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Abstract. In this paper, by using invariants of Riemann and general solutions of Euler–Poisson–
Darboux–Riemann equations, a new class of exact solutions of von Karman’s equation in the
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In the plane of independent variables x and y, consider quasilinear von Karman’s
equation arising in a variety of physical problems such as nonlinear vibrations and
irrotational transonic flows of baritropic gas (see [1–5, 7, 13])

(ux)
αuxx −uyy = 0. (1)

Equation (1) is considered in the class of hyperbolic solutions, which in this case is
determined by the condition

ux > 0. (2)
Let

m :=
α

2(α+2)
, −2 ̸= α ∈ R := (−∞,+∞). (3)

Theorem 1. If the condition m ∈ N := {1,2,3, . . .} is fulfilled, then the general
classical solution u ∈C2 of equation (1) is given by the formulas

x = (X −Y )2m+1 ∂2m

∂Xm∂Y m
F(X)−G(Y )

X −Y
,

y = m[2(1−2m)]2m ∂2m−2

∂Xm−1∂Y m−1
F ′(X)−G′(Y )

X −Y
,

u = m[2(1−2m)]2m
[( m−1

2m−1
X +

m
2m−1

Y
)

∂2m−2

∂Xm−1∂Y m−1
F ′(X)−G′(Y )

X −Y

− m−1
2m−1

∂2m−3

∂Xm−2∂Y m−1
F ′(X)−G′(Y )

X −Y

]
for m = 2,3, . . .

(4)
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and 
x =−2[F(X)−G(Y )]+ [F ′(X)+G′(Y )](X −Y ),

y =
4[F ′(X)−G′(Y )]

X −Y
,

u =
4[Y F ′(X)−XG′(Y )]

X −Y
for m = 1.

(5)

Here F,G ∈ Cm+1 are arbitrary functions with respect to the variables X and Y ,
respectively.

Proof. Let us find the Riemann invariants, that is, what is conserved along the cor-
responding characteristic curves of equation (1) (see [8,9]). For any u ∈C2, classical
solution of equation (1), introduce the designation of Monge-Ampere:

p := ux, q := uy, r := uxx, s := uxy, t := uyy.

In this notation equation (1) has the form

t = pαr. (6)

Due to (2), equation (1) along each regular solution is hyperbolic and therefore two
families of characteristic curves pass through any fixed point of the plane of inde-
pendent variables x and y. Along one of these curves, for example, the one whose
equation has the form

dx =−p
α

2 dy,

by virtue of equality (6), we have

d p = rdx+ sdy = (−p
α

2 r+ s)dy

and
dq = sdx+ tdy = (−p

α

2 s+ pαr)dy.

Whence it follows that
dq+ p

α

2 d p = 0

and hence

q+
2

α+2
p

α+2
2 =C1.

Similarly, along the family of other characteristic curves, whose equation has the
form

dx = p
α

2 dy,

we obtain

q− 2
α+2

p
α+2

2 =C2.

Here Ci, i = 1,2, are arbitrary constants.



ON THE VON KARMAN’S EQUATION IN THE NONLINEAR THEORY OF GAS DYNAMICS 199

Let us introduce the Riemann invariants of equation (1) as independent variables{
X = q+ 2

α+2 p
α+2

2 ,

Y = q− 2
α+2 p

α+2
2 ,

(7)

in terms of which equation (1) can be rewritten in the form of a system of equations
of the first order [5, 8, 9] {

Xy +Xx
dx
dy = Xy − p

α

2 Xx = 0,
Yy +Yx

dx
dy = Yy + p

α

2 Yx = 0.
(8)

In system (8), we choose X and Y as independent variables, while x(X ,Y ) and y(X ,Y )
as unknown functions. Applying the formulas of differentiation of implicit functions
of two variables

xX = DYy, xY =−DXy, yX =−DYx, yY = DXx,

where D := D(x,y)
D(X ,Y ) is the Jacobian of transformation, from system (8) we obtain{

xY + p
α

2 yY = 0,
xX − p

α

2 yX = 0.
(9)

Here

p
α

2 =

[
X −Y

2(1−2m)

]2m

, (10)

due to (2), (3) and (7).
Eliminating the function y(X ,Y ) from system (9), we receive that the function

x(X ,Y ) satisfies the Euler–Poisson–Darboux–Riemann equation (see [4, 11])

xXY +
m

X −Y
xX − m

X −Y
xY = 0. (11)

By a similar way, for the function y(X ,Y ) we get

yXY − m
X −Y

yX +
m

X −Y
yY = 0. (12)

First, let us get the general solution of equation

wXY +
n

X −Y
wX − m

X −Y
wY = 0 (13)

for all n,m ∈ N.
Denote by z(α,β) a solution of equation

zXY − β

X −Y
zX +

α

X −Y
zY = 0,

then we have
z(α,β) = (X −Y )1−α−βz(1−β,1−α). (14)

(see, for example, [10, 11]).
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Putting α = α′+m, β = β′+n in (14) and taking into account the equality

z(α′+m,β′+n) =
∂m+nz(α′,β′)

∂Xm∂Y n ,

we get

(X −Y )1−m−n−α′−β′
z(1−β

′−n,1−α
′−m) =

∂m+nz(α′,β′)

∂Xm∂Y n .

Let us use again formula (14), then we have

(X −Y )1−m−n−α′−β′
z(1−β

′−n,1−α
′−m) =

∂m+n

∂Xm∂Y n

[
z(1−β′,1−α′)

(X −Y )α′+β′−1

]
.

Replacing α′, β′, m, n, respectively, by 1−β′, 1−α′, n, m, we obtain

z(α′−m,β′−n) = (X −Y )m+n+1−α′−β′ ∂m+n

∂Xm∂Y n

[
z(α′,β′)

(X −Y )1−α′−β′

]
.

Putting α′ = β′ = 0, we get the solution of equation (13) by the formula

w(X ,Y ) = z(−m,−n) = (X −Y )m+n+1 ∂m+n

∂Xm∂Y n

[
F1(X)−G1(Y )

X −Y

]
, (15)

where F1(X) and G1(Y ) are the arbitrary functions of its arguments.
Let us now get a general solution of equation

wXY − n
X −Y

wX +
m

X −Y
wY = 0. (16)

First, we obtain a general solution to the equation

(X −Y )vXY − vX + vY = 0. (17)

Proposition 1. The general solution of equation (17) can be represented by the
formula

v(X ,Y ) =
F2(X)−G2(Y )

X −Y
, (18)

where F2(X) and G2(Y ) are the arbitrary functions of its arguments.

Proof. Indeed, let us introduce the function χ := (X −Y )v. Then by (17), the
function χ satisfies the equation χXY = 0, from which (18) immediately follows. □

Proposition 2. The general solution of equation (16) has the form

w(X ,Y ) =
∂m+n−2

∂Xm−1∂Y m−1
F2(X)−G2(Y )

X −Y
. (19)

Proof. It is easy to show that the following equalities are valid:

∂m

∂Xm [(X −Y )v] = m
∂m−1v
∂Xm−1 +(X −Y )

∂mv
∂Xm (20)
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and
∂n

∂Y n [(X −Y )v] =−n
∂n−1v
∂Y n−1 +(X −Y )

∂nv
∂Y n . (21)

Indeed, let us prove equality (20) by induction. For m = 1, we have that

∂

∂X
[(X −Y )v] = v+(X −Y )

∂v
∂X

is true.
Suppose that (20) is true for m, and show for m+1. We have

∂m+1

∂Xm+1 [(X −Y )v] =
∂

∂X

[
m

∂m−1v
∂Xm−1 +(X −Y )

∂mv
∂Xm

]
= m

∂mv
∂Xm +

∂mv
∂Xm +(X −Y )

∂m+1v
∂Xm+1

= (m+1)
∂mv
∂Xm +(X −Y )

∂m+1v
∂Xm+1

and therefore (20) is true. The validity of (21) can be shown analogously.
Differentiating equation (17) (m − 1) times with respect to the variable x and

(n− 1) times with respect to the variable y, respectively, by virtue of (20) and (21),
we have

0 =
∂m+n−2

∂Xm−1∂Y n−1

[
(X −Y )vXY − vX + vY

]
=

∂n−1

∂Y n−1

[
(m−1)

∂m−2vXY

∂Xm−2 +(X −Y )
∂m−1vXY

∂Xm−1

]
− ∂m+n−2vX

∂Xm−1∂Y n−1 +
∂m+n−2vY

∂Xm−1∂Y n−1

= (m−1)
∂m+n−3vXY

∂Xm−2∂Y n−1 − (n−1)
∂m+n−3vXY

∂Xm−1∂Y n−2 +(X −Y )
∂m+n−2vXY

∂Xm−1∂Y n−1

− ∂m+n−2vX

∂Xm−1∂Y n−1 +
∂m+n−2vY

∂Xm−1∂Y n−1

= m
∂m+n−2vY

∂Xm−1∂Y n−1 −n
∂m+n−2vX

∂Xm−1∂Y n−1 +(X −Y )
∂m+n−2vXY

∂Xm−1∂Y n−1 .

Introduce the notation

w :=
∂m+n−2v

∂Xm−1∂Y n−1 . (22)

Due the last equality, it is easy to see that the function w(X ,Y ), taking into account
(18), can be represented by formula (19) and satisfies equation (16).

Finally, considering (15), (18) and (22) for n = m, we get that the general solutions
of equations (11) and (12) under the conditions of Theorem 1 have the following form
(see [10, 12])

x = (X −Y )2m+1 ∂2m

∂Xm∂Y m
F1(X)−G1(Y )

X −Y
, (23)
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y =
∂2m−2

∂Xm−1∂Y m−1
F2(X)−G2(Y )

X −Y
, (24)

respectively. Here F1,G1 ∈Cm+2 and F2,G2 ∈Cm+1 are arbitrary functions. □

The following statement is true.

Proposition 3. For equalities (9) to hold, it is necessary and sufficient that the
equalities

F2(X) = m[2(1−2m)]2mF ′
1(X), G2(Y ) = m[2(1−2m)]2mG′

1(Y ) (25)

were satisfied.

Proof. Necessity. Obviously, the equalities

∂2m

∂Xm∂Y m
F1(X)−G1(Y )

X −Y
=

∂2m

∂Xm∂Y m
F1(X)

X −Y
+

∂2m

∂Y m∂Xm
G1(Y )
Y −X

(26)

and
∂ j

∂X j
1

(X −Y )k =
(−1) jk(k+1) · · · (k+ j−1)

(X −Y )k+ j ∀ j,k ∈ N (27)

are valid.
In particular, from (27) it follows that for j = m, k = 1,

∂m

∂Xm
1

X −Y
=

(−1)mm!
(X −Y )m+1 (28)

and for j = m− i, k = m+1,

∂m−i

∂Xm−i
1

(X −Y )m+1 =
(−1)m−i(m+1)(m+2) · · · (2m− i)

(X −Y )2m−i+1 . (29)

Further, due to (28) and (29), we obtain

∂2m

∂Xm∂Y m
F1(X)

X −Y
=− ∂m

∂Xm

[
F1(X)

∂m

∂Y m
1

Y −X

]
= m!

∂m

∂Xm

[
F1(X)

1
(X −Y )m+1

]
= m!

m

∑
i=0

Ci
mF(i)

1 (X)
∂m−i

∂Xm−i
1

(X −Y )m+1

=
m

∑
i=0

Ci
m(−1)m−i(2m− i)!

F(i)
1 (X)

(X −Y )2m−i+1 . (30)

Analogously,

∂2m

∂Y m∂Xm
G1(Y )
Y −X

= (−1)m+1
m

∑
i=0

Ci
m(2m− i)!

G(i)
1 (Y )

(X −Y )2m−i+1 . (31)
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Therefore, due to (23), (24), (26), (30) and (31), we have

x(X ,Y ) =
m

∑
i=0

Ci
m(−1)m−i(2m− i)!F(i)

1 (X)(X −Y )i

+(−1)m+1
m

∑
i=0

Ci
m(2m− i)!G(i)

1 (Y )(X −Y )i (32)

and

y(X ,Y ) =
m−1

∑
i=0

Ci
m−1(−1)m−i−1(2m− i−2)!

F(i)
2 (X)

(X −Y )2m−i−1

+(−1)m
m−1

∑
i=0

Ci
m−1(2m− i−2)!

G(i)
2 (Y )

(X −Y )2m−i−1 . (33)

Differentiating equalities (32) and (33) with respect to the variable X , we get

xX =
m

∑
i=0

Ci
m(−1)m−i(2m− i)!F(i+1)

1 (X)(X −Y )i

+
m−1

∑
i=0

Ci+1
m (−1)m−i−1(i+1)(2m− i−1)!F(i+1)

1 (X)(X −Y )i

+(−1)m+1
m−1

∑
i=0

Ci+1
m (i+1)(2m− i−1)!G(i+1)

1 (Y )(X −Y )i (34)

and

yX =
m−1

∑
i=0

Ci
m−1(−1)m−i−1(2m− i−2)!

F(i+1)
2 (X)

(X −Y )2m−i−1

+
m−1

∑
i=0

Ci
m−1(−1)m−i(2m− i−1)!

F(i)
2 (X)

(X −Y )2m−i

+(−1)m+1
m−1

∑
i=0

Ci
m−1(2m− i−1)!

G(i)
2 (Y )

(X −Y )2m−i , (35)

respectively.
Substituting (34) and (35) in the second equality of (9), we obtain
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m

∑
i=0

Ci
m(−1)m−i(2m− i)!F(i+1)

1 (X)(X −Y )i

+
m−1

∑
i=0

Ci+1
m (−1)m−i−1(i+1)(2m− i−1)!F(i+1)

1 (X)(X −Y )i

+(−1)m+1
m−1

∑
i=0

Ci+1
m (i+1)(2m− i−1)!G(i+1)

1 (Y )(X −Y )i

= [2(1−2m)]−2m
[m−1

∑
i=0

Ci
m−1(−1)m−i−1(2m− i−2)!F(i+1)

2 (X)(X −Y )i+1

+
m−1

∑
i=0

Ci
m−1(−1)m−i(2m− i−1)!F(i)

2 (X)(X −Y )i

+(−1)m+1
m−1

∑
i=0

Ci
m−1(2m− i−1)!G(i)

2 (Y )(X −Y )i
]
. (36)

First, equating in (36) the expressions before the functions F1 and F2 and their deriv-
atives, we obtain

m

∑
i=0

Ci
m(−1)m−i(2m− i)!F(i+1)

1 (X)(X −Y )i

+
m−1

∑
i=0

Ci+1
m (−1)m−i−1(i+1)(2m− i−1)!F(i+1)

1 (X)(X −Y )i

= [2(1−2m)]−2m
[ m

∑
i=1

Ci−1
m−1(−1)m−i(2m− i−1)!F(i)

2 (X)(X −Y )i

+
m−1

∑
i=0

Ci
m−1(−1)m−i(2m− i−1)!F(i)

2 (X)(X −Y )i
]
.

From here

Ci
m(−1)m−i(2m− i)!F(i+1)

1 (X)+Ci+1
m (−1)m−i−1(i+1)(2m− i−1)!F(i+1)

1 (X)

= [2(1−2m)]−2m
[
Ci−1

m−1(−1)m−i(2m− i−1)!F(i)
2 (X)

+Ci
m−1(−1)m−i(2m− i−1)!F(i)

2 (X)
]
,

for i = 1,2, . . . ,m−1.
Consequently,

F(i)
2 (X) = m[2(1−2m)]2mF(i+1)

1 (X), i = 1,2, . . . ,m−1. (37)
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Let us now equate together the present members for i = 0 and i = m, we get

C0
m(−1)m(2m)!F ′

1(X)+Cm
mm!F(m+1)

1 (X)(X −Y )m +C1
m(−1)m−1(2m−1)!F ′

1(X)

= [2(1−2m)]−2m
[
Cm−1

m−1(m−1)!F(m)
2 (X)(X −Y )m +C0

m−1(−1)m(2m−1)!F2(X)
]
.

Hence

F2(X) = m[2(1−2m)]2mF ′
1(X) and F(m)

2 (X) = m[2(1−2m)]2mF(m+1)
1 (X).

Let us equate the expressions before the functions G1 and G2 and their derivatives,
we obtain

m−1

∑
i=0

Ci+1
m (i+1)(2m− i−1)!G(i+1)

1 (Y )(X −Y )i

= [2(1−2m)]−2m
m−1

∑
i=0

Ci
m−1(2m− i−1)!G(i)

2 (Y )(X −Y )i,

this immediately implies that

G(i)
2 (Y ) = m[2(1−2m)]2mG(i+1)

1 (Y ), i = 0,1, . . . ,m−1.

Consequently, taking into account (37) and the last equality, (25) is shown.

Remark 1. We obtain the same equality if we differentiate equalities (32) and (33)
with respect to the variable Y and substitute them in the first equality of (9), and
equate the expressions before the functions F1,F2 and G1,G2 and their derivatives,
respectively.

Sufficiency. Let conditions (25) be fulfilled and show that equalities (9) hold. In-
deed, by virtue of the obvious equality

F ′
1(X)−G′

1(Y )
X −Y

=
∂

∂X
F1(X)−G1(Y )

X −Y
+

∂

∂Y
F1(X)−G1(Y )

X −Y
,

(10) and conditions (23)–(25), we have

xX − p
α

2 yX = (X −Y )2m
[
(2m+1)

∂2m

∂Xm∂Y m
F1(X)−G1(Y )

X −Y

+(X −Y )
∂2m+1

∂Xm+1∂Y m
F1(X)−G1(Y )

X −Y
−m

∂2m−1

∂Xm∂Y m−1
F ′

1(X)−G′
1(Y )

X −Y

]
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= (X −Y )2m
[
(m+1)

∂2m

∂Xm∂Y m
F1(X)−G1(Y )

X −Y

−m
∂2m

∂Xm+1∂Y m−1
F1(X)−G1(Y )

X −Y
+(X −Y )

∂2m+1

∂Xm+1∂Y m
F1(X)−G1(Y )

X −Y

]
= (X −Y )2m ∂

∂X

[
(X −Y )

∂2

∂X∂Y
∂2m−2

∂Xm−1∂Y m−1
F1(X)−G1(Y )

X −Y

−m
∂

∂X
∂2m−2

∂Xm−1∂Y m−1
F1(X)−G1(Y )

X −Y

+m
∂

∂Y
∂2m−2

∂Xm−1∂Y m−1
F1(X)−G1(Y )

X −Y

]
= 0,

by virtue of equality (24), if we replace there formally the functions F2 and G2 with
the functions F1 and G1, respectively.

The first equality in (9) can be proved in a similar way. Thus Proposition 3 is
proved. □

Further, to obtain the final form of the function u, due (3), (7), (9) and (10), we
have

du = pdx+qdy = (pxX +qyX)dX +(pxY +qyY )dY

=
(
q+ p

α+2
2
)
yX dX +

(
q− p

α+2
2
)
yY dY

=

(
m−1
2m−1

X +
m

2m−1
Y
)

yX dX +

(
m

2m−1
X +

m−1
2m−1

Y
)

yY dY,

whence

UX =

(
m−1
2m−1

X +
m

2m−1
Y
)

yX , UY =

(
m

2m−1
X +

m−1
2m−1

Y
)

yY . (38)

By virtue of the first equality of (38), we obtain

U(X ,Y ) =
m−1
2m−1

∫
XyX dX +

m
2m−1

Y y+ϕ(Y )

=
m−1
2m−1

(
Xy−

∫
ydX

)
+

m
2m−1

Y y+ϕ(Y ), (39)

where ϕ is an arbitrary function.
According to the second equality from (38), for definition of the function ϕ, we

get

m−1
2m−1

(
XyY −

∫
yY dX

)
+

m
2m−1

(y+Y yY )+ϕ
′(Y ) =

(
m

2m−1
X +

m−1
2m−1

Y
)

yY .

(40)
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By virtue of (12), we receive

m
∫

yY dX =
∫ [

(Y −X)yXY +myX

]
dX = (Y −X)yY +

∫
yY dX +my.

Thus ∫
yY dX =

Y −X
m−1

yY +
m

m−1
y, for m = 2,3, . . . .

Taking into account the latter equality, from (40) we obtain

ϕ
′(Y )≡ 0,⇒ ϕ = const for m = 2,3, . . . . (41)

Analogously, from (39) for m = 1, we get

U(X ,Y ) = Y y+ϕ(Y ). (42)

According to the second equality from (38), in this case, for definition of the function
ϕ, we receive

ϕ
′(Y ) = (X −Y )yY − y. (43)

Since {
(X −Y )yY − y

}
X
= yY +(X −Y )yXY − yX = 0,

by virtue of equation (12) for m = 1, from (43) implies that

ϕ
′(Y ) =−G′

2(Y ),

therefore
ϕ(Y ) =−G2(Y ). (44)

Now, introducing the notation F := F1, G := G1 and taking into account (23)–(25),
(41), (42), (44), we obtain (4) and (5), respectively. □

Remark 2. In the case m = 1, i.e., for α = −4, solution (5) of equation (1) has
been obtained in [6] by the method of Lee’s group.
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