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Abstract. In this paper, our main focus is to establish complete monotonicity properties, convex-
ity properties and some interesting inequalities for the Barnes Mittag-Leffler function. Further-
more, monotonicity properties of ratios of Barnes Mittag-Leffler functions are derived. Moreover,
Turán type inequalities and several new inequalities are obtained for this function as application.
Results obtained in this work are new and their importance is illustrated by several attractive
consequences and corollaries.
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1. INTRODUCTION

Mittag-Leffler function is one of the important special functions, which plays vital
role in mathematical physics, fractional calculus, approximation theory and various
fields of science and engineering. It appears in the differential equations of fractional
order and study of complex system. Mittag-Leffler function was introduced by Gosta
Mittag-Leffler in 1903 [15], defined as

Eκ(z) =
∞

∑
n=0

zn

Γ(κn+1)
, z ∈ C, κ≥ 0, (1.1)

where Γ is the well-known Euler’s gamma function. From (1.1), it can be observed
that Eκ(z) interpolates between exp(z) and 1/(1− z) for 0 < κ < 1. In 1905, Wiman
[24] studied a generalization of Eκ(z), defined as

Eκ,ν(z) =
∞

∑
n=0

zn

Γ(κn+ν)
, κ,ν ∈ C, ℜ(κ)> 0,ℜ(ν)> 0. (1.2)

The generalized Mittag-Leffler function Eκ,ν(z) is also known as Wiman’s function.
There are several generalizations of Mittag-Leffler function available in the literature.
One of the most important generalizations of Mittag-Leffler function is the Barnes
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Mittag-Leffler function E(a)
κ,ν(s;z), which is defined [6] as

E(a)
κ,ν(s;z) :=

∞

∑
n=0

zn

Γ(κn+ν)(n+a)s , a,ν ∈ C\Z−0 ,ℜ(κ)> 0,s,z ∈ C. (1.3)

It can be noted that E(a)
κ,ν(0;z) = Eκ,ν(z), Eκ,1(z) = Eκ(z) and E1(z) = exp(z). For

further information on Mittag-Leffler function, we refer to [7] and references cited
therein.

In terms of the extended Hurwitz-Lerch zeta function Φ
ρ,σ,κ
λ,µ,ν (z,s,a), defined by

[19, p. 503, Eq. (6.2)]

Φ
(λ j,ρ j;p)
(µ j,σ j;q)

(z,s,a) = Φ
(ρ1,...,ρp;σ1,...,σq)

λ1,...,λp;µ1,...,µq
(z,s,a)

=
∏

q
j=1 Γ(µ j)

∏
p
j=1 Γ(λ j)

∞

∑
k=0

∏
p
j=1 Γ(λ j + kρ j)

∏
q
j=1 Γ(µ j + kσ j)

zk

k!(k+a)s ,
(1.4)

we see that

E(a)
κ,ν(s;z) =

1
Γ(ν)

Φ
(1,1;1)
(ν,κ;1)(z,s,a).

From [19, Theorem 8], we deduce that the Barnes Mittag-Leffler function E(a)
κ,ν(s;z)

possesses the following integral representation

E(a)
κ,ν(s;z) =

1
Γ(s)

∫
∞

0
ts−1e−atEκ,ν(ze−t)dt, (min(ℜ(a),ℜ(s),κ)> 0). (1.5)

Monotonicity properties and functional inequalities play vital role in the theory of
various inequalities and equilibrium problems [2, 3, 5, 23, 25]. Nowadays most of
the researchers use Turán-type inequalities to find monotonicity properties of special
functions. Turán’s inequality was first introduced by the Hungarian mathematician
Paul Turán [21] in 1950 as follows:

Pn(x)Pn+2(x)
P2

n+1(x)
≤ 1, x ∈ [−1,1], n ∈ N∪{0}, (1.6)

where Pn(x) are Legendre polynomials. Several Turán-type inequalities for various
special functions can be found in [3, 4, 11, 12] and references cited therein. It will
be interesting to see from (1.6) that stronger results on monotonicity of ratios of
functions of the form (1.6) with upper or lower constants as unity can be obtained
using these types of inequalities. These inequalities have applications in the theory
of transmutation operators for estimating transmulation kernels and norms [18] and
also in the problems of function expansions by system of integer shifts of Gaussians
[10].

This paper is organized as follows. In the next Section, we present some useful
lemmas which are required to complete the proofs of the main results. Using the
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integral representation (1.5) of the Barnes Mittag-Leffler function, complete mono-
tonicity property and several interesting inequalities and their consequences are es-
tablished in Section 3. Turán type inequalities for E(a)

κ,ν(s;z) are obtained in Section
4. Moreover, monotonicity, convexity and log-convexity properties for the ratios of
Barnes Mittag-Leffler function are also studied in this section. Section 5 is devoted
to derive further interesting inequalities for E(a)

κ,ν(s;z).

2. USEFUL LEMMAS

Before proving the main results in this paper, we need the following preliminary
lemmas.

Lemma 1 ([12]). Let (an)n≥0 and (bn)n≥0 be two sequences of real numbers. If
bn > 0 for n ≥ 0 and if the sequence (an/bn) is increasing (decreasing), then(

a1+···+an
b1+···+bn

)
n≥0

is increasing (decreasing).

Lemma 2 ([17]). Let (an)n≥0 and (bn)n≥0 be two sequences of real numbers and
let the power series f (x) = ∑n≥0 anxn and g(x) = ∑n≥0 bnxn be convergent for all
|x| < r. If bn > 0 for n ≥ 0 and if the sequence (an/bn) is increasing (decreasing),
then the function x 7→ f (x)/g(x) is increasing (decreasing) on (0,r).

Lemma 3 ([1]). Suppose that f ,g : [a,b]→ R are continuous functions, which
are differentiable on (a,b). Moreover, assume that g′(x) 6= 0 on (a,b). If f ′/g′ is
increasing (or decreasing) on (a,b), then the following ratios

f (x)− f (a)
g(x)−g(a)

and
f (x)− f (b)
g(x)−g(b)

are also increasing (or decreasing) on (a,b).

3. COMPLETE MONOTONICITY PROPERTY AND RELATED INEQUALITIES

In the next theorem, we will study complete monotonicity property of the function
E(a)

κ,ν(s;−z). A C∞ function f (x) is said to be completely monotonic on an interval I
if

(−1)n−1 f n−1(x)≥ 0,
for any n ∈ N and x ∈ I.

Theorem 1. Assume that min(ℜ(a),ℜ(s)) > 0,κ > 0. Under the following con-
ditions

(κ,ν ∈ (0,1) ν≥ κ) or (κ ∈ (0,1] and ν≥ κ),

the function z 7→ E(a)
κ,ν(s;−z) is completely monotonic on (0,∞). Moreover, the follow-

ing inequalities

E(a)
κ,ν(s;−z1)E

(a)
κ,ν(s;−z2)≤ E(a)

κ,ν(s;−z1− z2), (min(z1,z2)> 0), (3.1)
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E(a)
κ,ν(s;−(z1 + z2)/2)≤

√
E(a)

κ,ν(s;−z1)E
(a)
κ,ν(s;−z2), (min(z1,z2)> 0) (3.2)

1
asΓ(ν)

exp
(
− asΓν)

(a+1)sΓ(ν+κ)
z
)
≤ E(a)

κ,ν(s;−z), z > 0, (3.3)

hold true under the given hypothesis.

Proof. By using (1.5) with [20, Corollary 3] and [8, Theorem 2.1], we establish
that E(a)

κ,ν(s;−z) is completely monotonic on (0,∞), under the given hypothesis. How-
ever, we see that the function z 7→ asΓ(ν)E(a)

κ,ν(s;−z) is completely monotonic on
(0,∞) and maps (0,∞) to (0,1). According to [9, Theorem 3], we get the result
(3.1). Let us now focus on the inequality (3.2). By using the fact that every com-
pletely monotonic function is log-convex [22, p. 167], we deduce that the function
E(a)

κ,ν(s;−z) is log-convex and consequently the inequality (3.2) holds true. It remains
to prove the inequality (3.3). Let

F(z) = log
(

as
Γ(ν)E(a)

κ,ν(s;−z)
)
=: log Ẽ(a)

κ,ν(s;z) and G(z) = z.

Observe that the function z 7→ (Ẽ(a)
κ,ν(s;z))′/Ẽ(a)

κ,ν(s;z) is increasing on (0,∞) and con-
sequently the function

z 7→ F(z)−F(0)
G(z)−G(0)

=: ∆(z)

is also increasing on (0,∞) by Lemma 3. Furthermore,

lim
z→0

∆(z) = lim
z→0

(Ẽ(a)
κ,ν(s;z))′

Ẽ(a)
κ,ν(s;z)

=− asΓ(ν)

(a+1)sΓ(ν+κ)
,

which completes the proof of Theorem 1. �

Theorem 2. Under the assumptions of Theorem 1, the following inequality holds
true:

Eκ,ν(e−
s
a z)≤ E(a)

κ,ν(s;z)≤ (a+1)s−Γ(s)
(a+1)sΓ(κ+ν)

+
Γ(s)

(a+1)s Eκ,ν(z). (3.4)

Proof. We recall the Jensen’s integral inequality [14, Chap. I, Eq. (7.15)],

ϕ

(∫ b

a
f (s)dσ(s)

/∫ b

a
dσ(s)

)
≤

∫ b

a
ϕ( f (s))dσ(s)

/∫ b

a
dσ(s), (3.5)

where, ϕ is convex and f is integrable with respect to a probability measure σ. Let

ϕz(t) = Eκ,ν(ze−t), f (t) = t and dσ(t) =
1

Γ(s)
ts−1e−atdt.

Using an elementary property of Gamma-function:

Γ(s)
as =

∫
∞

0
ts−1e−atdt, (ℜ(a)> 0, ℜ(a)> 0), (3.6)
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and the representation (1.5), we obtain∫ b

a
dσ(t) =

1
as ,

∫ b

a
f (t)dσ(t) =

s
as+1 and

∫ b

a
ϕ( f (t))dσ(t) = E(a)

κ,ν(s;z).

Again, from (3.5), we have

Eκ,ν(e−
s
a z)≤ E(a)

κ,ν(s;z),

which proves the lower bound of (3.4). In order to demonstrate the upper bound, we
will apply the converse Jensen inequality, due to Lah and Ribarić, which reads as
follows. Set

A( f ) =
∫ M

m
f (s)dσ(s)

/∫ M

m
dσ(s),

where σ is a non-negative measure and f is a continuous function. If −∞ < m <
M < ∞ and ϕ is convex on [m,M], then according to [16, Theorem 3.37], we have

(M−m)A(ϕ( f ))≤ (M−A( f ))ϕ(m)+(A( f )−m)ϕ(M). (3.7)

Rewriting the representation (1.5) as follows:

E(a)
κ,ν(s;z) =

1
Γ(s)

∫ 1

0
logs−1(1/u)ua−1Eκ,ν(zu)du, (3.8)

and taking

[m,M] = [0,1],ϕ(u) = Eκ,ν(zu), f (u) = u and dσ(u) =
logs−1(1/u)ua−1du

Γ(s)
,

in (3.7), in view of (3.6) and (3.8), we obtain

E(a)
κ,ν(s;z)

as ≤ (a(a+1))s−Γ(s)
(a(a+1))sΓ(κ+ν)

+
Γ(s)

(a(a+1))s Eκ,ν(z).

�

Theorem 3. The following inequalities hold true:
(a) Let a,ν,s,z be positive real numbers such that s ≤ 1 and a ≥ ν. Then the

following inequality

E1,ν+1(z)
(a−ν+1)s ≤ E(a)

1,ν(s,z) (3.9)

holds true. Furthermore, the above inequality is reversed if s≥ 1 and ν−1 <
a≤ ν.

(b) Let a,ν,s,z > 0 be such that a > ν and 0 < s < 1. Then the inequality

E(a)
1,ν(s,z)E

(a)
1,ν(s+2,z)≤ 22ssΓ(s+1/2)√

πΓ(s+2)
E1,ν+1(z)E

(2a−ν)
1,ν (2s+1,z) (3.10)

is valid.
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Proof. (a) First of all, we recall the Chebyshev integral inequality [13, p. 40]. If
f ,g : [a,b] −→ R are integrable functions, both increasing or both decreasing, and
p : [a,b]−→ R is a positive integrable function, then∫ b

a
p(t) f (t)dt

∫ b

a
p(t)g(t)dt ≤

∫ b

a
p(t)dt

∫ b

a
p(t) f (t)g(t)dt. (3.11)

It can be noted that if one of the functions f or g is decreasing and the other is
increasing, then (3.11) is reversed. We will use (3.8) and (3.11) to prove (3.9). We
set

p(t) = 1, f (t) =
ta−ν

Γ(s)
logs−1(1/t) and g(t) = tν−1E1,ν(zt).

From the differentiation formula [7, Eq. (4.3.1), p. 51](
d
dz

)m [
zν−1Eκ,ν(zκ)

]
= zν−m−1Eκ,ν−m(zκ), (m≥ 1),

we see that the function g is increasing on (0,1]. Moreover, the function f is de-
creasing (increasing) if s ≥ 1 and ν− 1 < a ≥ ν (0 < s ≤ 1 and a ≥ ν) on (0,1].
Furthermore, we have∫ 1

0
p(t) f (t)dt =

ta−ν

Γ(s)

∫ 1

0
logs−1(1/t)dt

=
1

Γ(s)

∫
∞

0
ts−1e−(a−ν+1)tdt =

1
(a−ν+1)s , (by (3.6)).

Taking into account [7, Eq. (4.4.4), p. 61]∫ z

0
tν−1Eκ,ν(λtκ)dt = zκEκ,ν+1(λzκ) (ν > 0),

we obtain ∫ 1

0
p(t)g(t)dt = E1,ν+1(z).

By applying (3.11), we obtain the desired bound (3.9).
(b) We set

p(t) = tν−1E1,ν(zt), f (t) =
ta−ν

Γ(s)
logs−1(1/t) and g(t) =

ta−ν

Γ(s+2)
logs+1(1/t).

Moreover, by (3.8) we obtain∫ 1

0
p(t) f (t)dt = E(a)

1,ν(s;z),
∫ 1

0
p(t)g(t)dt = E(a)

1,ν(s+2;z),

and ∫ 1

0
p(t)g(t) f (t)dt =

Γ(2s+1)
Γ(s)Γ(s+2)

E(2a−ν)
1,ν (s+2;z).

Observe that the function f and g are decreasing if 0< s< 1 and ν−1< a< ν. Then,
using (3.11) and the Legendre duplication formula, we obtain (3.10). �
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On setting ν = 1 in the above theorem, in view of the fact that

E1,2(z) =
ez−1

z
,

we obtain the following result.

Corollary 1.
(a) Let a,s,z be positive real numbers such that s≤ 1 and a≥ 1. Then

ez−1
zas ≤ E(a)

1,1 (z). (3.12)

Moreover, the inequality (3.12) is reversed if a≤ 1 and s≥ 1.
(b) Let a,s,z > 0 be such that a > 1 and 0 < s < 1. Then the following inequality

holds:

E(a)
1,1 (s,z)E

(a)
1,1 (s+2,z)≤ 22ssΓ(s+1/2)(ez−1)√

πΓ(s+2)z
E(2a−1)

1,1 (2s+1,z). (3.13)

Theorem 4. Suppose that p,q,r,s,κ and ν are positive real numbers such that
1
r +

1
s = 1 with r > 1. Then the following inequality holds true:

E(a)
κ,ν

( p
r
+

q
s
+1;z

)
≤ Γ1/r(p+1)Γ1/s(q+1)

Γ
( p

r +
q
s +1

) [
E(a)

κ,ν(p+1;z)
]1/r [

E(a)
κ,ν(q+1;z)

]1/s
.

(3.14)

Proof. Using Hölder’s inequality and (1.5), we have

E(a)
κ,ν

( p
r
+

q
s
+1;z

)
=

1
Γ
( p

r +
q
s +1

) ∫ ∞

0
t(

p
r +

q
s )e−atEκ,ν(ze−t)dt

=
1

Γ
( p

r +
q
s +1

) ∫ ∞

0
{t pe−atEκ,ν(ze−t)}1/r{tqe−atEκ,ν(ze−t)}1/sdt

≤ 1
Γ
( p

r +
q
s +1

) (∫ ∞

0
t pe−atEκ,ν(ze−t)dt

)1/r(∫ ∞

0
tqe−atEκ,ν(ze−t)dt

)1/s

=
Γ1/r(p+1)Γ1/s(q+1)

Γ
( p

r +
q
s +1

) [
E(a)

κ,ν(p+1;z)
]1/r [

E(a)
κ,ν(q+1;z)

]1/s
,

which completes the proof of the theorem. �

Remark 1. Setting r = s = 2 in (3.14) of Theorem 4, we obtain the following
inequality:[

Γ

(
p+q+2

2

)
E(a)

κ,ν

(
p+q+2

2
;z
)]2

≤Γ(p+1)Γ(q+1)E(a)
κ,ν(p+1;z)E(a)

κ,ν(q+1;z).
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Theorem 5. Let a,b, p,q,κ and ν be positive real numbers satisfying the condi-
tions p > 1 and 1

p +
1
q = 1. Then the following inequality holds true:

E
( a

p+
b
q)

κ,ν (s;z)≤
[
E(a)

κ,ν(s;z)
]1/p [

E(b)
κ,ν(s;z)

]1/q
. (3.15)

Proof. Using Hölder’s inequality and (1.5), obtain

E
( a

p+
b
q)

κ,ν (s;z) =
1

Γ(s)

∫
∞

0
ts−1e−(

a
p+

b
q)tEκ,ν(ze−t)dt

=
∫

∞

0

(
t(s−1)e−atEκ,ν(ze−t)

Γ(s)

)1/p(
t(s−1)e−btEκ,ν(ze−t)

Γ(s)

)1/q

dt

≤
(

1
Γ(s)

∫
∞

0
t(s−1)e−atEκ,ν(ze−t)dt

)1/p( 1
Γ(s)

∫
∞

0
t(s−1)e−btEκ,ν(ze−t)dt

)1/q

=
[
E(a)

κ,ν(s;z)
]1/p [

E(b)
κ,ν(s;z)

]1/q
,

which proves the theorem. �

Remark 2. Setting p = q = 2 in (3.15) of Theorem 5, we obtain the following
inequality: [

E
( a+b

2 )
κ,ν (s;z)

]2

≤ E(a)
κ,ν(s;z)E(b)

κ,ν(s;z).

4. TURÁN TYPE INEQUALITIES FOR BARNES MITTAG-LEFFLER FUNCTION

In this section, we discuss the monotonicity property of the following Turán ratio,
which will be useful to establish the sharp Turán type inequality for E(a)

κ,ν(s;z):

E (a)
κ,ν,µ(s;z) =

E(a)
κ,ν(s;z)E(a)

κ,µ(s;z)[
E(a)

κ,(ν+µ)/2(s;z)
]2 . (4.1)

Theorem 6. Let ν,µ,κ be three distinct positive real numbers and s ≥ 0. If
max(κ,ν) < µ, then the function z 7→ E (a)

κ,ν,µ(s;z) defined by (4.1) is increasing on
(0,∞). Furthermore, the following sharp Turán type inequality[

E(a)
κ,ν+1(s;z)

]2
−E(a)

κ,ν(s;z)E(a)
κ,ν+2(s;z)≤

(
1

ν+1

)[
E(a)

κ,ν+1(s;z)
]2
, (4.2)

holds for all ν > 0.

Proof. By means of the Cauchy product, we have

E(a)
κ,ν(s;z)E(a)

κ,µ(s;z) =
∞

∑
k=0

k

∑
j=0

A j,kzk,
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[E(a)
κ,(ν+µ)/2(s;z)]2 =

∞

∑
k=0

k

∑
j=0

B j,kzk,

where

A j,k =
1

Γ(κ j+ν)Γ(κ(k− j)+µ)( j+a)s(k− j+a)s ,

B j,k =
1

Γ(κ j+(ν+µ)/2)Γ(κ(k− j)+(ν+µ)/2)( j+a)s(k− j+a)s .

Now, we define the sequence (C j,k) by C j,k = A j,k/B j,k. Therefore,

C j+1,k

C j,k
=[

Γ(κ j+(ν+µ)/2+κ)Γ(κ j+ν)

Γ(κ j+ν+κ)Γ(κ j+(ν+µ)/2)

][
Γ(κ(k− j)+µ)Γ(κ(k− j)+(ν+µ)/2−κ)

Γ(κ(k− j)+µ−κ)Γ(κ(k− j)+(ν+µ)/2)

]
.

(4.3)

In virtue of the following inequality for the gamma function

Γ(x+a)Γ(x+b)≤ Γ(x)Γ(x+a+b), a > 0,b > 0,x > 0, (4.4)

and choosing x = κ(k− j)+(ν+µ)/2−κ,a = (µ−ν)/2 and b = κ, we obtain

Γ(κ(k− j)+µ)Γ(κ(k− j)+(ν+µ)/2−κ)

Γ(κ(k− j)+µ−κ)Γ(κ(k− j)+(ν+µ)/2)
≥ 1. (4.5)

On the other hand, uppon setting x = κ j+ν,a = (µ−ν)/2 and b = κ in (4.4), we get

Γ(κ j+(ν+µ)/2+κ)Γ(κ j+ν)

Γ(κ j+ν+κ)Γ(κ j+(ν+µ)/2)
≥ 1. (4.6)

Combining (4.3), (4.5) and (4.6), we deduce that the sequence (C j,k) j≥0 is increas-
ing and consequently the sequence (Sk)k≥0 defined by Sk =

(
∑

k
j=0 A j,k/∑

k
j=0 B j,k

)
is

increasing too, by means of Lemma 1. Further, using Lemma 2, we deduce that the
function z 7→ E (a)

κ,ν,µ(s;z) is increasing on (0,∞). Moreover,

E (a)
κ,ν,µ(s;z)≥ E (a)

κ,ν,µ(s;0) =
Γ2((ν+µ)/2)

Γ(ν)Γ(µ)
.

Finally, putting µ = ν+ 2 in the above inequality, we get (4.2) for all ν > 0, which
completes the proof of the theorem. �

Corollary 2. The following assertions are true.

(i) Let κ > 0, s ≥ 0, a > 0 and z > 0, then the function ν 7→ E(a)
κ,ν(s;z)

E(a)
κ,ν+1(s;z)

, is convex

on (0,∞).
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(ii) Under the hypothesis of Theorem 6, the function ν 7→ E(a)
κ,ν(s;z1)

E(a)
κ,ν(s;z2)

is log-convex

on (0,∞), for all 0 < z2 < z1.

Proof. (i) From Theorem 6, we deduce that the function z 7→ logE (a)
κ,ν,µ(s;z) is

increasing on (0,∞). We have,

∂

∂z
logE (a)

κ,ν,µ(s;z) =
∂

∂z E(a)
κ,ν(s;z)

E(a)
κ,ν(s;z)

+
∂

∂z E(a)
κ,µ(s;z)

E(a)
κ,µ(s;z)

−2
∂

∂z E(a)
κ,(ν+µ)/2(s;z)

E(a)
κ,(ν+µ)/2(s;z)

≥ 0,

and consequently, the function ν 7→
∂

∂z E(a)
κ,ν(s;z)

E(a)
κ,ν(s;z)

is convex on (0,∞). In view of (4.9),

we get
∂

∂z E(a)
κ,ν+1(s;z)

E(a)
κ,ν+1(s;z)

=
E(a)

κ,ν(s;z)

κzE(a)
κ,ν+1(s;z)

− ν

κz
,

which implies that the function ν 7→ E(a)
κ,ν(s;z)

E(a)
κ,ν+1(s;z)

is convex on (0,∞).

(ii) Again, by means of Theorem 6, we have E (a)
κ,ν,µ(s;z1) > E (a)

κ,ν,µ(s;z2) for
0 < z2 < z1, which yields

E(a)
κ,ν(s;z1)

E(a)
κ,ν(s;z2)

E(a)
κ,µ(s;z1)

E(a)
κ,µ(s;z2)

≥
[E(a)

κ,(ν+µ)/2(s;z1)]
2

[E(a)
κ,(ν+µ)/2(s;z2)]2

,

which implies that the function ν 7→ E(a)
κ,ν(s;z1)

E(a)
κ,ν(s;z2)

is log-convex on (0,∞). �

Theorem 7. Suppose that µ,ν1,ν2 and a are positive real numbers and s ≥ 0.

If ν1 < ν2, then the function z 7→ E(a)
κ,ν2 (s;z)

E(a)
κ,ν1 (s;z)

is decreasing on (0,∞). Moreover, the

following Turán type inequality

[E(a)
κ,ν+1(s;z)]2−E(a)

κ,ν(s;z)E(a)
κ,ν+2(s;z)≤ (κ+1)[E(a)

κ,ν+1(s;z)]2, (4.7)

holds true for all z > 0.

Proof. From (1.3), we have

E(a)
κ,ν1(s;z)

E(a)
κ,ν2(s;z)

=

∞

∑
n=0

zn

Γ(κn+ν1)(n+a)s

∞

∑
n=0

zn

Γ(κn+ν2)(n+a)s

=

∞

∑
n=0

anzn

∞

∑
n=0

bnzn
, (4.8)

where
an =

1
Γ(κn+ν1)(n+a)s , bn =

1
Γ(κn+ν2)(n+a)s .
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Now, we define the sequence (cn)n≥0 by cn = an/bn. Therefore,

cn+1− cn =
Γ(κn+ν2 +κ)Γ(κn+ν1)−Γ(κn+ν1 +κ)Γ(κn+ν2)

Γ(κn+ν1 +κ)Γ(κn+ν1)
.

Setting z = κn+ν1,a = κ and b = ν2−ν1 in (4.4), we get

Γ(κn+ν2 +κ)Γ(κn+ν1)≥ Γ(κn+ν1 +κ)Γ(κn+ν2).

This yields that the sequence (cn)n≥0 is increasing, and consequently the function

z 7→ E(a)
κ,ν2 (s;z)

E(a)
κ,ν1 (s;z)

is decreasing on (0,∞) if ν2 > ν1. Now, setting ν2 = ν+2 and ν1 = ν+1,

we deduce that the function z 7→ zE(a)
κ,ν+1(s;z)

E(a)
κ,ν+2(s;z)

is increasing on (0,∞). This implies that

∂

∂z

zE(a)
κ,ν+1(s;z)

E(a)
κ,ν+2(s;z)

≥ 0.

Using the recurrence formula

∂

∂z
E(a)

κ,ν+1(s;z) =
E(a)

κ,ν(s;z)−νE(a)
κ,ν+1(s;z)

κz
, (4.9)

we obtain

[E(a)
κ,ν+2(s;z)]2

∂

∂z

zE(a)
κ,ν+1(s;z)

E(a)
κ,ν+2(s;z)

=

(
1+

1
κ

)
E(a)

κ,ν+1(s;z)E(a)
κ,ν+2(s;z)

+
E(a)

κ,ν(s;z)E(a)
κ,ν+2(s;z)− [E(a)

κ,ν+1(s;z)]2

κ
≥ 0,

(4.10)

which yields

[E(a)
κ,ν+1(s;z)]2−E(a)

κ,ν(s;z)E(a)
κ,ν+2(s;z)≤ (κ+1)E(a)

κ,ν+1(s;z)E(a)
κ,ν+2(s;z). (4.11)

Moreover, we observe that

E(a)
κ,ν+2(s;z)≤ E(a)

κ,ν+1(s;z) for all z > 0.

Combining the above inequality with (4.11), we obtain (4.7). �

5. FURTHER INEQUALITIES FOR BARNES MITTAG-LEFFLER FUNCTION

This section is devoted to study further new inequalities for Barnes Mittag-Leffler
function.
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Theorem 8. Let ν > 0, µ > 0 and s≥ 0. If µ < ν, then the following inequality[
E(a)

κ,ν+1(s;z)
] 1

ν ≤ a
s(ν−µ)

νµ [Γ(µ+1)]
1
µ

[Γ(ν+1)]
1
ν

[
E(a)

κ,µ+1(s;z)
] 1

µ
, (5.1)

holds true for all z > 0.

Proof. Suppose that 0 < µ < ν and s ≥ 0 and the function F(a)
κ,ν,µ : [0,∞)→ R is

defined by

F(a)
κ,ν,µ(s;z) =

µ
ν

log Ẽ(a)
κ,ν+1(s;z)− log Ẽ(a)

κ,µ+1(s;z),

where
Ẽ(a)

κ,ν(s;z) = as
Γ(ν)E(a)

κ,ν(s;z).

In view of the recurrence relation (4.9), we have

∂

∂z
F(a)

κ,ν,µ(s;z) =
1
κz

µ
ν

E(a)
κ,ν(s;z)

E(a)
κ,ν+1(s;z)

−
E(a)

κ,µ(s;z)

E(a)
κ,µ+1(s;z)


=

µ
κz

 Ẽ(a)
κ,ν(s;z)

Ẽ(a)
κ,ν+1(s;z)

−
Ẽ(a)

κ,µ(s;z)

Ẽ(a)
κ,µ+1(s;z)

 .
(5.2)

Moreover, the function ν 7→ Ẽ(a)
κ,ν(s;z) is log-convex on (0,∞). Indeed, for conveni-

ence, let us write

Ẽ(a)
κ,ν(s;z) =

∞

∑
n=0

an(ν)zn, where an(ν) =
asΓ(ν)

Γ(κn+ν)(n+a)s , n≥ 0.

Using the fact that the sum of log-convex functions is log-convex too, we just need
to prove the log-convexity of an(ν). Hence, for all n≥ 0, we have

∂2

∂ν2 log(an(ν)) = ψ
′(ν)−ψ

′(κn+ν),

where ψ(z) = Γ′(z)
Γ(z) is the digamma function. Since ψ is concave, we deduce that

∂2

∂ν2 log(an(ν)) ≥ 0, and consequently ν→ an(ν) is log-convex on (0,∞), which im-

plies that the function ν 7→ Ẽ(a)
κ,ν(s;z) is log-convex on (0,∞). Therefore, the function

ν 7→ log Ẽ(a)
κ,ν+1(s;z)− log Ẽ(a)

κ,ν(s;z) is increasing on (0,∞) and consequently the func-

tion ν 7→ Ẽ(a)
κ,ν+1(s;z)

Ẽ(a)
κ,ν(s;z)

is increasing on (0,∞). Combining this fact with (5.2), we obtain

∂

∂z F(a)
κ,ν,µ(s;z) ≤ 0. Therefore, F(a)

κ,ν,µ(s;z) ≤ F(a)
κ,ν,µ(s;0) = 0, which proves the desired

result. �
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Corollary 3. Under the assumption of Theorem 8, the following inequality

a
s(ν−µ)

µ [Γ(µ+1)]
ν

µ

[Γ(ν+1)]

[
E(a)

κ,µ+1(s;z)
] ν−µ

µ
+

E(a)
κ,µ+1(s;z)

E(a)
κ,ν+1(s;z)

≥ 2, (5.3)

holds true for all z > 0.

Proof. Using (5.1), we obtain

a
s(ν−µ)

µ [Γ(µ+1)]
ν

µ

[Γ(ν+1)]

[
E(a)

κ,µ+1(s;z)
] ν

µ
[
E(a)

κ,ν+1(s;z)
]−1
≥ 1.

With the help of the above inequality and the arithmetic-geometric mean inequality,
we get

1
2

a
s(ν−µ)

µ [Γ(µ+1)]
ν

µ

Γ(ν+1)

[
E(a)

κ,µ+1(s;z)
] ν−µ

µ
+

E(a)
κ,µ+1(s;z)

E(a)
κ,ν+1(s;z)



≥

√√√√√a
s(ν−µ)

µ [Γ(µ+1)]
ν

µ

Γ(ν+1)

[
E(a)

κ,µ+1(s;z)
] ν

µ

E(a)
κ,ν+1(s;z)

≥ 1,

which proves (5.3). �

ACKNOWLEDGEMENTS

The authors wish to thank the anonymous referee for the careful reading of the
manuscript and for constructive comments, observations, and suggestions that has
helped in significantly improving the manuscript.

REFERENCES

[1] G. D. Anderson, M. K. Vamanamurthy, and M. Vuorinen, “Inequalities for quasiconformal
mappings in space,” Pacific J. Math., vol. 160, no. 1, pp. 1–18, 1993. [Online]. Available:
http://projecteuclid.org/euclid.pjm/1102624560
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