On common fixed point theorems for
\((\psi, \phi)\)-generalized \(f\)-weakly contractive mappings

\(H. \ Aydi\)
ON COMMON FIXED POINT THEOREMS FOR
(ψ, φ)-GENERALIZED f-WEAKLY CONTRACTIVE MAPPINGS

H. AYDI

Received September 15, 2011

Abstract. In this paper, we present some common fixed point theorems for (ψ, φ)-generalized f-weakly contractive mappings in metric and ordered metric spaces. Our results extend, generalize and improve some well-known results in the literature. Also, we give an example to illustrate our results.

2000 Mathematics Subject Classification: 54H25; 47H10; 54E50

Keywords: common fixed point, commuting maps, f-weakly contractive maps, generalized f-weakly contractive maps, ordered metric space

1. INTRODUCTION AND PRELIMINARIES

The first important result on fixed points for contractive type mapping was the much celebrated Banach’s contraction principle by Banach [2] in 1922. After this, Kannan [9, 10] proved the following result:

Theorem 1. Let (X, d) be a complete metric space. If $T : X \to X$ satisfies

$$d(Tx, Ty) \leq k[d(x, Tx) + d(y, Ty)],$$

where $0 < k < \frac{1}{2}$ and $x, y \in X$, then T has a unique fixed point.

A similar type of contractive condition has been studied by Chatterjee [5] and he proved the following result:

Theorem 2. Let (X, d) be a complete metric space. If $T : X \to X$ satisfies a C-contraction given as follows:

$$d(Tx, Ty) \leq k[d(x, Ty) + d(y, Tx)],$$

where $0 < k < \frac{1}{2}$ and $x, y \in X$, then T has a unique fixed point.

Alber and Guerre-Delabriere [1] introduced the definition of weak Φ-contraction.

Definition 1. A self mapping T on a metric space X is called weak Φ-contraction if there exists a function $\Phi : [0, +\infty) \to [0, +\infty)$ such that for each $x, y \in X$,

$$d(Tx, Ty) \leq d(x, y) - \Phi(d(x, y)).$$

© 2013 Miskolc University Press
The notion of Φ-contraction and weak Φ-contraction has been studied by many authors, see [3, 12, 15, 17, 19]. In recent years, many results related to fixed point theorems in partially ordered metric spaces are given, for more details see [8,12–16].

Choudhury in [6] introduced a generalization of C-contraction given by the following definition.

Definition 2 (6). Let (X,d) be a metric space. A mapping $T : X \to X$ is said to be weakly C-contractive (or a weak C-contraction) if for all $x, y \in X$,

$$d(Tx, Ty) \leq \frac{1}{2}(d(x, Ty) + d(y, Tx)) - \varphi(d(x, Ty), d(y, Tx)), $$

where $\varphi : [0, +\infty) \to [0, +\infty)$ is a continuous function such that $\varphi(x, y) = 0$ if and only $x = y = 0$.

In [6] the author proves that if X is complete then every weak C-contraction has a unique fixed point. Recently, Harjani et al, [8] presented this last result in the context of ordered metric spaces.

Chandok [4] introduced the following definition: A map $T : X \to X$ is generalized f-weakly contractive if for each $x, y \in X$,

$$d(Tx, Ty) \leq \frac{1}{2}(d(fx, Ty) + d(fy, Tx)) - \varphi(d(fx, Ty), d(fy, Tx)),$$

where $\varphi : [0, +\infty) \to [0, +\infty) \to [0, +\infty)$ is a continuous function such that $\varphi(x, y) = 0$ if and only $x = y = 0$.

If $f = I_X$, the identity mapping, then generalized f-weakly contractive mapping is weakly C-contractive.

Khan et al. [11] introduced the concept of altering distance function as follows:

Definition 3 (altering distance function, [11]). The function $\psi : [0, +\infty) \to [0, +\infty)$ is called an altering distance function if the following properties are satisfied:

1. ψ is continuous and non-decreasing.
2. $\psi(t) = 0$ if and only if $t = 0$.

Following the above definitions, we introduce the following:

Definition 4. A map $T : X \to X$ is called (ψ, φ)-generalized f-weakly contractive if for each $x, y \in X$,

$$\psi(d(Tx, Ty)) \leq \psi\left(\frac{1}{2}(d(fx, Ty) + d(fy, Tx))\right) - \varphi(d(fx, Ty), d(fy, Tx)),$$

where

1. $\psi : [0, +\infty) \to [0, +\infty)$ is an altering distance function.
2. $\varphi : [0, +\infty) \times [0, +\infty) \to [0, +\infty)$ is a continuous function with $\varphi(t, s) = 0$ if and only if $t = s = 0$.
If \(\psi(t) = t \), then \((\psi, \varphi)\)-generalized \(f \)-weakly contractive mapping is generalized \(f \)-weakly contractive.

The aim of this paper is to study some common fixed point theorems for \((\psi, \varphi)\)-generalized \(f \)-weakly contractive in metric and ordered metric spaces.

2. MAIN RESULTS

First, we state the following known definition:

Definition 5. Let \(X \) a non-empty set. A point \(x \in X \) is a coincidence point (common fixed point) of \(f : X \to X \) and \(T : X \to X \) if \(fx = Tx \) \((x = fx = Tx)\). The pair \(\{f, T\} \) is called commuting if \(Tf x = f Tx \) for all \(x \in X \).

We start with a common fixed point theorem for \((\psi, \varphi)\)-generalized \(f \)-weakly contractive mappings in complete metric spaces.

Theorem 3. Let \((X, d)\) be a metric space. Let \(f, T : X \to X \) satisfy \(T(X) \subset f(X) \), \((f(X), d)\) is complete and

\[
\psi(d(Tx, Ty)) \leq \psi\left(\frac{1}{2} [d(fx, Tx) + d(fy, Ty)] \right) - \psi(d(fx, Ty), d(fy, Tx),)
\]

for all \(x, y \in X \), where

1. \(\psi : [0, +\infty) \to [0, +\infty) \) is an altering distance function,
2. \(\varphi : [0, +\infty) \times [0, +\infty) \to [0, +\infty) \) is a continuous function with \(\varphi(t, s) = 0 \) if and only if \(t = s = 0 \), then \(T \) and \(f \) have a coincidence point in \(X \). Further, if \(T \) and \(f \) commute at their coincidence points, then \(T \) and \(f \) have a common fixed point.

Proof. Let \(x_0 \in X \). Since \(T(X) \subset f(X) \), we can choose \(x_1 \in X \), so that \(fx_1 = Tx_0 \). Since \(Tx_1 \in f(X) \), there exists \(x_2 \in X \) such that \(fx_2 = Tx_1 \). By induction, we construct a sequence \(\{x_n\} \) in \(X \) such that \(fx_{n+1} = Tx_n \), for every \(n \in \mathbb{N} \). By inequality (2.1), we have

\[
\psi(d(Tx_{n+1}, Tx_n)) \leq \psi\left(\frac{1}{2} [d(fx_{n+1}, Tx_n) + d(fx_n, Tx_{n+1})] \right) - \psi(d(fx_{n+1}, Tx_n), d(fx_n, Tx_{n+1}))
\]

\[
= \psi\left(\frac{1}{2} d(Tx_{n+1},Tx_{n+1}) \right) - \psi(0,d(Tx_{n-1},Tx_{n+1}))
\]

\[
\leq \psi\left(\frac{1}{2} d(Tx_{n-1},Tx_{n+1}) \right) - \psi(0,d(Tx_{n-1},Tx_{n+1}))
\]

\[
\leq \psi\left(\frac{1}{2} [d(Tx_{n-1},Tx_n) + d(Tx_n, Tx_{n+1})] \right).
\]

Since \(\psi \) is a non-decreasing function, we get that

\[
d(Tx_n, Tx_{n+1}) \leq d(Tx_{n-1}, Tx_n) \text{ for any } n \in \mathbb{N}^*.
\]
Thus, \(\{d(Tx_n, Tx_{n+1})\} \) is a monotone non-increasing sequence of non-negative real numbers and hence is convergent. Hence there is \(r \geq 0 \) such that
\[
\lim_{n \to +\infty} d(Tx_n, Tx_{n+1}) = r.
\]
Using a triangular inequality, we have
\[
d(Tx_{n+1}, Tx_n) \leq \frac{1}{2} d(Tx_{n-1}, Tx_n) \leq \frac{1}{2} [d(Tx_{n-1}, Tx_n) + d(Tx_n, Tx_{n+1})].
\]
Letting \(n \to +\infty \), we get
\[
r \leq \frac{1}{2} \lim_{n \to +\infty} d(Tx_{n-1}, Tx_n) \leq \frac{1}{2} r + \frac{1}{2} r,
\]
that is
\[
\lim_{n \to +\infty} d(Tx_{n-1}, Tx_{n+1}) = 2r.
\]
Using the continuity of \(\psi \) and \(\varphi \), and inequality (2.2), we have, letting \(n \to +\infty \)
\[
\psi(r) \leq \psi(r) - \varphi(0, 2r),
\]
and consequently, \(\varphi(0, 2r) \leq 0 \). Thus, by a property of \(\varphi, r = 0 \), so
\[
\lim_{n \to +\infty} d(Tx_{n+1}, Tx_n) = 0. \tag{2.4}
\]
Now, we show that \(\{Tx_n\} \) is a Cauchy sequence. If otherwise, then there exists \(\varepsilon > 0 \) for which we can find subsequences \(\{Tx_{m(k)}\} \) and \(\{Tx_{n(k)}\} \) of \(\{Tx_n\} \) with \(n(k) > m(k) > k \) such that for every \(k \),
\[
d(Tx_{m(k)}, Tx_{n(k)}) \geq \varepsilon, \quad d(Tx_{m(k)}, Tx_{n(k)-1}) < \varepsilon. \tag{2.5}
\]
By triangular inequality, we have from (2.5)
\[
\varepsilon \leq d(Tx_{m(k)}, Tx_{n(k)}) \\
\leq d(Tx_{m(k)}, Tx_{n(k)-1}) + d(Tx_{n(k)-1}, Tx_{n(k)}) \\
< \varepsilon + d(Tx_{n(k)-1}, Tx_{n(k)}).
\]
Using (2.4), we get
\[
\lim_{k \to +\infty} d(Tx_{m(k)}, Tx_{n(k)}) = \lim_{k \to +\infty} d(Tx_{m(k)}, Tx_{n(k)-1}) = \varepsilon. \tag{2.6}
\]
On the other hand,
\[
d(Tx_{m(k)}, Tx_{n(k)-1}) \leq d(Tx_{m(k)}, Tx_{m(k)-1}) + d(Tx_{m(k)-1}, Tx_{n(k)}) \\
+ d(Tx_{n(k)}, Tx_{n(k)-1}),
\]
and
\[
d(Tx_{m(k)-1}, Tx_{n(k)}) \leq d(Tx_{m(k)-1}, Tx_{m(k)}) + d(Tx_{m(k)}, Tx_{n(k)}).
\]
Letting \(k \to +\infty \) in the two above inequalities, we have thanks to (2.4) and (2.6),
\[
\lim_{k \to +\infty} d(Tx_{m(k)-1}, Tx_{n(k)}) = \varepsilon. \tag{2.7}
\]
From (2.1), we have
\[
\psi(\varepsilon) \leq \psi\left(\frac{1}{2}[d(fx_{m(k)} \cdot Tx_{n(k)}) + d(fx_{n(k)} \cdot Tx_{m(k)})]\right)
\]
\[
= \psi\left(\frac{1}{2}(d(Tx_{m(k)} \cdot Tx_{n(k)}) + d(Tx_{n(k)} \cdot Tx_{m(k)})\right)
\]
\[
= \psi(\varepsilon) - \psi(\varepsilon) \leq \psi(\varepsilon) - \psi(\varepsilon),
\]
\[
\psi(\varepsilon) \leq \psi(\varepsilon) - \psi(\varepsilon),
\]
hence \(\psi(\varepsilon, \varepsilon) = 0\), so \(\varepsilon = 0\), it is a contradiction. Thus \(\{Tx_n\}\) is a Cauchy sequence. Since \(fx_n = Tx_{n-1}\), hence \(\{fx_n\}\) is a Cauchy sequence in \((f(X), d)\), which is complete. Thus there is \(z \in X\) such that
\[
\lim_{n \to \infty} fx_n = f z.
\]
Moreover, (2.4) reads
\[
\lim_{n \to \infty} d(fx_n, fx_{n+1}) = 0.
\]
By (2.1), we have
\[
\psi(d(Tz, fx_{n+1})) = \psi(d(Tz, Tx_n))
\]
\[
\leq \psi(\frac{1}{2}[d(fz, Tx_n) + d(fx_n, Tz)]) - \psi(d(fz, Tx_n), d(fx_n, Tz))
\]
\[
= \psi(\frac{1}{2}[d(fz, fx_{n+1}) + d(fx_n, Tz)]) - \psi(d(fz, fx_{n+1}), d(fx_n, Tz)),
\]
and letting \(n \to +\infty\), using the continuity of \(\psi\) and \(\varphi\) and by (2.8), (2.9), we find
\[
\psi(d(Tz, fz)) \leq \psi(\frac{1}{2}d(Tz, fz)) - \psi(0, d(fz, Tz)) \leq \psi(\frac{1}{2}d(Tz, fz)).
\]
Consequently, \(d(Tz, fz) \leq \frac{1}{2}d(Tz, fz)\), that is, \(d(Tz, fz) = 0\), i.e. \(Tz = fz\), hence \(z\) is a coincidence point of \(T\) and \(f\). Now suppose that \(T\) and \(f\) commute at \(z\). Let \(w = Tz = fz\). Then \(Tw = T(fz) = f(Tz) = fw\). By inequality (2.1)
\[
\psi(d(Tz, Tw)) \leq \psi(\frac{1}{2}[d(fz, Tw) + d(fw, Tz)]) - \psi(d(fz, Tw), d(fw, Tz))
\]
\[
= \psi(\frac{1}{2}[d(Tz, Tw) + d(Tw, Tz)]) - \psi(d(Tz, Tw), d(Tw, Tz))
\]
\[
= \psi(\frac{1}{2}[d(Tz, Tw) + d(Tw, Tz)]) - \psi(d(Tz, Tw), d(Tw, Tz))
\]
\[
= \psi(d(Tz, Tw)) - \psi(d(Tz, Tw), d(Tw, Tz)).
\]
This implies that $d(Tz, Tw) = 0$, by the property of φ. Therefore, $Tw = fw = w$. This completes the proof of Theorem 3. □

Example 1. Let $X = [0, +\infty)$. Let d be defined by $d(x, y) = |x - y|$ for all $x, y \in X$. We set $fx = \frac{x}{2}$ and $Tx = \frac{x}{4}$ for all $x \in X$. It is clear that $T(X) \subset f(X)$ and $(f(X), d)$ is a complete metric space. Define $\psi: [0, +\infty) \to [0, +\infty)$ and $\varphi: [0, +\infty) \times [0, +\infty) \to [0, +\infty)$ by

$$\psi(t) = \frac{t}{2} \quad \text{and} \quad \varphi(t, s) = \frac{1}{16}(t + s).$$

It is obvious that ψ and φ satisfy the hypotheses of Theorem 3. We need to show that the inequality (2.1) holds for any $x, y \in X$. First, the left-hand side of (2.1) is

$$\psi(d(Tx, Ty)) = \frac{1}{8}|x - y|. \quad (2.10)$$

While, the right-hand side of (2.1) is

$$\psi\left(\frac{1}{2}(d(fx, Ty) + d(fy, Tx)) - \varphi(d(fx, Ty), d(fy, Tx))\right) \quad (2.11)$$

By symmetry of (2.10) and (2.11), and without loss of generality, we suppose that $x \geq y$. In particular, (2.10) reads

$$\psi(d(Tx, Ty)) = \frac{1}{8}(x - y).$$

We distinguish two cases:

- If $2y \geq x$. Here, we have from (2.11)

$$\psi\left(\frac{1}{2}(d(fx, Ty) + d(fy, Tx)) - \varphi(d(fx, Ty), d(fy, Tx))\right) = \frac{3}{64}(x + y) \geq \frac{1}{8}(x - y) = \psi(d(Tx, Ty)). \quad (2.12)$$

- If $2y < x$. Here, we have from (2.11)

$$\psi\left(\frac{1}{2}(d(fx, Ty) + d(fy, Tx)) - \varphi(d(fx, Ty), d(fy, Tx))\right) = \frac{9}{64}(x - y) \geq \frac{1}{8}(x - y) = \psi(d(Tx, Ty)). \quad (2.13)$$
By (2.12) and (2.13), the inequality (2.1) is satisfied. Then by Theorem 3, \(T \) and \(f \) have a common fixed point, which is \(z = 0 \).

Corollary 1. Let \((X, d)\) be a complete metric space. If \(T : X \to X \) satisfies
\[
\psi(d(Tx, Ty)) \leq \psi\left(\frac{1}{2}[d(x, Ty) + d(y, Tx)]\right) - \varphi(d(x, Ty), d(y, Tx)),
\]
for all \(x, y \in X \), where
\begin{enumerate}
 \item \(\psi : [0, +\infty) \to [0, +\infty) \) is an altering distance function,
 \item \(\varphi : [0, +\infty) \times [0, +\infty) \to [0, +\infty) \) is a continuous function with \(\varphi(t, s) = 0 \) if and only if \(t = s = 0 \), then \(T \) has a unique fixed point.
\end{enumerate}

Proof. It follows by taking \(f = I_X \) in Theorem 3. The uniqueness of the fixed point follows by the following: suppose \(u \) and \(v \) are fixed points of \(T \). By (2.14), we have
\[
\psi(d(u, v)) = \psi(d(Tu, Tv)) \\
\leq \psi\left(\frac{1}{2}[d(u, Tv) + d(v, Tu)]\right) - \varphi(d(u, Tv), d(v, Tu)) \\
\leq \psi\left(\frac{1}{2}[d(u, v) + d(v, u)]\right) - \varphi(d(u, v), d(v, u)) \\
= \psi(d(u, v)) - \varphi(d(u, v), d(v, u)),
\]
which implies that \(\varphi(d(u, v), d(v, u)) = 0 \), and by a property of \(\varphi \), we get \(u = v \). \(\square \)

Corollary 2. Let \((X, d)\) be a metric space. If \(T, f : X \to X \) are such that \(T(X) \subset f(X) \), \((f(X), d)\) is complete and
\[
d(Tx, Ty) \leq \frac{1}{2}[d(fx, Ty) + d(fy, Tx)] - \varphi(d(fx, Ty), d(fy, Tx)),
\]
for all \(x, y \in X \), where \(\varphi : [0, +\infty) \times [0, +\infty) \to [0, +\infty) \) is a continuous function with \(\varphi(t, s) = 0 \) if and only if \(t = s = 0 \), then \(T \) and \(f \) have a coincidence point in \(X \). Further, if \(T \) and \(f \) commute at their coincidence points, then \(T \) and \(f \) have a common fixed point.

Proof. The proof follows by taking \(\psi(t) = t \) in Theorem 3. \(\square \)

Corollary 3. Let \((X, d)\) be a complete metric space. If \(T : X \to X \) satisfies for all \(x, y \in X \)
\[
d(Tx, Ty) \leq \frac{1}{2}[d(x, Ty) + d(y, Tx)] - \varphi(d(x, Ty), d(y, Tx)),
\]
where \(\varphi : [0, +\infty) \times [0, +\infty) \to [0, +\infty) \) is a continuous function with \(\varphi(t, s) = 0 \) if and only if \(t = s = 0 \), then \(T \) has a unique fixed point.

Proof. It follows by taking \(f = I_X \) in Corollary 2. The uniqueness of the fixed point follows from Corollary 1. \(\square \)
Remark 1. • Corollary 1 corresponds to Corollary 2.1 of Shatanawi [18].
• Corollary 2 corresponds to Theorem 1 of Chandok [4].
• Corollary 3 corresponds to Theorem 2.1 of Choudhury [6].

Now, we extend Theorem 3 and we prove a common fixed point theorem for \(f \)-non-decreasing generalized nonlinear contraction mappings in the context of ordered metric spaces.

Definition 6 ([7]). Suppose \((X, \leq)\) is a partially ordered set and \(T, f : X \to X\). \(T\) is said to be monotone \(f\)-non-decreasing if for all \(x, y \in X\),

\[
fx \leq fy \quad \text{implies} \quad Tx \leq Ty.
\]

(2.17)

If \(f = I_X\) in Definition 6, then \(T\) is monotone non-decreasing.

Theorem 4. Let \((X, \leq)\) be a partially ordered set and suppose that there exists a metric \(d\) on \(X\) such that \((X, d)\) is a complete metric space. Let \(f\) and \(T\) are self-mappings of \(X\) such that \(T(X) \subseteq f(X)\), \(f(X)\) is closed and \(T\) is \(f\)-non-decreasing mapping. Suppose that \(f\) and \(T\) satisfy for all \(x, y \in X\), for which \(f(x) \leq f(y)\)

\[
\psi(d(Tx, Ty)) \leq \psi\left(\frac{1}{2} [d(fx, Ty) + d(fy, Tx)]\right) - \varphi(d(fx, Ty), d(fy, Tx))
\]

where

1. \(\psi : [0, +\infty) \to [0, +\infty)\) is an altering distance function,
2. \(\varphi : [0, +\infty) \times [0, +\infty) \to [0, +\infty)\) is a continuous function with \(\varphi(x, y) = 0\) if and only if \(x = y = 0\).

Also, suppose that if \(\{f(x_n)\} \subseteq X\) is a non-decreasing sequence with \(f(x_n) \to f(z)\) in \(f(X)\), then \(f(x_n) \leq f(z)\) and \(f(z) \leq f(f(z))\) for every \(n\). If there exists \(x_0 \in X\) with \(fx_0 \leq Tx_0\), then \(T\) and \(f\) have a coincidence point. Further, if \(T\) and \(f\) commute at their coincidence points, then \(T\) and \(f\) have a common fixed point.

Proof. Let \(x_0 \in X\) such that \(fx_0 \leq Tx_0\). Since \(T(X) \subseteq f(X)\), we can choose \(x_1 \in X\) so that \(fx_1 = Tx_0\). Since \(Tx_1 \in f(X)\), there exists \(x_2 \in X\) such that \(fx_2 = Tx_1\). By induction, we construct a sequence \(\{x_n\}\) in \(X\) such that

\[
fx_{n+1} = Tx_n.
\]

Since \(fx_0 \leq Tx_0\), \(Tx_0 = fx_1\), so \(fx_0 \leq fx_1\). \(T\) is \(f\)-non-decreasing mapping, we get \(Tx_0 \leq Tx_1\). Similarly \(fx_1 \leq fx_2\), \(Tx_1 \leq Tx_2\), hence \(fx_2 \leq fx_3\). Continuing, we obtain

\[
fx_0 \leq fx_1 \leq fx_2 \leq \ldots \leq fx_n \leq fx_{n+1} \leq \ldots
\]

If for some \(n\), \(Tx_{n+1} = Tx_n\), then \(Tx_{n+1} = fx_{n+1}\), i.e. \(T\) and \(f\) have a coincidence point \(x_{n+1}\), and so we have the result. For the rest, assume that \(d(Tx_n, Tx_{n+1}) > 0\)
for all \(n \in \mathbb{N} \). By (2.18), we have
\[
\psi(d(Tx_n, Tx_{n+1})) \leq \frac{1}{2} [d(fx_{n+1},Tx_n) + d(fx_n,Tx_{n+1})]
- \varphi(d(fx_{n+1},Tx_n), d(fx_n,Tx_{n+1}))
= \psi\left(\frac{1}{2} d(Tx_{n-1},Tx_{n+1})\right) - \varphi(0,d(Tx_{n-1},Tx_{n+1}))
\leq \psi\left(\frac{1}{2} d(Tx_{n-1},Tx_{n+1})\right)
\leq \psi\left(\frac{1}{2} d(Tx_{n-1},Tx_n) + \frac{1}{2} d(Tx_n,Tx_{n+1})\right).
\]

It follows that, for any \(n \in \mathbb{N}^* \)
\[
d(Tx_n, Tx_{n+1}) \leq d(Tx_{n-1},Tx_n).
\]
Thus \(\{d(Tx_n, Tx_{n+1})\} \) is a monotone non-increasing sequence, hence it is convergent. Now, proceeding as in Theorem 3, we can prove that
\[
\lim_{n \to +\infty} d(Tx_n, Tx_{n+1}) = 0. \quad (2.19)
\]
Moreover, \(\{Tx_n\} \) is a Cauchy sequence. Since \(Tx_n = fx_{n+1} \) and \(f(X) \) is closed, so there exists \(z \in X \) such that
\[
\lim_{n \to +\infty} fx_n = f(z). \quad (2.20)
\]
Having in mind \(\{fx_n\} \) is a non-decreasing sequence, so by (2.20) we have for every \(n \in \mathbb{N} \)
\[
fx_n \leq f(z), \quad f(z) \leq f(f(z)). \quad (2.21)
\]
Having \(fx_n \leq f(z) \), so from inequality (2.18), we have
\[
\psi(d(fx_{n+1},Tx)) = \psi(d(Tx_n,Tz))
\leq \psi\left(\frac{1}{2} [d(fz,Tx_n) + d(fx_n,Tz)]\right) - \varphi(d(fz,Tx_n), d(fx_n,Tz))
= \psi\left(\frac{1}{2} [d(fz,fx_{n+1}) + d(fx_n,Tz)] - \varphi(d(fz,fx_{n+1}), d(fx_n,Tz)).
\]
Taking \(n \to +\infty \), using the continuity of \(\psi \) and \(\varphi \), we get from (2.19), (2.20)
\[
\psi(d(Tz,fz)) \leq \psi\left(\frac{1}{2} d(fz,fz)\right) - \varphi(0,d(fz,Tz)),
\]
that is, \(d(Tz,fz) = 0 \), hence \(Tz = fz \), so \(z \) is a coincidence point of \(T \) and \(f \).

Now suppose that \(T \) and \(f \) commute at \(z \). Let \(w = Tz = fz \). Then \(Tw = T(fz) = f(Tz) = fw \). From (2.21), we have \(fz \leq f(fz) = fw \), so the inequality (2.18) gives us
\[
\psi(d(Tz,Tw)) \leq \psi\left(\frac{1}{2} [d(fz,Tw) + d(fw,Tz)]\right) - \varphi(d(fz,Tw), d(fw,Tz))
\]
This implies that \(d(Tz, Tw) = 0 \), by the property of \(\varphi \). Therefore, \(Tw = fw = w \).

This completes the proof of Theorem 4.

Corollary 4. Let \((X, \leq)\) be a partially ordered set and suppose that there exists a metric \(d \) on \(X \) such that \((X, d)\) is a complete metric space. Let \(f \) and \(T \) are self-mappings of \(X \) such that \(T(X) \subset f(X) \), \(f(X) \) is closed and \(T \) is \(f \)-non-decreasing mapping. Assume that \(f \) and \(T \) satisfy for all \(x, y \in X \), for which \(f(x) \leq f(y) \)

\[
d(Tx, Ty) \leq \frac{1}{2} [d(fx, Ty) + d(fy, Tx)] - \varphi(d(fx, Ty), d(fy, Tx)),
\]

where \(\varphi : [0, +\infty) \times [0, +\infty) \to [0, +\infty) \) is a continuous function with \(\varphi(x, y) = 0 \) if and only if \(x = y = 0 \).

Also, suppose that if \(\{ f(x_n) \} \subset X \) is a non-decreasing sequence with \(f(x_n) \to f(z) \) in \(f(X) \), then \(f(x_n) \leq f(z) \) and \(f(z) \leq f(f(z)) \) for every \(n \).

If there exists \(x_0 \in X \) with \(f(x_0) \leq Tx_0 \), then \(T \) and \(f \) have a coincidence point. Further, if \(T \) and \(f \) commute at their coincidence points, then \(T \) and \(f \) have a common fixed point.

Proof. It follows by taking \(\psi(t) = t \) in Theorem 4.

Corollary 5. Let \((X, \leq)\) be a partially ordered set and suppose that there exists a metric \(d \) on \(X \) such that \((X, d)\) is a complete metric space. Let \(T : X \to X \) be a monotone non-decreasing mapping. Suppose that \(T \) satisfies for all \(x, y \in X \), for which \(x \leq y \),

\[
\psi(d(Tx, Ty)) \leq \psi\left(\frac{1}{2} [d(x, Ty) + d(y, Tx)]\right) - \varphi(d(x, Ty), d(y, Tx)),
\]

where

(1) \(\psi : [0, +\infty) \to [0, +\infty) \) is an altering distance function,
(2) \(\varphi : [0, +\infty) \times [0, +\infty) \to [0, +\infty) \) is a continuous function with \(\varphi(x, y) = 0 \) if and only if \(x = y = 0 \).

Also suppose either

(i) \(\{ x_n \} \subset X \) is a non-decreasing sequence with \(x_n \to z \), then \(x_n \leq z \) for every \(n \), or
(ii) \(T \) is continuous.

If there exists \(x_0 \in X \) with \(x_0 \leq Tx_0 \), then \(T \) has a fixed point.
Proof. If (i) holds, then taking $f = I_X$ in Theorem 4, we get the result. If (ii) holds, then proceeding as in Theorem 4 with $f = I_X$, we can prove that \(\{Tx_n\} \) is a Cauchy sequence and

\[
x_n = \lim_{n \to +\infty} x_{n+1} = \lim_{n \to +\infty} T x_n = T(\lim_{n \to +\infty} x_n) = Tz.
\]

Hence the proof is completed. \(\square \)

Corollary 6. Let \((X, \leq)\) be a partially ordered set and suppose that there exists a metric d on X such that (X, d) is a complete metric space. Let $T : X \to X$ be a monotone non-decreasing mapping. Suppose that T satisfies for all $x, y \in X$, for which $x \leq y$,

\[
d(Tx, Ty) \leq \frac{1}{2}[d(x, Ty) + d(y, Tx)] - \varphi(d(x, Ty), d(y, Tx)), \tag{2.24}
\]

where $\varphi : [0, +\infty) \times [0, +\infty) \to [0, +\infty)$ is a continuous function with $\varphi(x, y) = 0$ if and only if $x = y = 0$. Also, suppose either

(i) If \(\{x_n\} \subset X \) is a non-decreasing sequence with $x_n \to z$, then $x_n \leq z$ for every n, or

(ii) T is continuous.

If there exists $x_0 \in X$ with $x_0 \leq Tx_0$, then T has a fixed point.

Proof. It follows by taking $\psi(t) = t$ in Corollary 5. \(\square \)

Remark 2. Corollary 6 corresponds to Theorem 2.1 and Theorem 2.2 of Harjani et al. \[8\].

Corollary 7. Let \((X, \leq)\) be a partially ordered set and suppose that there exists a metric d on X such that (X, d) is a complete metric space. Let $T : X \to X$ be a monotone non-decreasing mapping. Suppose that T satisfies for all $x, y \in X$, for which $x \leq y$,

\[
d(Tx, Ty) \leq k[d(x, Ty) + d(y, Tx)], \tag{2.25}
\]

where $0 < k < \frac{1}{2}$. Also, suppose either

(i) If \(\{x_n\} \subset X \) is a non-decreasing sequence with $x_n \to z$, then $x_n \leq z$ for every n, or

(ii) T is continuous.

If there exists $x_0 \in X$ with $x_0 \leq Tx_0$, then T has a fixed point.

Proof. It follows by taking $\varphi(t) = (\frac{1}{2} - k)t$ in Corollary 6. \(\square \)
REFERENCES

Author’s address

H. Aydi
Université de Sousse, Institut Supérieur d’Informatique et des Technologies de Communication de Hammam Sousse, Route GP1-4011, H. Sousse, Tunisia
E-mail address: hassen.aydi@isima.rnu.tn