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1. INTRODUCTION AND PRELIMINARIES

The first important result on fixed points for contractive type mapping was the
much celebrated Banach’s contraction principle by Banach [2] in 1922. After this,
Kannan [9, 10] proved the following result:

Theorem 1. Let .X;d/ be a complete metric space. If T WX !X satisfies

d.T x;Ty/� kŒd.x;T x/Cd.y;Ty/�;

where 0 < k < 1
2

and x;y 2X , then T has a unique fixed point.

A similar type of contractive condition has been studied by Chatterjee [5] and he
proved the following result:

Theorem 2. Let .X;d/ be a complete metric space. If T W X ! X satisfies a
C -contraction given as follows:

d.T x;Ty/� kŒd.x;Ty/Cd.y;T x/�;

where 0 < k < 1
2

and x;y 2X , then T has a unique fixed point.

Alber and Guerre-Delabriere [1] introduced the definition of weak ˚ -contraction.

Definition 1. A self mapping T on a metric space X is called weak ˚ -contraction
if there exists a function ˚ W Œ0;C1/! Œ0;C1/ such that for each x;y 2X ,

d.T x;Ty/� d.x;y/�˚.d.x;y///:
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The notion of ˚ -contraction and weak ˚ -contraction has been studied by many
authors, see [3, 12, 15, 17, 19]. In recent years, many results related to fixed point
theorems in partially ordered metric spaces are given, for more details see [8,12–16].

Choudhury in [6] introduced a generalization of C -contraction given by the follo-
wing definition.

Definition 2 ([6]). Let .X;d/ be a metric space. A mapping T WX !X is said to
be weakly C -contractive (or a weak C -contraction) if for all x;y 2X ,

d.T x;Ty/�
1

2
.d.x;Ty/Cd.y;T x//�'.d.x;Ty/;d.y;T x//;

where ' W Œ0;C1/! Œ0;C1/ is a continuous function such that '.x;y/D 0 if and
only x D y D 0.

In [6] the author proves that if X is complete then every weak C -contraction has a
unique fixed point. Recently, Harjani et al, [8] presented this last result in the context
of ordered metric spaces.

Chandok [4] introduced the following definition : A map T WX!X is generalized
f -weakly contractive if for each x;y 2X ,

d.T x;Ty/�
1

2
.d.f x;Ty/Cd.fy;T x//�'.d.f x;Ty/;d.fy;T x//;

where ' W Œ0;C1/! Œ0;C1/! Œ0;C1/ is a continuous function such that '.x;y/D
0 if and only x D y D 0.

If f D IX , the identity mapping, then generalized f -weakly contractive mapping
is weakly C -contractive.

Khan et al. [11] introduced the concept of altering distance function as follows:

Definition 3 (altering distance function, [11]). The function W Œ0;C1/! Œ0;C1/

is called an altering distance function if the following properties are satisfied:
(1)  is continuous and non-decreasing.
(2)  .t/D 0 if and only if t D 0.

Following the above definitions, we introduce the following:

Definition 4. A map T WX!X is called . ;'/-generalized f -weakly contractive
if for each x;y 2X ,

 .d.T x;Ty//�  .
1

2
Œd.f x;Ty/Cd.fy;T x/�/�'.d.f x;Ty/;d.fy;T x//;

where
(1)  W Œ0;C1/! Œ0;C1/ is an altering distance function.
(2) ' W Œ0;C1/� Œ0;C1/! Œ0;C1/ is a continuous function with '.t; s/D 0

if and only if t D s D 0.
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If  .t/D t , then . ;'/-generalized f -weakly contractive mapping is generalized
f -weakly contractive.

The aim of this paper is to study some common fixed point theorems for . ;'/-
generalized f -weakly contractive in metric and ordered metric spaces.

2. MAIN RESULTS

First, we state the following known definition:

Definition 5. Let X a non-empty set. A point x 2X is a coincidence point (com-
mon fixed point) of f W X ! X and T W X ! X if f x D T x (x D f x D T x). The
pair ff;T g is called commuting if Tf x D f T x for all x 2X .

We start with a common fixed point theorem for . ;'/-generalized f -weakly
contractive mappings in complete metric spaces.

Theorem 3. Let .X;d/ be a metric space. Let f;T WX!X satisfy T .X/� f .X/,
.f .X/;d/ is complete and

 .d.T x;Ty//�  .
1

2
Œd.f x;Ty/Cd.fy;T x/�/�'.d.f x;Ty/;d.fy;T x//;

(2.1)
for all x;y 2X , where

(1)  W Œ0;C1/! Œ0;C1/ is an altering distance function,
(2) ' W Œ0;C1/� Œ0;C1/! Œ0;C1/ is a continuous function with '.t; s/D 0 if

and only if t D sD 0, then T and f have a coincidence point inX . Further, if
T and f commute at their coincidence points, then T and f have a common
fixed point.

Proof. Let x0 2 X . Since T .X/ � f .X/, we can choose x1 2 X , so that f x1 D

T x0. Since T x1 2 f .X/, there exists x2 2 X such that f x2 D T x1. By induction,
we construct a sequence fxng in X such that f xnC1 D T xn, for every n 2 N. By
inequality (2.1), we have

 .d.T xnC1;T xn//�  .
1

2
Œd.f xnC1;T xn/Cd.f xn;T xnC1/�/

�'.d.f xnC1;T xn/;d.f xn;T xnC1//

D  .
1

2
d.T xn�1;T xnC1//�'.0;d.T xn�1;T xnC1//

�  .
1

2
d.T xn�1;T xnC1//

�  .
1

2
Œd.T xn�1;T xn/Cd.T xn;T xnC1/�/: (2.2)

Since  is a non-decreasing function, we get that

d.T xn;T xnC1/� d.T xn�1;T xn/ for any n 2N�: (2.3)
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Thus, fd.T xn;T xnC1/g is a monotone non-increasing sequence of non-negative real
numbers and hence is convergent. Hence there is r � 0 such that

lim
n!C1

d.T xn;T xnC1/D r:

Using a triangular inequality, we have

d.T xnC1;T xn/�
1

2
d.T xn�1;T xnC1/�

1

2
Œd.T xn�1;T xn/Cd.T xn;T xnC1/�:

Letting n!C1, we get

r �
1

2
lim

n!C1
d.T xn�1;T xnC1/�

1

2
rC

1

2
r;

that is lim
n!C1

d.T xn�1;T xnC1/D 2r . Using the continuity of  and ', and inequ-

ality (2.2), we have, letting n!C1

 .r/�  .r/�'.0;2r/;

and consequently, '.0;2r/� 0. Thus, by a property of ', r D 0, so

lim
n!C1

d.T xnC1;T xn/D 0: (2.4)

Now, we show that fT xng is a Cauchy sequence. If otherwise, then there exists
" > 0 for which we can find subsequences fT xm.k/g and fT xn.k/g of fT xng with
n.k/ > m.k/ > k such that for every k,

d.T xm.k/;T xn.k//� "; d.T xm.k/;T xn.k/�1/ < ": (2.5)

By triangular inequality, we have from (2.5)

"� d.T xm.k/;T xn.k//

� d.T xm.k/;T xn.k/�1/Cd.T xn.k/�1;T xn.k//

< "Cd.T xn.k/�1;T xn.k//:

Using (2.4), we get

lim
k!C1

d.T xm.k/;T xn.k//D lim
k!C1

d.T xm.k/;T xn.k/�1/D ": (2.6)

On the other hand,

d.T xm.k/;T xn.k/�1/� d.T xm.k/;T xm.k/�1/Cd.T xm.k/�1;T xn.k//

Cd.T xn.k/;T xn.k/�1/;

and

d.T xm.k/�1;T xn.k//� d.T xm.k/�1;T xm.k//Cd.T xm.k/;T xn.k//:

Letting k!C1 in the two above inequalities, we have thanks to (2.4) and (2.6),

lim
k!C1

d.T xm.k/�1;T xn.k//D ": (2.7)
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From (2.1), we have

 ."/�  .d.T xm.k/;T xn.k///

�  .
1

2
Œd.f xm.k/;T xn.k//Cd.f xn.k/;T xm.k//�/

�'.d.f xm.k/;T xn.k//;d.f xn.k/;T xm.k///

D  .
1

2
Œd.T xm.k/�1;T xn.k//Cd.T xn.k/�1;T xm.k//�/

�'.d.T xm.k/�1;T xn.k//;d.T xn.k/�1;T xm.k///:

Taking k!C1, using the continuity of  and ', we obtain from (2.6), (2.7)

 ."/�  ."/�'.";"/;

hence '.";"/D 0, so "D 0, it is a contradiction. Thus fT xng is a Cauchy sequence.
Since f xn D T xn�1, hence ff xng is a Cauchy sequence in .f .X/;d/, which is
complete. Thus there is ´ 2X such that

lim
n!C1

f xn D f ´: (2.8)

Moreover, (2.4) reads
lim

n!C1
d.f xn;f xnC1/D 0: (2.9)

By (2.1), we have

 .d.T ´;f xnC1//D  .d.T ´;T xn//

�  .
1

2
Œd.f ´;T xn/Cd.f xn;T ´/�/�'.d.f ´;T xn/;d.f xn;T ´//

D  .
1

2
Œd.f ´;f xnC1/Cd.f xn;T ´/�/�'.d.f ´;f xnC1/;d.f xn;T ´//;

and letting n!C1, using the continuity of  and ' and by (2.8), (2.9), we find

 .d.T ´;f ´//�  .
1

2
d.T ´;f ´//�'.0;d.f ´;T ´//�  .

1

2
d.T ´;f ´//:

Consequently, d.T ´;f ´/ � 1
2
d.T ´;f ´/, that is, d.T ´;f ´/ D 0, i,e. T ´ D f ´,

hence ´ is a coincidence point of T and f . Now suppose that T and f commute at
´. Let w D T ´D f ´. Then Tw D T .f ´/D f .T ´/D f w. By inequality (2.1)

 .d.T ´;T w/�  .
1

2
Œd.f ´;T w/Cd.f w;T ´/�/�'.d.f ´;T w/;d.f w;T ´//

D  .
1

2
Œd.T ´;T w/Cd.Tw;T ´/�/�'.d.T ´;T w/;d.T w;T ´//

D  .
1

2
Œd.T ´;T w/Cd.Tw;T ´/�/�'.d.T ´;T w/;d.T w;T ´//

D  .d.T ´;T w//�'.d.T ´;T w/;d.T w;T ´//:



24 H. AYDI

This implies that d.T ´;T w/D 0, by the property of '. Therefore, Tw D f w D w.
This completes the proof of Theorem 3. �

Example 1. Let X D Œ0;C1/. Let d be defined by d.x;y/ D jx � yj for all
x;y 2 X . We set f x D x

2
and T x D x

4
for all x 2 X . It is clear that T .X/ � f .X/

and .f .X/;d/ is a complete metric space. Define  W Œ0;C1/! Œ0;C1/ and ' W
Œ0;C1/� Œ0;C1/! Œ0;C1/ by

 .t/D
t

2
and '.t; s/D

1

16
.tC s/:

It is obvious that  and ' satisfy the hypotheses of Theorem 3. We need to show that
the inequality (2.1) holds for any x;y 2X . First, the left-hand side of (2.1) is

 .d.T x;Ty//D
1

8
jx�yj: (2.10)

While, the right-hand side of (2.1) is

 .
1

2
.d.f x;Ty/Cd.fy;T x//�'.d.f x;Ty/;d.fy;T x/

D
1

4
Œj
x

2
�
y

4
jC j

y

2
�
x

4
j��

1

16
Œj
x

2
�
y

4
jC j

y

2
�
x

4
j�

D
3

16
Œj
x

2
�
y

4
jC j

y

2
�
x

4
j�: (2.11)

By symmetry of (2.10) and (2.11), and without loss of generality, we suppose that
x � y. In particular, (2.10) reads

 .d.T x;Ty//D
1

8
.x�y/:

We distinguish two cases:
� If 2y � x. Here, we have from (2.11)

 .
1

2
.d.f x;Ty/Cd.fy;T x//�'.d.f x;Ty/;d.fy;T x/

D
3

16
Œj
x

2
�
y

4
jC j

y

2
�
x

4
j�D

3

16
Œ.
x

2
�
y

4
/C .

y

2
�
x

4
/�

D
3

64
.xCy/�

1

8
.x�y/D  .d.T x;Ty//: (2.12)

� If 2y < x. Here, we have from (2.11)

 .
1

2
.d.f x;Ty/Cd.fy;T x//�'.d.f x;Ty/;d.fy;T x/

D
3

16
Œj
x

2
�
y

4
jC j

y

2
�
x

4
j�D

3

16
Œ.
x

2
�
y

4
/C .�

y

2
C
x

4
/�

D
9

64
.x�y/�

1

8
.x�y/D  .d.T x;Ty//: (2.13)
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By (2.12) and (2.13), the inequality (2.1) is satisfied. Then by Theorem 3, T and f
have a common fixed point, which is ´D 0.

Corollary 1. Let .X;d/ be a complete metric space. If T WX !X satisfies

 .d.T x;Ty//�  .
1

2
Œd.x;Ty/Cd.y;T x/�/�'.d.x;Ty/;d.y;T x//; (2.14)

for all x;y 2X , where
(1)  W Œ0;C1/! Œ0;C1/ is an altering distance function,
(2) ' W Œ0;C1/� Œ0;C1/! Œ0;C1/ is a continuous function with '.t; s/D 0

if and only if t D s D 0, then T has a unique fixed point.

Proof. It follows by taking f D IX in Theorem 3. The uniqueness of the fixed
point follows by the following: suppose u and v are fixed points of T . By (2.14), we
have

 .d.u;v//D  .d.T u;T v//

�  .
1

2
Œd.u;T v/Cd.v;T u/�/�'.d.u;T v/;d.v;T u//

D  .
1

2
Œd.u;v/Cd.v;u/�/�'.d.u;v/;d.v;u//

D  .d.u;v//�'.d.u;v/;d.v;u//;

which implies that '.d.u;v/;d.v;u//D 0, and by a property of ', we get uD v. �

Corollary 2. Let .X;d/ be a metric space. If T;f WX!X are such that T .X/�
f .X/, .f .X/;d/ is complete and

d.T x;Ty/�
1

2
Œd.f x;Ty/Cd.fy;T x/��'.d.f x;Ty/;d.fy;T x//; (2.15)

for all x;y 2 X , where ' W Œ0;C1/� Œ0;C1/! Œ0;C1/ is a continuous function
with '.t; s/D 0 if and only if t D s D 0, then T and f have a coincidence point in
X . Further, if T and f commute at their coincidence points, then T and f have a
common fixed point.

Proof. The proof follows by taking  .t/D t in Theorem 3. �

Corollary 3. Let .X;d/ be a complete metric space. If T WX!X satisfies for all
x;y 2X

d.T x;Ty/�
1

2
Œd.x;Ty/Cd.y;T x/��'.d.x;Ty/;d.y;T x//; (2.16)

where ' W Œ0;C1/� Œ0;C1/! Œ0;C1/ is a continuous function with '.t; s/D 0 if
and only if t D s D 0, then T has a unique fixed point.

Proof. It follows by taking f D IdX in Corollary 2. The uniqueness of the fixed
point follows from Corollary 1. �
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Remark 1. � Corollary 1 corresponds to Corollary 2.1 of Shatanawi [18].
� Corollary 2 corresponds to Theorem 1 of Chandok [4].
� Corollary 3 corresponds to Theorem 2.1 of Choudhury [6].

Now, we extend Theorem 3 and we prove a common fixed point theorem for f -
non-decreasing generalized nonlinear contraction mappings in the context of ordered
metric spaces.

Definition 6 ([7]). Suppose .X;�/ is a partially ordered set and T;f WX!X . T
is said to be monotone f -nondecreasing if for all x;y 2X ,

f x � fy implies T x � Ty: (2.17)

If f D IX in Definition 6, then T is monotone non-decreasing.

Theorem 4. Let .X;�/ be a partially ordered set and suppose that there exists a
metric d on X such that .X;d/ is a complete metric space. Let f and T are self-
mappings of X such that T .X/� f .X/, f .X/ is closed and T is f -non-decreasing
mapping. Suppose that f and T satisfy for all x;y 2X , for which f .x/� f .y/

 .d.T x;Ty//�  .
1

2
Œd.f x;Ty/Cd.fy;T x/�/�'.d.f x;Ty/;d.fy;T x//

(2.18)
where

(1)  W Œ0;C1/! Œ0;C1/ is an altering distance function,
(2) ' W Œ0;C1/� Œ0;C1/! Œ0;C1/ is a continuous function with '.x;y/D 0

if and only if x D y D 0.

Also, suppose that if ff .xn/g �X is a non-decreasing sequence with f .xn/! f .´/

in f .X/, then f .xn/� f .´/ and f .´/� f .f .´// for every n.
If there exists x0 2 X with f x0 � T x0, then T and f have a coincidence point.
Further, if T and f commute at their coincidence points, then T and f have a
common fixed point.

Proof. Let x0 2 X such that f x0 � T x0. Since T .X/ � f .X/, we can choose
x1 2 X , so that f x1 D T x0. Since T x1 2 f .X/, there exists x2 2 X such that
f x2 D T x1. By induction, we construct a sequence fxng in X such that

f xnC1 D T xn:

Since f x0 � T x0, T x0 D f x1, so f x0 � f x1. T is f -non-decreasing mapping, we
get T x0 � T x1. Similarly f x1 � f x2, T x1 � T x2, hence f x2 � f x3. Continuing,
we obtain

f x0 � f x1 � f x2 � :::� f xn � f xnC1 � :::

If for some n, T xnC1DT xn, then T xnC1D f xnC1, i.e. T and f have a coincidence
point xnC1, and so we have the result. For the rest, assume that d.T xn;T xnC1/ > 0
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for all n 2N. By (2.18), we have

 .d.T xn;T xnC1//�  .
1

2
Œd.f xnC1;T xn/Cd.f xn;T xnC1/�/

�'.d.f xnC1;T xn/;d.f xn;T xnC1//

D  .
1

2
d.T xn�1;T xnC1//�'.0;d.T xn�1;T xnC1//

�  .
1

2
d.T xn�1;T xnC1//

�  .
1

2
d.T xn�1;T xn/C

1

2
d.T xn;T xnC1//:

It follows that, for any n 2N�

d.T xn;T xnC1/� d.T xn�1;T xn/:

Thus fd.T xn;T xnC1/g is a monotone non-increasing sequence, hence it is conver-
gent. Now, proceeding as in Theorem 3, we can prove that

lim
n!C1

d.T xn;T xnC1/D 0: (2.19)

Moreover, fT xng is a Cauchy sequence. Since T xn D f xnC1 and f .X/ is closed,
so there exists ´ 2X such that

lim
n!C1

f xn D f ´: (2.20)

Having in mind ff xng is a non-decreasing sequence, so by (2.20) we have for every
n 2N

f xn � f ´; f .´/� f .f ´/: (2.21)
Having f xn � f ´, so from inequality (2.18), we have

 .d.f xnC1;T ´//D  .d.T xn;T ´//

�  .
1

2
Œd.f ´;T xn/Cd.f xn;T ´/�/�'.d.f ´;T xn/;d.f xn;T ´//

D  .
1

2
Œd.f ´;f xnC1/Cd.f xn;T ´/��'.d.f ´;f xnC1/;d.f xn;T ´//:

Taking n!C1, using the continuity of  and ', we get from (2.19), (2.20)

 .d.T ´;f ´//�  .
1

2
d.f ´;f ´//�'.0;d.f ´;T ´//;

that is, d.T ´;f ´/D 0, hence T ´D f ´, so ´ is a coincidence point of T and f .
Now suppose that T and f commute at ´. Let w D T ´ D f ´. Then Tw D

T .f ´/D f .T ´/D f w. From (2.21), we have f ´� f .f ´/D f w, so the inequality
(2.18) gives us

 .d.T ´;T w/�  .
1

2
Œd.f ´;T w/Cd.f w;T ´/�/�'.d.f ´;T w/;d.f w;T ´//
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D  .
1

2
Œd.T ´;T w/Cd.Tw;T ´/�/�'.d.T ´;T w/;d.T w;T ´//

D  .
1

2
Œd.T ´;T w/Cd.Tw;T ´/�/�'.d.T ´;T w/;d.T w;T ´//

D  .d.T ´;T w//�'.d.T ´;T w/;d.T w;T ´//:

This implies that d.T ´;T w/D 0, by the property of '. Therefore, Tw D f w D w.
This completes the proof of Theorem 4. �

Corollary 4. Let .X;�/ be a partially ordered set and suppose that there exists
a metric d on X such that .X;d/ is a complete metric space. Let f and T are self-
mappings of X such that T .X/� f .X/, f .X/ is closed and T is f -non-decreasing
mapping. Assume that f and T satisfy for all x;y 2X , for which f .x/� f .y/

d.T x;Ty/�
1

2
Œd.f x;Ty/Cd.fy;T x/��'.d.f x;Ty/;d.fy;T x//; (2.22)

where ' W Œ0;C1/� Œ0;C1/! Œ0;C1/ is a continuous function with '.x;y/D 0
if and only if x D y D 0.
Also, suppose that if ff .xn/g �X is a non-decreasing sequence with f .xn/! f .´/

in f .X/, then f .xn/� f .´/ and f .´/� f .f .´// for every n.
If there exists x0 2 X with f x0 � T x0, then T and f have a coincidence point.
Further, if T and f commute at their coincidence points, then T and f have a
common fixed point.

Proof. It follows by taking  .t/D t in Theorem 4. �

Corollary 5. Let .X;�/ be a partially ordered set and suppose that there exists
a metric d on X such that .X;d/ is a complete metric space. Let T W X ! X be
a monotone non-decreasing mapping. Suppose that T satisfies for all x;y 2 X , for
which x � y,

 .d.T x;Ty//�  .
1

2
Œd.x;Ty/Cd.y;T x/�/�'.d.x;Ty/;d.y;T x//; (2.23)

where

(1)  W Œ0;C1/! Œ0;C1/ is an altering distance function,
(2) ' W Œ0;C1/� Œ0;C1/! Œ0;C1/ is a continuous function with '.x;y/D 0

if and only if x D y D 0.

Also suppose either

(i) fxng � X is a non-decreasing sequence with xn! ´, then xn � ´ for every
n, or

(ii) T is continuous.

If there exists x0 2X with x0 � T x0, then T has a fixed point.
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Proof. If (i) holds, then taking f D IX in Theorem 4, we get the result.
If (ii) holds, then proceeding as in Theorem 4 with f D IX , we can prove that fT xng

is a Cauchy sequence and

´D lim
n!C1

xnC1 D limT xn D T . lim
n!C1

xn/D T ´:

Hence the proof is completed. �

Corollary 6. Let .X;�/ be a partially ordered set and suppose that there exists
a metric d on X such that .X;d/ is a complete metric space. Let T W X ! X be
a monotone non-decreasing mapping. Suppose that T satisfies for all x;y 2 X , for
which x � y,

d.T x;Ty/�
1

2
Œd.x;Ty/Cd.y;T x/��'.d.x;Ty/;d.y;T x//; (2.24)

where ' W Œ0;C1/� Œ0;C1/! Œ0;C1/ is a continuous function with '.x;y/D 0
if and only if x D y D 0.
Also, suppose either

(i) If fxng �X is a non-decreasing sequence with xn! ´, then xn � ´ for every
n, or

(ii) T is continuous.

If there exists x0 2X with x0 � T x0, then T has a fixed point.

Proof. It follows by taking  .t/D t in Corollary 5. �

Remark 2. Corollary 6 corresponds to Theorem 2.1 and Theorem 2.2 of Harjani
et al. [8].

Corollary 7. Let .X;�/ be a partially ordered set and suppose that there exists
a metric d on X such that .X;d/ is a complete metric space. Let T W X ! X be
a monotone non-decreasing mapping. Suppose that T satisfies for all x;y 2 X , for
which x � y,

d.T x;Ty/� kŒd.x;Ty/Cd.y;T x/�; (2.25)

where 0 < k < 1
2

.
Also, suppose either

(i) If fxng �X is a non-decreasing sequence with xn! ´, then xn � ´ for every
n, or

(ii) T is continuous.

If there exists x0 2X with x0 � T x0, then T has a fixed point.

Proof. It follows by taking '.t/D .1
2
�k/t in Corollary 6. �
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[13] J. J. Nieto, R. L. Pouso, and R. Rodrı́guez-López, “Fixed point theorems in ordered abstract spa-
ces,” Proc. Am. Math. Soc., vol. 135, no. 8, pp. 2505–2517, 2007.
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Université de Sousse, Institut Supérieur d’Informatique et des Technologies de Communication de

Hammam Sousse, Route GP1-4011, H. Sousse, Tunisia
E-mail address: hassen.aydi@isima.rnu.tn


