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Abstract. In this work, two different boundary value problems of fractional q-difference equation
are discussed. The first one is fractional q-difference equation with integral boundary conditions
and the other one is three point boundary value problem of fractional q-difference equation with
p-Laplacian. By using fixed point theorems, some sufficient conditions that guarantee the exist-
ence and uniqueness of solutions are given.
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1. INTRODUCTION

The quantum calculus deals with quantum derivatives and integrals, and has proven
to be relevant for quantum mechanics. It allows to deal with continuous functions,
which do not need to be smooth. There are several types of quantum calculus: h-
calculus (also known as the calculus of finite differences), the q-calculus and Hahn’s
calculus. In this paper we are concerned with the q-calculus. The q-derivative and
the q-integral (also known as Jackson derivative and Jackson integral, respectively)
were first defined by Jackson [12, 13] and had proven to have important applications
on many subjects, like in hypergeometric series, complex analysis, particle phys-
ics and quantum mechanics. For a general introduction to the q-calculus we refer
the reader to the books [10, 14]. Fractional calculus, on the other hand, generalizes
integer-order analysis, by considering derivatives and integrals of non-integer order,
and found many applications in several fields of applied sciences and engineering
such as physics, chemistry, biology, economics, signal and image processing, calcu-
lus of variations, control theory, electrochemistry, electrical networks and many other
fields for example [3, 7, 9, 21]. Several definitions of fractional derivatives are avail-
able in the literature, including the Riemann-Liouville, Grunwald-Letnikov, Caputo,
Riesz, Riesz-Caputo, Weyl, Hadamard, and Chen derivatives. In this paper we are
concerned with the Riemann-Liouville type fractional derivative. For an excellent
book on the theory of fractional calculus we refer the reader to [17].
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The natural extension, which we investigate here, is to consider a quantum frac-
tional calculus, which unifies these two theories by considering quantum derivatives
of non-integer order. Nowadays, fractional q-difference calculus has been given in
wide applications of different science areas, which include basic hyper-geometric
functions, mechanics, the theory of relativity, combinatorics and discrete mathemat-
ics. Therefore, fractional q-difference calculus has been of great interest and many
good results can be found in [2,4–6] and references therein. For different problems of
fractional q-difference equations, the existence and the uniqueness of solutions have
been always considered in literature. To solve these boundary value problems, some
techniques have been applied, such as the monotone iterative technique, the lower-
upper solution method, the Schauder fixed point theorem and the Krasnoselskii fixed
point theorem. For details, one can see [19, 20, 23, 24].

By using Schauder fixed point theorem and the Banach fixed point theorem, Yang
[22] discussed a fractional q-difference equation with three-point boundary condi-
tions:

Dα
q x(t)+ f (t,x(t) ,x(t))+g(t,x(t)) = 0, 0 < t < 1, 2 < α < 3,

x(0) = Dqx(0) = 0, Dqx(1) = βDqx(η) ,

where 0 < βηα−2 < 1, 0 < q < 1 and Dα
q is the Riemann-Liouville fractional q-

derivative of order α.
In [25], Zhao studied the existence of positive solutions for the folowing q-fractional

boundary value problems with p-Laplacian

Dβ
q
(
ϕp

(
Dα

q u(t)
))

= f (t,u(t)) , t ∈ (0,1) ,

u(0) = 0, u(1) =
∫ 1

0
h(t)u(t)dqt, Dα

q u(0) = 0, Dα
q u(1) = bDα

q u(η) ,

where Dα
q , Dβ

q are the fractional q-derivative of Riemann-Liouville type with
1 < α, β ≤ 2, 0 ≤ b < 1, 0 < η < 1, ϕp (s) = |s|p−2s, ϕ−1

p = ϕr, p−1 + r−1 = 1,
p > 1, r > 1 and f ∈C ([0,1]×R+,R+) , h ∈C ([0,1] ,R+) .

In the light of the studies mentioned, in this paper firstly we investigate the
existence and uniqueness of positive solutions for the following q-fractional bound-
ary value problem

Dα
q x(t)+ f (t,x(t)) = 0, t ∈ (0,1) (1.1)

x(0) = a
∫ 1

0
f1 (t)x(t)dqt, x(1) = b

∫ 1

0
f2 (t)x(t)dqt, (1.2)

where Dα
q is the fractional q-derivative of Riemann-Liouville type with

1 < α ≤ 2, a,b ∈ R+ and f ∈C ([0,1]×R+,R+), f1, f2 ∈C ([0,1] ,R+) .
Secondly, we will give the existence result for the following q-fractional boundary

value problems with p-Laplacian

Dβ
q
(
ϕp

(
Dα

q x(t)
))

= f (t,x(t)) (1.3)
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x(0) = a
∫ 1

0
f1 (t)x(t)dqt, x(1) = b

∫ 1

0
f2 (t)x(t)dqt,

Dα
q x(0) = 0, Dα

q x(1) = cDα
q x(η) , (1.4)

where Dα
q , Dβ

q are the fractional q-derivative of Riemann-Liouville type with
1 < α, β ≤ 2, a,b ∈ R+ 0 ≤ c < 1, 0 < η < 1, ϕp (s) = |s|p−2s such that
ϕ−1

p = ϕr with p−1 + r−1 = 1, p > 1, r > 1 and f ∈C ([0,1]×R+,R+) , f1, f2 ∈
C ([0,1] ,R+) .

2. PRELIMINARIES

In this section, we list some useful definitions and preliminaries, which will be
used in the proofs of the main results.

Let q ∈ (0,1) and define

[a]q =
1−qa

1−q
,a ∈ R.

The q-analogue of the power function (a−b)k , k ∈ N0 = {0,1,2, . . .} is

(a−b)0 = 1 , (a−b)(k) =
k−1

∏
i=0

(
a−bqi) , k ∈ N, a,b ∈ R.

More generally, if α ∈ R, then

(a−b)(α) = aα
∞

∏
n=0

a−bqn

a−bqα+n .

Note that, if b = 0 then a(α) = aα.
The q-gamma function is defined by

Γq (x) =
(1−q)(x−1)

(1−q)x−1 , x ∈ R\{0,−1,−2, . . .}

then
Γq (x+1) = [x]Γq (x) .

The q-derivative of a function f is here defined by

(Dq f )(x) =
f (x)− f (qx)
(1−q)x ,(Dq f )(0) = lim

x→0
(Dq f )(x) for x ̸= 0

and q-derivatives of higher order by(
D0

q f
)
(x) = f (x) and

(
Dn

q f
)
(x) = Dq

(
Dn−1

q f
)
(x) , n ∈ N.

The q-integral of a function f defined in the interval [0,b] is given by

(Iq f )(x) =
∫ x

0
f (t)dqt = x(1−q)

∞

∑
n=0

f (xqn)qn, x ∈ [0,b] .
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If a ∈ [0,b] and f is defined in the interval [0,b], its integral from a to b is defined by∫ b

a
f (t)dqt =

∫ b

0
f (t)dqt −

∫ a

0
f (t)dqt.

Similarly as done for derivatives, an operator In
q can be defined, i.e.,(

I0
q f

)
(x) = f (x) and

(
In
q f

)
(x) = Iq

(
In−1
q f

)
(x) , n ∈ N.

The fundamental theorem of calculus applies to these operators Iq and Dq, i.e.,

(DqIq f )(x) = f (x)

and if f is continuous at x = 0, then

(IqDq f )(x) = f (x)− f (0).

We now point out two formulas that will be used later (tDq denotes the derivative
with respect to variable t)

tDq(t − s)(α) =[α]q(t − s)(α−1),(
xDq

∫ x

0
f (x, t)dqt

)
(x) =

∫ x

0
xDq f (x, t)dqt + f (qx,x) .

Remark 1. If α > 0 and a ≤ b ≤ t , then (t −a)(α) ≥ (t −b)(α).

Definition 1 ([1]). Let α ≥ 0 and f be a function defined on [0,1]. The fractional
q-integral of the Riemann-Liouville type is

(I0
q f )(x) = f (x)

and

(Iα

q f )(x) =
1

Γq(α)

∫ x

0
(x−qt)(α−1) f (t)dqt, x ∈ [0,1] .

Definition 2 ([16]). The fractional q-derivative of the Riemann-Liouville type of
order α≥0 is defined by

(Dα

q f )(x) = f (x)
and

(Dα

q f )(x) =
(
Dp

q Ip−α
q f

)
(x) , α > 0,

where p is the smallest integer greater than or equal to α.

Next, we list some properties about q-derivative and q-integral that are already
known in the literature, which are helpful in proofs of our main results.

Lemma 1 ([15]). (1) If f and g are q-integral on the interval [a,b], α ∈ R, c ∈
[a,b], then

(1)
∫ b

a ( f (t)+g(t))dqt =
∫ b

a f (t)dqt +
∫ b

a g(t)dqt
(2)

∫ b
a α f (t)dqt = α

∫ b
a f (t)dqt



EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR FRACTIONAL Q-DIFFERENCE EQUATIONS477

(3)
∫ b

a f (t)dqt =
∫ c

a f (t)dqt +
∫ b

c f (t)dqt
(4)

∫
xαdqs = xα+1

[α+1] , (α ̸=−1);

(2) If | f | is q-integral on the interval [0,x], then∣∣∣∣∫ x

0
f (t)dqt

∣∣∣∣≤ ∫ x

0
| f (t)|dqt;

(3) If f and g are q-integral on the interval [0,x], f (t)≤ g(t) , ∀t ∈ [0,x], then∫ x

0
f (t)dqt ≤

∫ x

0
g(t)dqt.

Lemma 2 ([8]). Let α > 0 and p be a positive integer. Then, the following equality
holds: (

Iα
q Dp

q f
)
(x) =

(
Dp

q Iα
q f

)
(x)−

p−1

∑
k=0

xα−p+k

Γq (α+ k− p+1)
(Dk

q f )(0).

Now, we will give the existence theorems used in our main results.

Theorem 1 ([11]). Let T : X →X be a map on a complete non-empty metric space.
If some iterate T n of T is a contraction, then T has a unique fixed point.

Theorem 2 ([18]). (Schauder Fixed Point Theorem) Let (X ,∥.∥) be a Banach
space and S ⊂ X is compact, convex and nonempty. Then any continuous operator
A : S → S has at least one fixed point.

Theorem 3 ([16]). (Nonlinear alternative for single valued maps) Let E be a
Banach space, C a closed, convex subset of E, U an open subset of C and 0 ∈ U.
Suppose that F : U →C is a continuous, compact (that is, F(U) is a relatively com-
pact subset of C) map. Then either

(1) F has a fixed point in U, or
(2) There is a u ∈ ∂U (the boundary of U in C) and λ ∈ (0,1) with u = λ F(u).

Suppose that the following condition is satisfied.

(H1) : 1−b
∫ 1

t=0
f2 (t) tα−2dqt −a

∫ 1

t=0
f1 (t) tα−2dqt > 0.

Lemma 3. Let h(t) ∈C [0,1] and 1 < α ≤ 2, then the boundary value problem(
Dα

q x
)
(t)+h(t) = 0 , 0 < t < 1, (2.1)

x(0) = a
∫ 1

0
f1 (t) x(t)dqt, x(1) = b

∫ 1

0
f2 (t) x(t)dqt (2.2)

has a unique solution

x(t) =
∫ 1

s=0
G(t,qs)h(s)dqs
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such that

G(t,s) = g(t,s)+
atα−2 (1− t)

∆

{[
1−b

∫ 1

0
tα−1 f2 (t)dqt

]∫ 1

0
g(t,s) f1 (t)dqt

+b
∫ 1

0
tα−1 f1 (t)dqt

∫ 1

0
g(t,s) f2 (t)dqt

}
+

btα−1

∆

{[
1−a

∫ 1

0
tα−2(1− t) f1 (t)dqt

]∫ 1

0
g(t,s) f2 (t)dqt

+a
∫ 1

0
tα−2(1− t) f2 (t)dqt

∫ 1

0
g(t,s) f1 (t)dqt

}
and

g(t,s) =
1

Γq(α)

{
(t (1− s))(α−1)− (t − s)(α−1) , s ≤ t
(t (1− s))(α−1) , s ≥ t.

Proof. From Lemma 2, since Dα
q x(t) =−h(t) we have

x(t) =−Iα
q h(t)+ c1tα−1 + c2tα−2 , c1,c2 ∈ R

=− 1
Γq (α)

∫ t

0
(t −qs)(α−1)h(s)dqs+ c1tα−1 + c2tα−2.

Using the first boundary condition

x(0) = a
∫ 1

0
f1 (t)x(t)dqt

we get

c2 = a
∫ 1

0
f1 (t)x(t)dqt.

So we have

x(t) =− 1
Γq (α)

∫ t

0
(t −qs)(α−1)h(s)dqs+ c1tα−1 +atα−2

∫ 1

0
f1 (t)x(t)dqt.

Then using the second boundary condition

x(1) = b
∫ 1

0
f2 (t) x(t)dqt

=− 1
Γq (α)

∫ t

0
(1−qs)(α−1)h(s)dqs+ c1 +a

∫ 1

0
f1 (t)x(t)dqt

we get

c1 =
1

Γq (α)

∫ t

0
(1−qs)(α−1)h(s)dqs−a

∫ 1

0
f1 (t)x(t)dqt +b

∫ 1

0
f2 (t) x(t)dqt.
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Therefore, we have

x(t) =− 1
Γq (α)

∫ t

0
(t −qs)(α−1)h(s)dqs+

tα−1

Γq (α)

∫ t

0
(1−qs)(α−1)h(s)dqs

−atα−1
∫ 1

0
f1 (t)x(t)dqt +btα−1

∫ 1

0
f2 (t) x(t)dqt +atα−2

∫ 1

0
f1 (t)x(t)dqt

=− 1
Γq (α)

∫ t

0
(t −qs)(α−1)h(s)dqs+

tα−1

Γq (α)

∫ t

0
(1−qs)(α−1)h(s)dqs

−atα−2(t −1)
∫ 1

0
f1 (t)x(t)dqt +btα−1

∫ 1

0
f2 (t) x(t)dqt

=
∫ 1

0
g(t,qs) h(s)dqs+atα−2(1− t)

∫ 1

0
f1 (t)x(t)dqt +btα−1

∫ 1

0
f2 (t) x(t)dqt.

(2.3)
At first, multiply both sides of (2.3) by f1 (t), then take the integral from 0 to 1, we
get ∫ 1

0
f1 (t)x(t)dqt =

∫ 1

t=0
f1(t)

∫ 1

s=0
g(t,qs) h(s)dqs dqt

+a
∫ 1

0

(
f1(t)tα−2(1− t)

∫ 1

0
f1 (t)x(t)dqt

)
dqt

+b
∫ 1

0

(
f1(t)tα−1

∫ 1

0
f2 (t) x(t)dqt

)
dqt

and so∫ 1

0
f1 (t)x(t)dqt

[
1−a

∫ 1

0
f1 (t) tα−2(1− t)dqt

]
−b

∫ 1

0
f2 (t) x(t)dqt

∫ 1

0
f1 (t) tα−1dqt =

∫ 1

t=0
f1 (t)

∫ 1

s=0
g(t,qs) h(s)dqs dqt.

Similarly, multiply both sides of (2.3) by f2 (t), then take the integral from 0 to 1, we
have ∫ 1

0
f2 (t)x(t)dqt =

∫ 1

t=0
f2(t)

∫ 1

s=0
g(t,qs) h(s)dqs dqt

+a
∫ 1

0

(
f2(t)tα−2(1− t)

∫ 1

0
f1 (t)x(t)dqt

)
dqt

+b
∫ 1

0

(
f2(t)tα−1

∫ 1

0
f2 (t) x(t)dqt

)
dqt

and so∫ 1

0
f1 (t)x(t)dqt

[
−a

∫ 1

0
f2 (t) tα−2(1− t)dqt

]
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+
∫ 1

0
f2 (t) x(t)dqt

[
1−b

∫ 1

0
f2 (t) tα−1dqt

]
=

∫ 1

t=0
f2 (t)

∫ 1

s=0
g(t,qs) h(s)dqs dqt.

If we define

∆ =

∣∣∣∣∣1−a
∫ 1

0 f1 (t) tα−2(1− t)dqt

−a
∫ 1

0 f2 (t) tα−2 (1− t)dqt

−b
∫ 1

0 f1 (t) tα−1dqt

1−b
∫ 1

0 f2 (t) tα−1dqt

∣∣∣∣∣
= (1−a

∫ 1

0
f1 (t) tα−2(1− t)dqt )(1−b

∫ 1

0
f2 (t) tα−1dqt)

−ab
∫ 1

0
f2 (t) tα−2 (1− t)dqt

∫ 1

0
f1 (t) tα−1dqt,

we have∫ 1

0
f1 (t)x(t)dqt

=
1
∆

∣∣∣∣∣
∫ 1

t=0 f1 (t)
∫ 1

s=0 g(t,qs) h(s)dqs dqt∫ 1
t=0 f2 (t)

∫ 1
s=0 g(t,qs) h(s)dqs dqt

−b
∫ 1

0 f1 (t) tα−1dqt

1−b
∫ 1

0 f2 (t) tα−1dqt

∣∣∣∣∣
=

1
∆

{(
1−b

∫ 1

0
f2 (t) tα−1dqt

)∫ 1

s=0

∫ 1

t=0
g(t,qs) h(s) f1 (t) dqt dqs

+b
∫ 1

0
f1 (t) tα−1dqt

∫ 1

s=0

∫ 1

t=0
g(t,qs) h(s) f2 (t) dqt dqs

}
and∫ 1

0
f2 (t)x(t)dqt

=
1
∆

∣∣∣∣∣1−a
∫ 1

0 f1 (t) tα−2(1− t)dqt

−a
∫ 1

0 f2 (t) tα−2 (1− t)dqt

∫ 1
t=0 f1 (t)

∫ 1
s=0 g(t,qs) h(s)dqs dqt∫ 1

t=0 f2 (t)
∫ 1

s=0 g(t,qs) h(s)dqs dqt

∣∣∣∣∣
=

1
∆

{(
1−a

∫ 1

0
f1 (t) tα−2(1− t)dqt

)∫ 1

s=0

∫ 1

t=0
g(t,qs) h(s) f2 (t) dqt dqs

+a
∫ 1

0
f2 (t) tα−2(1− t)dqt

∫ 1

s=0

∫ 1

t=0
g(t,qs) h(s) f1 (t) dqt dqs

}
.

Because of the condition (H1), we can easily see that ∆ > 0. Therefore, we have

x(t) =
∫ 1

0
g(t,qs) h(s) dqs

+atα−2 (1− t)
1
∆

{(
1−b

∫ 1

0
f2 (t) tα−1dqt

)∫ 1

s=0

∫ 1

t=0
g(t,qs) h(s) f1 (t) dqt dqs

+b
∫ 1

0
f1 (t) tα−1dqt

∫ 1

s=0

∫ 1

t=0
g(t,qs) h(s) f2 (t) dqt dqs

}
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+btα−1 1
∆

{(
1−a

∫ 1

0
f1 (t) tα−2(1− t)dqt

)∫ 1

s=0

∫ 1

t=0
g(t,qs) h(s) f2 (t) dqt dqs

+a
∫ 1

0
f2 (t) tα−2(1− t)dqt

∫ 1

s=0

∫ 1

t=0
g(t,qs) h(s) f1 (t) dqt dqs

}
or

x(t) =
∫ 1

0
g(t,qs) h(s) dqs

+atα−2 (1− t)
1
∆

∫ 1

s=0

[∫ 1

t=0
g(t,qs)

{
f1 (t)

(
1−b

∫ 1

0
f2 (t) tα−1dqt

)
+b f2 (t)

∫ 1

0
f1 (t) tα−1dqt

}
dqt

]
h(s)dqs

+btα−1 1
∆

∫ 1

s=0

[∫ 1

t=0
g(t,qs)

{
f2 (t)

(
1−a

∫ 1

0
f1 (t) tα−2(1− t)dqt

)
+a f1 (t)

∫ 1

0
f2 (t) tα−2(1− t)dqt

}
dqt

]
h(s)dqs

=
∫ 1

0
G(t,qs)h(s)dqs.

Consequently, we can write

G(t,s) = g(t,s)+
atα−2 (1− t)

∆

{[
1−b

∫ 1

0
f2 (t) tα−1dqt

] ∫ 1

0
g(t,s) f1(t)dqt

+b
∫ 1

0
f1 (t) tα−1dqt

∫ 1

0
g(t,s) f2(t)dqt

}
+

btα−1

∆

{[
1−a

∫ 1

0
f1 (t) tα−2(1− t)dqt

]∫ 1

0
g(t,s) f2(t)dqt

+a
∫ 1

0
f2 (t) tα−2(1− t)dqt

∫ 1

0
g(t,s) f1(t)dqt

}
.

□

Using the definition of the Green’s function for our problem, we get the following
inequality

G(t,s)≤ 1
Γq(α)

{
1+

asα−2

∆

[
B1

∫ 1

0
f1(t)dqt +B2

∫ 1

0
f2(t)dqt

]
+

bsα−1

∆

[
A1

∫ 1

0
f2(t)dqt +A2

∫ 1

0
f1(t)dqt

]}(
γ(1− s)α−1

)
.

So, if we define
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1
Γq (α)

{
1+

a
∆

[
B1

∫ 1

0
f1 (t)dqt +B2

∫ 1

0
f2 (t)dqt

]
+

b
∆

[
A1

∫ 1

0
f2 (t)dqt +A2

∫ 1

0
f1 (t)dqt

]}
: = M, (2.4)

we get G(t,s)≤ M.

3. MAIN RESULTS

In this section, primarily, we will give the existence and uniqueness results for
the problem (1.1)-(1.2). Let B = C ([0,1] ,R) is the Banach space with the norm
∥x∥= maxt∈[0,1] |x(t)| .

We define the operator T : B → B by

T x(t) : =
∫ 1

0
G(t,qs) f (s,x(s))dqs.

Let x ∈ B, in view of the continuity of G(t,s) and f (t,x(t)), we have T : B → B is
continuous. Let Ω ⊂ B be bounded, it is easy to see that T (Ω) is uniformly bounded.
On the other hand, since G(t,s) is uniformly continuous on [0,1]× [0,1] we can get
that T (Ω) is equicontinuous. By the Arzela-Ascoli theorem, we have T : B → B is
completely continuous.

Theorem 4. Assume that f (t,0) ̸= 0 and there exist k,h ∈ L1 [0,1] such that

| f (t,x)| ≤ k (t) |x|+h(t) , (t,x) ∈ [0,1]×R
and

M
∫ 1

0
k(s)dqs < 1,

where M is defined by (2.4). Then the boundary value problem (1.1)-(1.2) has at least
one solution x∗ ∈C [0,1] which is different from 0.

Proof. Let we define the numbers∫ 1

0
k (s)dqs = K

and ∫ 1

0
h(s)dqs = L.

Thus we get MK < 1, since f (t,0) ̸= 0 there exist such [a,b] ⊆ [0,1] that
mina≤t≤b | f (t,0)|> 0 . Moreover h(t)> | f (t,0)| then L > 0.

Assume that A = ML(1−MK)−1 and Ω = {x ∈ E : ∥x∥< A}. Let x ∈ ∂Ω and
λ > 1 with T (x) = λx.

In that case, we have

λA = λ∥x∥= ∥T x∥= max
t∈[0,1]

|T x(t)|
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≤ max
t∈[0,1]

∣∣∣∣∫ 1

0
G(t,qs) f (s,x(s))dqs

∣∣∣∣
≤ max

t∈[0,1]

∫ 1

0
|G(t,qs)| | f (s,x(s))|dqs

≤ max
t∈[0,1]

∫ 1

0
M · {k (s) |x(s)|+h(s)}dqs

= MK · ∥x∥+ML.

Therefore, we get

λ ≤ MK +
ML
A

= MK +
ML

ML(1−MK)−1 = 1.

This conflicts with λ > 1.
Consequently, by the nonlinear alternative of Leray Schauder type, we deduce that

T has a fixed point x∗ ∈ Ω which is a solution of ((1.1)-(1.2). □

Now, we will give the uniqueness of solution for our problem, using the follow-
ing well-known contraction mapping theorem named also as the Banach fixed point
theorem. Let B be a Banach space and S a nonempty closed subset of B. Assume
A : S→ S is a contraction, i.e., there is a λ (0< λ< 1) such that ∥Ax−Ay∥≤ λ∥x− y∥
for all x,y in S. Then A has a unique fixed point in S.

Theorem 5. Suppose that (H1) holds. Also, we assume that
(H2) : Let the function f (t,x) satisfy the following Lipschitz condition: there is a con-
stant L > 0 such that | f (t,x)− f (t,y)| ≤ L |x− y| , for t ∈ [0,1] for all x,y ∈C [0,1].
Moreover, LM < 1 where M is defined in (2.4). Then the problem (1.1)-(1.2) has a
unique solution in C [0,1].

Proof. For x,y ∈C [0,1] and t ∈ [0,1], we have

|T x(t)−Ty(t)|=
∣∣∣∣∫ 1

0
G(t,qs)( f (s,x(s))− f (s,y(s)))dqs

∣∣∣∣
≤

∫ 1

0
|G(t,qs)| | f (s,x(s))− f (s,y(s))|dqs

≤ M
∫ 1

0
L · |x(s)− y(s)|dqs

≤ ML · ∥x− y∥ .
Then, we obtain

∥T x−Ty∥= max
t∈[0,1]

|T x(t)−Ty(t)| ≤ ML · ∥x− y∥= λ∥x− y∥ ,

where λ=ML∈ (0,1). Hence, T is a contraction mapping and the theorem is proved.
□
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We are now in a position to state and prove the existence result for the problem
(1.3)-(1.4).

Lemma 4. Suppose that (H1) holds. Let g ∈ C [0,1] , 1 < α, β ≤ 2,
0 ≤ c < 1, 0 < η < 1. Then

Dβ
q
(
ϕp

(
Dα

q x(t)
))

= g(t)

x(0) = a
∫ 1

0
f1 (t)x(t)dqt, x(1) = b

∫ 1

0
f2 (t)x(t)dqt,

Dα
q x(0) = 0, Dα

q x(1) = cDα
q x(η) ,

is equivalent to

x(t) =
∫ 1

0
G(t,qs)ϕr

(∫ 1

0
H (s,qτ)g(τ)dqτ

)
dqs,

where

H (t,s) = m(t,s)+
cp−1tβ−1

1− cp−1ηβ−1 m(η,s) ,

m(t,s) =
1

Γq (β)

{
(t (1− s))(β−1)− (t − s)(β−1), 0 ≤ s ≤ t ≤ 1
(t (1− s))(β−1), 0 ≤ t ≤ s ≤ 1.

and G(t,s) is as given in Lemma 3.

Proof. This lemma can be proven similarly to Lemma 2.6 in [25]. □

Remark 2. We can easily get

0 ≤ H (t,qs)≤ 1
Γq (β)

tβ−1(1−qs)(β−1) ≤ 1
Γq (β)

, t,s ∈ [0,1]× [0,1] .

Theorem 6. Assume that the function f (t,x) is continuous with respect to x ∈ R.
If N > 0 satisfies M ·Qr−1 ≤ N · (Γq(β))

r−1, where Q > 0 satisfies

Q ≥ max
∥x∥≤N

| f (t,x)| , for t ∈ [0,1]

then the problem (1.3)-(1.4) has a solution x(t).

Proof. Let K = {x ∈ B : ∥x∥ ≤ N}. Note that K is closed, bounded and convex
subset of B to which Schauder fixed point theorem is applicable. Define A : K → B
by

Ax(t) : =
∫ 1

0
G(t,qs)ϕr

(∫ 1

0
H(s,qτ) f (τ,x(τ))dqτ

)
dqs,

for t ∈ [0,1]. Obviously the solutions of problem (1.3)-(1.4) are the fixed points of
operator A. It can be shown that A : K → B is continuous.

Claim that A : K → K. Let x ∈ K. Consider

|Ax(t)|=
∣∣∣∣∫ 1

0
G(t,qs)ϕr

(∫ 1

0
H(s,qτ) f (τ,x(τ))dqτ

)
dqs

∣∣∣∣
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≤
∫ 1

0
|G(t,qs)|

∣∣∣∣ϕr

(∫ 1

0
H(s,qτ) f (τ,x(τ))dqτ

)∣∣∣∣dqs

≤
∫ 1

0
M ·

[∫ 1

0
H (s,qτ)dqτ ·Q

]r−1

dqs

= M ·
(

Q
Γq(β)

)r−1

≤ N,

for every t ∈ [0,1]. This implies ∥Ax∥ ≤ N.
It can be shown that A : K → K is a compact operator by the Arzela-Ascoli the-

orem. Hence A has a fixed point in K by Schauder fixed point theorem. □

Corollary 1. If f is continuous and bounded on [0,1]×R, then the problem (1.3)-
(1.4) has a solution.

Proof. Since the function f (t,x) is bounded, it has a supremum for t ∈ [0,1] and
x ∈ R. Let us choose P > sup{| f (t,x)| : (t,x) ∈ [0,1]×R}. Pick N large enough
such that P < N. Then there is a number Q such that P > Q, where
Q ≥ max{| f (t,x)| : t ∈ [0,1] , |x| ≤ N}. Hence

1 <
N
P

≤ N
Q
,

and thus the problem (1.3)-(1.4) has a solution by Theorem 6. □

ACKNOWLEDGEMENTS

The authors sincerely thank the reviewers for their valuable suggestions and useful
comments that have led to the present improved version of the original manuscript.

REFERENCES

[1] R. P. Agarwal, “Certain fractional q-integrals and q-derivatives,” in Mathematical Proceedings of
the Cambridge Philosophical Society, vol. 66, no. 2, doi: 10.1017/S0305004100045060. Cam-
bridge University Press, 1969, pp. 365–370.

[2] B. Ahmad, S. K. Ntouyas, and I. K. Purnaras, “Existence results for nonlocal boundary value
problems of nonlinear fractional q-difference equations,” Advances in Difference Equations, vol.
2012, no. 1, pp. 1–15, 2012, doi: 10.1186/1687-1847-2012-140.

[3] A. O. Akdemir, S. I. Butt, M. Nadeem, and M. A. Ragusa, “New general variants of Chebyshev
type inequalities via generalized fractional integral operators,” Mathematics, vol. 9, no. 2, p. 122,
2021, doi: 10.3390/math9020122.

[4] M. H. Annaby, A. Hamza, and K. Aldwoah, “Hahn difference operator and associated Jackson–
Nörlund integrals,” Journal of optimization theory and applications, vol. 154, no. 1, pp. 133–153,
2012, doi: 10.1007/s10957-012-9987-7.

[5] M. H. Annaby and Z. S. Mansour, q-Fractional Calculus and Equations. Springer, 2012, vol.
2056, doi: 10.1007/978-3-642-30898-7.

[6] F. M. Atici and P. W. Eloe, “Fractional q-calculus on a time scale,” Journal of Nonlinear Mathem-
atical Physics, vol. 14, no. 3, pp. 341–352, 2007, doi: 10.2991/jnmp.2007.14.3.4.

http://dx.doi.org/10.1017/S0305004100045060
http://dx.doi.org/10.1186/1687-1847-2012-140
http://dx.doi.org/10.3390/math9020122
http://dx.doi.org/10.1007/s10957-012-9987-7
http://dx.doi.org/10.1007/978-3-642-30898-7
http://dx.doi.org/10.2991/jnmp.2007.14.3.4
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key
E-mail address: f.serap.topal@ege.edu.tr


	1. Introduction
	2. Preliminaries
	3. Main Results
	Acknowledgements
	References

