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Abstract. Our aim in this paper is to deal with the dynamics of following higher order difference
equation

xn+1 = A+B
xn−m

x2
n

where A,B > 0, and initial values are positive, and m = {1,2, ...}. Furthermore, we discuss the
periodicity, boundedness, semi-cycles, global asymptotic stability of solutions of these equations.
We also handle the rate of convergence of solutions of these difference equations.
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1. INTRODUCTION

Last few decades, rational difference equations and their systems have attracted the
interest of many researchers for varied reasons. One of the reason of this rapid growth
of interest is, these equations provided a natural description of many discrete math-
ematical models. Such discrete mathematical models are often scrutinized in various
fields of science and technology for instance, biology, ecology, physiology, phys-
ics, engineering, economics, probability theory, genetics, psychology, resource man-
agement and population dynamics. We believe that the interest of studying rational
difference equations will increase in future years as more fascinating and intresting
results are obtaining. Although difference equations are very simple in form, it is ex-
tremely difficult to understand thoroughly the behaviors of their solutions. Further-
more, higher-order rational difference equations and systems of rational equations
have also been widely studied but still have many aspects to be investigated. There
are many papers related to the rational difference equations and higher-order rational
difference equations (see, for example, [2–4, 11, 13] and references therein).
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In [5], Amleh et al. discussed the stability, boundedness and periodic character of
solutions of difference equation

xn+1 = α+
xn−1

xn
,

where the initial values are positive numbers, and α ≥ 0.
In [9], Devault et al. studied periodicity, global stability and the boundedness of

solutions of the following higher order difference equation

xn+1 = p+
xn−k

xn
,

where the initial conditions are positive numbers, and p > 0.
In [16], Saleh et al. handled the dynamical behaviours of following higher order

difference equation

yn+1 = A+
yn−k

yn
, (1.1)

with k ∈ {2,3, · · ·} and A is positive. The authors especially discussed the global
asymptotic stability, semi-cycle analysis and periodicity of the unique positive equi-
librium of Eq.(1.1).

In [1], Abu-Saris et al. dealt with the global asymptotic stability of positive equi-
librium point of difference equations

yn+1 = A+
yn

yn−k
, (1.2)

where k ∈ {2,3, · · ·} and A is positive. Moreover, in [17], Saleh et al. studied the
global stability of the negative equilibrium of the difference equation (1.2) where
k ∈ {1,2, · · ·} and A < 0.

In [12], Hamza et al. discussed the dynamics of following difference equation

xn+1 = α+
xn−1

xk
n
, (1.3)

where α, k and the initial values are positive real numbers. The authors dealt with
the boundedness, oscillation behaviours and stability analysis of unique equilibrium
point of Eq.(1.3).

In [20], Yalçınkaya handled the oscillation behaviours, bounded solutions, peri-
odic solutions and global stability of solutions of difference equation

xn+1 = α+
xn−m

xk
n

,

where the initial values are positive real numbers and α,k > 0.
In [18], Stevic investigated the dynamical properties of difference equation

xn+1 =
xn−1

g(xn)
,

where x−1,x0 > 0.
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In [6], Bešo et al. showed the Neimark–Sacker bifurcation, boundedness and
global attractivity of following difference equation

xn+1 = γ+δ
xn

x2
n−1

,

with the initial conditions and γ,δ are positive real numbers.
In [19], Taşdemir investigated the boundedness, rate of convergence, global asymp-

totic stability and periodicity of the following higher order difference equations

xn+1 = A+B
xn

x2
n−m

, (1.4)

where the initial conditions and A, B are positive real numbers and m ∈ {2,3, · · ·}.
Our aim in this work is to deal with the dynamics of following higher order differ-

ence equation
xn+1 = A+B

xn−m

x2
n

, (1.5)

with m = {1,2, ...}, and the initial conditions are positive numbers, and A,B > 0.
We first handle the periodicity, boundedness and oscillation behaviors of solutions
of Eq.(1.5). Moreover, we analyze the local and global asymptotic stability of the
solutions of Eq.(1.5). Finally, we study the rate of convergence of Eq.(1.5) and we
present some numerical examples to verify our theoretical results.

Here, we summarize the significant results and definitions on the theory of differ-
ence equations. For more information, see [8, 10, 14] and references therein.

Let I be some interval of real numbers and let f : Ik+1 → I be a continuously
differentiable function. A difference equation of order (k+ 1) is an equation of the
form

xn+1 = f (xn,xn−1, · · · ,xn−k), n = 0,1, · · · . (1.6)
A solution of Eq.(1.6) is a sequence {xn}∞

n=−k that satisfies Eq.(1.6) for all n ≥−k.
Suppose that the function f is continuously differentiable in some open neighbor-

hood of an equilibrium point x. Let

qi =
∂ f
∂ui

(x,x, · · · ,x), for i = 0,1, · · · ,k

denote the partial derivative of f (u0,u1, · · · ,uk) with respect to ui evaluated at the
equilibrium point x of Eq.(1.6).

Definition 1. The equation

zn+1 = q0zn +q1zn−1 + · · ·+qkzn−k, n = 0,1, · · · , (1.7)

is called the linearized equation of Eq.(1.6) about the equilibrium point x.

Theorem 1 (Clark’s Theorem). Consider Eq.(1.7). Then,
k

∑
i=0

|qi|< 1.
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is a sufficient condition for the locally asymptotically stability of Eq.(1.6).

Consider the scalar kth-order linear difference equation

xn+k + p1(n)xn+k−1 + · · ·+ pk(n)xn = 0, (1.8)

where k is a positive integer and pi : Z+ → C for i = 1, · · · ,k. Assume that

qi = lim
k→∞

pi(n), i = 1, · · · ,k, (1.9)

exist in C. Consider the limiting equation of (1.8):

xn+k +q1xn+k−1 + · · ·+qkxn = 0. (1.10)

Theorem 2 (Poincaré’s Theorem). Consider (1.8) subject to condition (1.9). Let
λ1, · · · ,λk be the roots of the characteristic equation

λ
k +q1λ

k−1 + · · ·+qk = 0 (1.11)

of the limiting equation (1.10) and suppose that |λi| ̸=
∣∣λ j

∣∣ for i ̸= j. If xn is a solution
of (1.8), then either xn = 0 for all large n or there exists an index j ∈ {1, · · · ,k} such
that

lim
n→∞

xn+1

xn
= λ j.

The following results were obtained by Perron, and one of Perron’s results was
improved by Pituk, see [15].

Theorem 3. Suppose that (1.9) holds. If xn is a solution of (1.8), then either xn = 0
eventually or

lim
n→∞

sup
(∣∣x j (n)

∣∣)1/n
= λ j.

where λ1, · · · ,λk are the (not necessarily distinct) roots of the characteristic equation
(1.11).

Theorem 4 (See [7]). Let n ∈ N+
n0

and g(n,u,v) be a nondecreasing function in u
and v for any fixed n. Suppose that, for n ≥ n0, the inequalities

yn+1 ≤ g(n,yn,yn−1) ,

un+1 ≥ g(n,un,un−1)

hold. Then

yn0−1 ≤ un0−1,

yn0 ≤ un0

implies that
yn ≤ un,n ≥ n0.
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Firstly, we are in a position to study the dynamics of the higher order difference
equation (1.5). The Eq.(1.5) which by the change of variables

yn =
xn

A
,

reduces to the following difference equation

yn+1 = 1+ p
yn−m

y2
n

, (1.12)

where p = B
A2 . Henceforth, we consider the difference equation (1.12). Note that

Eq.(1.12) has an unique positive equilibrium point such that

ȳ =
1+

√
1+4p
2

.

2. BOUNDEDNESS OF SOLUTIONS OF EQ.(1.12)

Now, we handle the bounded solutions of Eq.(1.12). We also find out that Eq.(1.12)
has bounded solutions.

Theorem 5. If p > 0, then yn > 1 for n ≥ 1. Moreover, if 0 < p < 1, then

1 < yn ≤
1

1− p
+ m+1

√
pn

m+1

∑
j=1

c j

(
e

2πi
m+1 ( j−1)

)n
,

where c j, j = 1,2, · · · ,m+1, are arbitrary constants, and n ∈ {0,1,2, · · ·}, and m+1
√

p
is one of the (m+1)th roots of p.

Proof. Let p > 0, and {yn}∞

n=−m be a positive solution of Eq.(1.12). Then, we
obtain from Eq.(1.12)

y1 = 1+ p
y−m

y2
0

> 1,

y2 = 1+ p
y1−m

y2
1

> 1.

Hence, by induction, we get yn > 1 for n ≥ 1.
Now, we handle the other case. We have from Eq.(1.12)

yn+1 = 1+ p
yn−m

y2
n

≤ 1+ pyn−m.

According to Theorem 4, we consider a sequence {un}∞

n=0, and yn ≤ un, n = 0,1, · · · ,
and

un+1 = 1+ pun−m,n ≥ 1, (2.1)

such that

us+i = ys+i,s ∈ {−m,−m+1, · · ·} , i = {0,1,2, · · ·} ,n ≥ s. (2.2)
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The characteristic polynomial to Eq.(2.1) is

Pm+1 (λ) = λ
m+1 − p.

Thus, we have the roots of characteristic polynomial as follows:

λ j = m+1
√

pe
2πi

m+1 ( j−1),

where j = 1,2, · · · ,m+1. The homogeneous solution of Eq.(2.1) is

uh =
m+1

∑
j=1

c j
m+1
√

pn
(

e
2πi

m+1 ( j−1)
)n

,

where c j are arbitrary constants for j = 1,2, · · · ,m+1. Now, we handle the equilib-
rium solution of Eq.(2.1). From Eq.(2.1), we get that

ū =
1

1− p
.

Therefore, the solution of Eq.(2.1) is

un =
1

1− p
+

m+1

∑
j=1

c j
m+1
√

pn
(

e
2πi

m+1 ( j−1)
)n

, (2.3)

where c j are arbitrary constants for j = 1,2, · · · ,m+ 1. Furthermore, we have from
(2.2) and (2.3)

yn+1 −un+1 ≤ p(yn −un) ,

where n> s, and p∈ (0,1). Therefore, we get yn ≤ un, n> s. So, the proof completed.
□

3. OSCILLATION BEHAVIORS OF EQ.(1.12)

In this section, we discuss the semi-cycles of Eq.(1.12). We also reveal the oscil-
lation behaviours of solutions of Eq.(1.12) in detail.

Theorem 6. Let {yn}∞
n=−m be a positive solution of Eq.(1.12). Then, the following

statements are true:
(i) The every semi-cycle at most m terms.
(ii) Every solution of Eq.(1.12) oscillates about the positive equilibrium ȳ.

Proof. We firstly handle the positive semi-cycle of solution of Eq.(1.12). The neg-
ative semi-cycle is similar and can be omitted. Assume that Eq.(1.12) has a positive
semi-cycle with m terms. Suppose that yN is the first term in this positive semi-cycle.
Therefore, we get

yN ,yN+1, · · · ,yN+m−1 > ȳ.
Hence, we obtain from Eq.(1.12)

yN+m = 1+ p
yN−1

y2
N+m−1

< 1+ p
yN−1

ȳ2 < ȳ.
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So, we have that a semi-cycle consists at most m terms. We also get that every
solution of Eq.(1.12) oscillates about ȳ. The proof completed as desired. □

Theorem 7. Let m be an odd number and let

y−m,y−m+2, · · · ,y−1 ≤ ȳ and y−m+1,y−m+3, · · · ,y0 > ȳ. (3.1)

Then, every semi-cycle of Eq.(1.12) has lenght one. Additionally, the solution {yn}∞
n=−m

of Eq.(1.12) is oscillatory about unique positive equilibrium point ȳ.

Proof. We will prove this theorem by induction method. Let {yn}∞
n=−m be a posit-

ive solution of Eq.(1.12). Assume that (3.1) holds. Hence, we obtain from Eq.(1.12),

y1 = 1+ p
y−m

y2
0

< ȳ,

y2 = 1+ p
y−m+1

y2
1

> ȳ,

y3 = 1+ p
y−m+2

y2
2

< ȳ.

Therefore, we have by induction

y2n+1 = 1+ p
y2n−m

y2
2n

< ȳ,

and
y2n = 1+ p

y2n−(m+1)

y2
2n−1

> ȳ.

□

4. PERIODICITY OF EQ.(1.12)

Now, we study the existence of periodic solutions of Eq.(1.12).

Theorem 8. Assume that m is an even number. Then, Eq.(1.12) has no two peri-
odic solution.

Proof. Let m is an even number. We also suppose that Eq.(1.12) has two periodic
solution such that

· · · ,α,β,α,β, · · ·
where α and β are positive numbers and α ̸= β. Hence, we get the followings

y2n+1 = 1+ p
y2n−m

y2
2n

⇒ α = 1+
p
β
, (4.1)

y2n+2 = 1+ p
y2n+1−m

y2
2n+1

⇒ β = 1+
p
α
.

where n ≥ 1. Therefore, we obtain that

(α−β)

(
1− p

αβ

)
= 0.
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Now, from our supposition, we have α ̸= β. Thus, we get

1− p
αβ

= 0 ⇒ p = αβ.

From (4.1), we have
αβ = β+ p ⇒ β = 0.

So, we have a contradiction. The proof completed as desired. □

5. STABILITY OF SOLUTIONS OF EQ.(1.12)

In this section, we deal with the asymptotic stability of the solutions of Eq.(1.5).
Firstly, we find the linearized equation associated with Eq.(1.12) about its positive
equilibrium point.

The function f is continuously differentiable in some open neighborhood of unique
positive equilibrium point y as follow:

f (yn,yn−1, · · · ,yn−m) = 1+ p
yn−m

y2
n

Thus, we obtain that

q0 =
∂ f
∂yn

(ȳ, ȳ, · · · , ȳ) =−2p
ȳ2 ,

q1 = q2 = · · ·= qm−1 = 0,

qm =
∂ f

∂yn−m
(ȳ, ȳ, · · · , ȳ) = p

ȳ2 .

Then the linearized equation of Eq.(1.12) about its unique positive equilibrium point
ȳ is:

zn+1 = q0zn +q1zn−1 + · · ·+qkzn−k,

for n = 0,1, · · · . Therefore, we get

zn+1 +
2p
ȳ2 zn −

p
ȳ2 zn−m = 0. (5.1)

Hence, the characteristic equation of Eq.(1.12) is as follows,

λ
m+1 +

2p
ȳ2 λ

m − p
ȳ2 = 0. (5.2)

Theorem 9. The positive equilibirium y of Eq.(1.12) is locally asymptotically
stable when p ∈

(
0, 3

4

)
.
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Proof. From Theorem 1, all roots of the characteristic equation of Eq.(5.1) lie in
an open disc |λ|< 1, if

|q0|+ |q1|+ |q2|+ · · · |qm|< 1.

It follows from (5.2) that

|q0|+ |q1|+ |q2|+ · · · |qm|=
3p
ȳ2 .

Note that
p
ȳ2 =

2p+1−
√

4p+1
2p

.

With many numerical calculations, we get that

|q0|+ |q1|+ |q2|+ · · · |qm| =
3p
ȳ2 < 1,

3
(
2p+1−

√
4p+1

)
2p

< 1,

4p+3−3
√

4p+1
2p

< 0.

Hence, we obtain from p > 0,(√
4p+1−1

)(√
4p+1−2

)
< 0.

Therefore, we get that 0 < p < 3
4 . And the proof is complete. □

Theorem 10. The equilibrium point ȳ of Eq.(1.12) is globally asymptotically stable
if 0 < p < 1

2 .

Proof. From Theorem 5, we know that there exist I and S such that

1 < I = lim
n→∞

infyn ≤ S = lim
n→∞

supyn.

Hence, we get from Eq.(1.12)

I ≥ 1+ p
I

S2 and S ≤ 1+ p
S
I2 .

Therefore, we obtain that

S+ p
I
S
≤ IS ≤ I + p

S
I
.

Thus, we have

(S− I)
(

1− p
(

1
S
+

1
I

))
≤ 0.

From S ≥ I > 1 and 0 < p < 1
2 , we also get

1− p
(

1
S
+

1
I

)
> 0.
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So, we have S ≤ I which the result follows. Hence, the equilibrium point ȳ of
Eq.(1.12) is globally asymptotically stable if 0 < p < 1

2 . □

Conjecture 1. Many numerical simulations show that If 1
2 ≤ p < 3

4 , then the equi-
librium point ȳ of Eq.(1.12) is globally asymptotically stable.

6. RATE OF CONVERGENCE OF EQ.(1.12)

Here, we investigate the rate of convergence of solutions of Eq.(1.12).

Theorem 11. Let λ j be roots of characteristic equation (5.2) where j ∈ {1, · · · ,k}.
Then, every solution of Eq.(1.12) ensures the following relations:

lim
n→∞

∣∣∣∣yn+1 − ȳ
yn − ȳ

∣∣∣∣= ∣∣λ j
∣∣ ,

and

lim
n→∞

sup(|yn − ȳ|)1/n =
∣∣λ j

∣∣ .
Proof. According to Eq.(1.12), we have that

yn+1 − ȳ =− p(yn + ȳ)
ȳy2

n
(yn − ȳ)+

p
y2

n
(yn−m − ȳ) .

Now, we consider en = yn − ȳ. Then, we obtain

en+1 + pnen +qnen−m = 0,

such that

pn =− p(yn + ȳ)
ȳy2

n
,

and

qn =
p
y2

n
.

Therefore, we get from globally asymptotic stability

lim
n→∞

pn =−2p
ȳ2 ,

and

lim
n→∞

qn =
p
ȳ2 .

So, the proof is completed. □
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7. NUMERICAL SIMULATIONS

In an attemp to support our theoretical results, we handle three numerical ex-
amples. These examples include three figures which drawn by Mathematica.

Example 1. With A =
√

5, B = 4 and m = 3, we handle Eq.(1.5). Thus, we get
following fourth order difference equation

xn+1 =
√

5+4
xn−3

x2
n
. (7.1)

Here, we apply the following change of the variables for Eq.(7.1) yn =
xn√

5
. Therefore,

we have that p = B
A2 = 0.8, and we obtain the following difference equation

yn+1 = 1+0.8
yn−3

y2
n
. (7.2)

Let the initial conditions are y−3 = 8, y−2 = 5, y−1 = 4 and y0 = 2. Then, every solu-
tion of Eq.(7.2) oscillates about the equilibrium point ȳ. Additionally, every solution
of Eq.(7.2) has bounded from below and above. Figure 1 shows the first 300 terms of
Eq.(7.2).

FIGURE 1. Plot of Eq.(1.5) with A =
√

5, B = 4 and m = 3.

Example 2. Let the Eq.(1.5) with A =
√

20, B = 9 and m = 2. Then we obtain the
following third order quadratic-rational difference equation

xn+1 =
√

20+9
xn−2

x2
n
. (7.3)

Hence, we get p = B
A2 = 0.45 and we obtain the difference equation

yn+1 = 1+0.45
yn−2

y2
n
. (7.4)

Assume that the initial conditions are y−2 = 200, y−1 = 0.1 and y0 = 0.07. Hence, the
positive equilibrium point ȳ = 1.3367 of Eq.(7.4) is globally asymptotically stable.
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Furthermore, the every solution of Eq.(7.4) bounded, and also oscillate about positive
equilibrium point. Figure 2 presents the first 100 terms of Eq.(7.4).

FIGURE 2. Plot of Eq.(1.5) with A =
√

20, B = 9 and m = 2.

Example 3. With A = 10, B = 39 and m = 5, we consider Eq.(1.5). So, we obtain
the sixth order difference equation

xn+1 = 10+39
xn−5

x2
n
. (7.5)

Hence, we get that p = B
A2 = 0.39 and we obtain the following difference equation

yn+1 = 1+0.39
yn−5

y2
n
. (7.6)

Let the initial values are y−5 = 2, y−4 = 6, y−3 = 1, y−2 = 4, y−1 = 2 and y0 = 3. So,
the positive equilibrium point ȳ = 1.3 of Eq.(7.6) is globally asymptotically stable.
Furthermore, the every solution of Eq.(7.6) has bounded, and also oscillate about
positive equilibrium point. Figure 3 demonstrates the first 100 terms of Eq.(7.6).

FIGURE 3. Plot of Eq.(1.5) with A = 10, B = 39 and m = 5.
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8. CONCLUSION

In this paper, we firstly study the boundedness of solutions of Eq.(1.5). For the
choice of p, if p ∈ (0,1), then every solution of Eq.(1.5) has bounded from below
and above. Moreover, we examine the oscillation behaviors of solutions of Eq.(1.5).
Next, we handle the existence of periodic solutions of Eq.(1.5). According to this
result, there are no two periodic solutions of Eq.(1.5) if m is an even number. We also
investigate the global asymptotic stability and rate of convergence of Eq.(1.5). Lastly,
we demonstrate three numerical simulations and graphed by using Mathematica.
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[6] E. Bešo, S. Kalabušić, N. Mujić, and E. Pilav, “Boundedness of solutions and stability of certain
second-order difference equation with quadratic term,” Advances in Difference Equations, vol.
2020, p. 22, 2020, doi: 10.1186/s13662-019-2490-9.
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[15] M. Pituk, “More on Poincaré’s and Perron’s theorems for difference equations,” J. Difference Equ.
Appl., vol. 8, no. 3, pp. 201–216, 2002, doi: 10.1080/10236190211954.

[16] M. Saleh and M. Aloqeili, “On the rational difference equation yn+1 = A+ yn−k
yn

,” Appl. Math.
Comput., vol. 171, no. 2, pp. 862–869, 2005, doi: 10.1016/j.amc.2005.01.094.

[17] M. Saleh and M. Aloqeili, “On the difference equation yn+1 = A+ yn
yn−k

with A < 0,” Appl. Math.
Comput., vol. 176, no. 1, pp. 359–363, 2006, doi: 10.1016/j.amc.2005.09.023.
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