b) y^{m} \psi(c)\right) y^{n}+y^{n}\left(\psi(a) y^{m}+\psi(b) y^{m} \psi(c)\right), y^{r}\right]_{k}=0
$$

for all $y \in \mathcal{R}$. It follows from (2.6) that

$$
\begin{equation*}
\text { if } c_{i l} \neq 0 \text { for some } i \neq l \text {, then } b_{i j}=0 \text { for all } i, j \in\{1,2\} \text {. } \tag{2.11}
\end{equation*}
$$

Let $c, b \in \mathrm{M}_{2}(F)$. Then $c=\Sigma_{i, j=1}^{s} c_{i j} e_{i j}$ and $b=\Sigma_{i, j=1}^{s} b_{i j} e_{i j}$, where $b_{i j}, c_{i j} \in F$ and $i, j \in\{1,2\}$. By hypothesis, c is not a diagonal matrix, we may assume $c_{12} \neq 0$. Thus, from (2.11), we have $b_{11}=b_{12}=0$. If $c_{21} \neq 0$, then $b_{21}=b_{22}=0$. This implies $b=0$, a contradiction. Hence, we have $c_{21}=0$. So

$$
\begin{equation*}
c_{12} \neq 0, c_{21}=0, b_{11}=b_{12}=0 \tag{2.12}
\end{equation*}
$$

It is clear from above that b is not an invertible matrix. Let us define, for $\alpha \in F$, ϕ_{α} be an F-linear automorphism of \mathcal{R} such that $\phi_{\alpha}(x)=\left(I_{2}+\alpha e_{21}\right) x\left(I_{2}-\alpha e_{21}\right)$ for all $x \in \mathcal{R}$. If $\phi_{\alpha}(b)=\Sigma_{i, j=1}^{s} b_{i j}^{\alpha} e_{i j}$ and $\phi_{\alpha}(c)=\sum_{i, j=1}^{s} c_{i j}^{\alpha} e_{i j}$, where $b_{i j}^{\alpha}, c_{i j}^{\alpha} \in F$, then it follows from above that $b_{21}^{\alpha}=b_{21}-\alpha b_{22}$ and $c_{21}^{\alpha}=\alpha\left(c_{11}-c_{22}\right)-\alpha^{2} c_{12}$. If $c_{21}^{\alpha} \neq 0$, then we see from (2.11) that $b_{21}^{\alpha}=b_{21}-\alpha b_{22}=0$ and $b_{22}^{\alpha}=b_{22}=0$. Thus, $b_{21}=b_{22}=0$. Now, from (2.12), we have $b=0$. This leads to a contradiction. Therefore,

$$
\begin{equation*}
c_{21}^{\alpha}=\alpha\left(c_{11}-c_{22}\right)-\alpha^{2} c_{12}=0 \tag{2.13}
\end{equation*}
$$

for all $\alpha \in F$. Suppose, if F has more than two elements then from (2.13), we can conclude that $c_{12}=0$, which gives a contradiction $b=0$. Therefore, F can not have more than two elements i.e., $F=\{0,1\}$. This completes the proof of Lemma.

Lemma 4. Let $\mathcal{R}=\mathrm{M}_{2}(F)$ be the 2×2 matrix ring over a field F and $a, b, c \in \mathcal{R}$ such that $b \neq 0$ and $\left[\left(a x^{m}+b x^{m} c\right) x^{n}+x^{n}\left(a x^{m}+b x^{m} c\right), x^{r}\right]_{k}=0$ for all $x \in \mathcal{R}$, where m, n, r, k are fixed positive integers. If $b \neq 0$, then $c \in F . I_{2}$ and $a+c b \in F . I_{2}$, unless $F \cong \mathrm{GF}(2)$, the Galois field of two elements.

Proof. Assume that $F \not \approx \mathrm{GF}(2)$. In view of Lemma 3, we have c is a diagonal matrix, and hence $c=\Sigma_{i=1}^{2} c_{i i} e_{i i}$, where $c_{i i} \in F$. Let ϕ be a F-linear automorphism of \mathcal{R}, defined by $\phi(x)=\left(I_{2}+e_{12}\right) x\left(I_{2}-e_{12}\right)$ for all $x \in \mathcal{R}$. Hence, $\phi(c)=\sum_{i=1}^{2} c_{i i} e_{i i}+$ $\left(c_{22}-c_{11}\right) e_{12}$. Obviously, $\phi(b) \neq 0$ and $\left[\left(\phi(a) x^{m}+\phi(b) x^{m} \phi(c)\right) x^{n}+x^{n}\left(\phi(a) x^{m}+\right.\right.$ $\left.\left.\phi(b) x^{m} \phi(c)\right), x^{r}\right]_{k}=0$ for all $x \in \mathcal{R}$. It follows from Lemma 3 that $\phi(c)$ is a diagonal matrix. This gives $c_{22}-c_{11}=0$, and hence $c=c_{11} I_{2} \in F . I_{2}$. Now, by the assumption, we have $\left[(a+b c) x^{m+n}+x^{n}(a+b c) x^{m}, x^{r}\right]_{k}=0$ for all $x \in \mathcal{R}$. This implies that

$$
\begin{aligned}
0 & =\left[\left(x^{m+n}\right)^{t}(a+b c)^{t}+\left(x^{m}\right)^{t}(a+b c)^{t}\left(x^{n}\right)^{t},\left(x^{r}\right)^{t}\right]_{k} \\
& =\left[\left(x^{t}\right)^{m+n}(a+b c)^{t}+\left(x^{t}\right)^{m}(a+b c)^{t}\left(x^{t}\right)^{n},\left(x^{t}\right)^{r}\right]_{k},
\end{aligned}
$$

where x^{t} denotes the usual matrix transpose of x in \mathcal{R}. Substituting x^{t} for x and using the fact that $\left(x^{t}\right)^{t}=x$, we get $\left[b^{\prime} x^{m} c^{\prime} x^{n}+x^{n} b^{\prime} x^{m} c^{\prime}, x^{r}\right]_{k}=0$ for all $x \in \mathcal{R}$, where $c^{\prime}=$ $(a+b c)^{t}$ and $b^{\prime}=I_{2}$, the identity matrix of \mathcal{R}. Again by using the same arguments as we have used in the above, we get $c^{\prime}=(a+b c)^{t} \in F \cdot I_{2}$. This implies that $a+b c \in$ $F \cdot I_{2}$.

3. Proof of Theorem 2

Now, we are in position to prove our theorem.
Suppose first that $b=0$. Then $\mathcal{F}(x y)=\mathcal{F}(x) y$ for all $x, y \in \mathcal{R}$. In view of [3, Lemma 2.3], there is $a \in Q$ such that $\mathcal{F}(x)=a x$ for all $x \in \mathcal{R}$. In this case, by the hypothesis, we have

$$
\left[a x^{m+n}+x^{n} a x^{m}, x^{r}\right]_{k}=0
$$

for all $x \in I$ and hence for all $x \in \mathcal{R}$. In view of [1, Corollary 1.7], we get $a \in C$, which gives the required result.
Now, we assume that $b \neq 0$. By [12, Theorem 2.3], $d: \mathcal{R} \rightarrow Q$ is a derivation and there exists $a^{\prime} \in Q$ such that $\mathcal{F}(x)=a^{\prime} x+b d(x)$ for all $x \in \mathcal{R}$. It is known that d can be uniquely extended to a derivation of Q [14, Lemma 2]. By the assumption we have

$$
\begin{equation*}
\left[\mathcal{F}\left(x^{m}\right) x^{n}+x^{n} \mathcal{F}\left(x^{m}\right), x^{r}\right]_{k}=0 \text { for all } x \in I \tag{3.1}
\end{equation*}
$$

We divide the proof into two cases.
Case 1: d is Q-inner. That is, there exists $c^{\prime} \in Q$ such that $d(x)=\left[c^{\prime}, x\right]$ for all $x \in \mathcal{R}$. So $\mathcal{F}(x)=a^{\prime} x+b d(x)=a^{\prime} x+b\left[c^{\prime}, x\right]=a x+b x c$ for all $x \in \mathcal{R}$, where $a=a^{\prime}+b c^{\prime}$ and $c=-c^{\prime}$. By (3.1), we have

$$
\begin{equation*}
\left[\left(a x^{m}+b x^{m} c\right) x^{n}+x^{n}\left(a x^{m}+b x^{m} c\right), x^{r}\right]_{k}=0 \text { for all } x \in I \tag{3.2}
\end{equation*}
$$

Since I, \mathcal{R} and Q satisfies the same polynomial identities by [5, Theorem 6.4.4]. Therefore, $\left[\left(a x^{m}+b x^{m} c\right) x^{n}+x^{n}\left(a x^{m}+b x^{m} c\right), x^{r}\right]_{k}=0$ for all $x \in Q$. If $c \in C$ and $a+c b \in C$, then $g(x)=\lambda x$ for all $x \in \mathcal{R}$, where $\lambda=a+c b$ and $d=0$ as $c=-c^{\prime} \in C$, proving the theorem. Now we assume that $c \notin C$ or $a+c b \notin C$. Let $\varphi(x)=\left[\left(a x^{m}+b x^{m} c\right) x^{n}+x^{n}\left(a x^{m}+b x^{m} c\right), x^{r}\right]_{k}$ Clearly, if $c \in C$ and $a+c b \notin C$, then $\varphi(x)$ is a nonzero GPI of Q by (3.2). Suppose $c \notin C$. Then by (3.2) $\varphi(x)$ is a nonzero GPI of Q as $b \neq 0$. So we conclude that $\varphi(x)$ is a nonzero GPI of Q. Let F be the algebraic closure of C if C is infinite and set $F=C$ for C finite. Clearly, the map $r \in Q \mapsto r \otimes 1 \in Q \otimes_{C} F$ gives a ring embedding. So we may assume Q is a subring of $Q \otimes_{C} F$. By [13, Proposition], $\varphi(x)$ is also a nonzero GPI of $Q \otimes_{C} F$. Moreover, in view of [9, Theorem 3.5], $Q \otimes_{C} F$ is a prime ring with F as its extended centroid. Thus, $\bar{Q}=Q \otimes_{C} F$ is a prime ring satisfies a nonzero GPI $\varphi(x)$ and its extended centroid F is either an algebraically closed field or a finite field. By Martindale's Theorem [5, Theorem 6.1.6], \bar{Q} is a primitive ring having nonzero socle with F as its associated division ring. Moreover, \bar{Q} is a dense subring of $\operatorname{End}\left({ }_{F} V\right)$, where V is a vector space over F. If $\operatorname{dim}_{F} V=1$, then \bar{Q} is commutative and hence \mathcal{R} is commutative, a contradiction. $\operatorname{So~}_{\operatorname{dim}_{F} V \geq 2 \text {. Firstly, we suppose }}$ $\operatorname{dim}_{F} V=2$. Then $\bar{Q}=\operatorname{End}\left({ }_{F} V\right) \cong \mathrm{M}_{2}(F)$. Application of Lemma 4 yields that $c \in F$ and $a+b c \in F$ or $F \cong \mathrm{GF}(2)$. In first case, we have $\mathcal{F}(x)=\lambda x$, where $\lambda=a+b c \in C$ in the other case, we have $C=F \cong \mathrm{GF}(2)$ and hence $\mathcal{R}=Q \cong \mathrm{M}_{2}(\mathrm{GF}(2))$. This proves the theorem. Next, if $\operatorname{dim}_{F} V \geq 3$, then by

Lemma 2 and Lemma 1, we have $c \in F$ and $a+b c \in F$. Therefore, $-c^{\prime} \in C$ and $a+b c \in C$ and hence $\mathcal{F}(x)=\lambda x$ for all $x \in \mathcal{R}$, where $\lambda=a+b c \in C$, which is the required form of \mathcal{F}.

Case 2: d is not Q-inner. From (3.1), we have

$$
\left[a^{\prime} x^{m+n}+b d\left(x^{m}\right) x^{n}+x^{n} a^{\prime} x^{m}+x^{n} b d\left(x^{m}\right), x^{r}\right]_{k}=0
$$

for all $x, y \in I$ and thus for all $x, y \in \mathcal{R}[14$, Theorem 2]. Now, we set $h(Y, X)=\sum_{i=0}^{m-1} X^{i} Y X^{m-1-i}$, a polynomial in two non commuting variables X and Y. Note that $d\left(x^{m}\right)=h(d(x), x)$. Then the above expression becomes as $\left[a^{\prime} x^{m+n}+b h(d(x), x) x^{n}+x^{n} a^{\prime} x^{m}+x^{n} b h(d(x), x), x^{r}\right]_{k}=0$ for all $x \in \mathcal{R}$.

Applying Kharchenko's theorem [11], we obtain

$$
\left[a^{\prime} x^{m+n}+b h(y, x) x^{n}+x^{n} a^{\prime} x^{m}+x^{n} b h(y, x), x^{r}\right]_{k}=0
$$

for all $x, y \in \mathcal{R}$ and hence for all $x, y \in Q$ by [5, Theorem 6.4.4]. In particular choose $u \notin C$ and take $y=[u, x]$ and using the fact that $h([u, x], x)=\left[u, x^{m}\right]$ in the above expression we get In particular for $y=0$, we have

$$
\left[a^{\prime} x^{m+n}+b\left[u, x^{m}\right] x^{n}+x^{n} a^{\prime} x^{m}+x^{n} b\left[u, x^{m}\right], x^{r}\right]_{k}=0 \text { for all } x \in Q .
$$

This can be rewritten as

$$
\begin{equation*}
\left[\left(a x^{m}+b x^{m} c\right) x^{n}+x^{n}\left(a x^{m}+b x^{m} c\right), x^{r}\right]_{k}=0 \text { for all } x \in \mathcal{R} \tag{3.3}
\end{equation*}
$$

where $a=a^{\prime}+b u$ and $c=-u$. Since $c=-u \notin C$, so in view of (3.2) and (3.3), we obtain the required result from Case 1 . Thereby the proof is completed.

ACKNOWLEDGEMENT

The authors are deeply indebted to the learned referee(s) for their careful reading of the manuscript and constructive comments.

References

[1] A. Alahmadi, S. Ali, A. N. Khan, and M. S. Khan, "A characterization of generalized derivations on prime rings," Comm. Algebra, vol. 44, pp. 3201-3210, 2016, doi: 10.1080/00927872.2015.1065861.
[2] A. Albaş, N. Argaç, and V. D. Filippis, "Generalized derivations with Engel conditions on onesided ideals," Comm. Algebra, vol. 36, pp. 2063-2071, 2008, doi: 10.1080/00927870801949328.
[3] K. I. Beidar, "On functional identities and commuting additive mappings," Comm. Algebra, vol. 26, pp. 1819-1850, 1998, doi: 10.1080/00927879808826241.
[4] K. I. Beidar and M. Brešar, "Extended jacobson density theorem for rings with derivations and automorphisms," Israel J. Math., vol. 122, pp. 317-346, 2001, doi: 10.1007/BF02809906.
[5] K. I. Beidar, W. S. Martindale III, and A. V. Mikhalev, Rings with generalized identities. Basel: Marcel Dekker, New York Basel Hong Kong, 1996.
[6] M. Brešar, "On the distance of the composition of two derivations to the generalized derivations," Glasgow Math. J., vol. 33, pp. 89-93, 1991, doi: 10.1017/S0017089500008077.
[7] C. Demir and N. Argaç, "A result on generalized derivations with Engel conditions on one-sided ideals," J. Korean Math. Soc., vol. 47, pp. 483-494, 2010, doi: 10.4134/JKMS.2010.47.3.483.
[8] B. Dhara and V. D. Filippis, "Engel conditions of generalized derivations on left ideals and Lie ideals in prime rings," Comm. Algebra, vol. 48, pp. 154-167, 2020, doi: 10.1080/00927872.2019.1635608.
[9] T. S. Erickson, W. S. Martindale III, and J. M. Osborn, "Prime nonassociative algebras," Pacific J. Math., vol. 60, pp. 49-63, 1975, doi: 10.2140/pjm.1975.60.49.
[10] B. Hvala, "Generalized derivations in rings," Comm. Algebra, vol. 26, pp. 1147-1166, 1998, doi: 10.1080/00927879808826190.
[11] V. K. Kharchenko, "Differential identities of semiprime rings," Algebra and Logic, vol. 18, pp. 86-119, 1979, doi: 10.1007/BF01669313.
[12] M. T. Koşan and T.-K. Lee, " b-generalized derivations of semiprime rings having nilpotent values," J. Aust. Math. Soc., vol. 96, pp. 326-337, 2014, doi: 10.1017/S1446788713000670.
[13] P.-H. Lee and T.-L. Wong, "Derivations cocentralizing Lie ideals," Bull. Inst. Math. Acad. Sinica, vol. 23, pp. 1-5, 1995.
[14] T.-K. Lee, "Semiprime rings with differential identities," Bull. Inst. Math. Acad. Sinica, vol. 20, pp. 27-38, 1992.
[15] C.-K. Liu, "Strong commutativity preserving generalized derivations on right ideals," Monatsh. Math., vol. 166, pp. 453-465, 2012, doi: 10.1007/s00605-010-0281-1.
[16] C.-K. Liu, "An Engel condition with b-generalized derivations," Linear Multilinear Algebra, vol. 65, pp. 300-312, 2017, doi: 10.1080/03081087.2016.1183560.

Authors' addresses

Mohammad Salahuddin Khan

Department of Applied Mathematics, Z. H. College of Engineering and Technology, Aligarh Muslim University, Aligarh-202002, India

E-mail address: salahuddinkhan50@gmail.com

Abdul Nadim Khan

(Corresponding author) King Abdulaziz University, College of Science and Arts- Rabigh, Department of Mathematics, Jeddah, Saudi Arabia

E-mail address: abdulnadimkhan@gmail.com

