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Abstract. For a µ,ν dichotomic systems generalization of Palmer’s lemma was proved. Neces-
sary and sufficient conditions of the existence of bounded on the whole axis solutions and quas-
isolutions that minimize the residual norm were obtained. Index of the corresponding operator
was found.
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1. INTRODUCTION

It is well known Palmer lemma in finite-dimensional space (see [20], [21]), which
connects the notion of an exponential dichotomy on the axes of the corresponding
equation and the noetherianity of the corresponding differential operator. Namely,
such a result, proved in the work of Palmer K. [20] in 1984 is hold.

Theorem 1 ([20]). If the linear system

x′(t) = A(t)x(t)

admits an exponential dichotomy on both semi axes [0;+∞) and (−∞;0], then the
operator

L : BC1(−∞,+∞)→ BC(−∞,+∞)

which defines by the following rule

(Lx)(t) = x′(t)−A(t)x(t)

is Noetherian.

Later [21], in 1988 he proved converse assertion.
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Theorem 2 ([21]). Suppose that A(t) - n×n matrix valued function, bounded and
continuous on the interval J, where J = (−∞,+∞), [0,+∞) or (−∞,0]. Suppose that
the operator

L : BC1(J)→ BC(J),
defined below, is semi-Fredholm. Then if J semi axe, then homogeneous system ad-
mits an exponential dichotomy on J and if J = (−∞,+∞) admits an exponential di-
chotomy on both semi axes [0;+∞) and (−∞,0].

For difference equations in Banach space such assertion contains in [15] (see also
[1]). Fredholm differential operators with unbounded operators were considered in
[17].

Recently, various different kinds of nonuniform dichotomy are proposed (see [4],
[7], [14], [18], [19], [22]), nonuniform polynomial dichotomy [3], [6], [8], ρ-nonuni-
form exponential dichotomy [5], nonuniform (µ, ν)-dichotomy (see [2], [9], [10],
[12], [13], [25]).

In the present article we are going to prove Palmer lemma for the equation that
admits the so called µ, ν-dichotomy in the space endowed with the Frechet topology
(the topology of the corresponding space is generated by the system of semi-norms).
It should be noted that exponential dichotomy for the differential equations in the
Frechet spaces was developed in the paper [11].

In the paper [16] the author give an example of a semigroup of bounded operators
{em∆ : m ∈ N} in the Frechet space that has dichotomy but not in a Banach space,
where ∆ is the Laplace operator in unbounded domain.

On the other hand H.O. Walther [23], [24], recently, investigated the delay equa-
tion in the space C((−∞,0];Rn) which is the Frechet space. The Frechet space
C((−∞,0];Rn) has the advantage that it contains all histories xt = x(t + ·), t ∈ R of
every solution of the differential equation x′(t) = f (xt) in contrast to a Banach space.

The exponential dichotomy for operators on the distribution space also requires
the use of Frechet spaces instead of Banach spaces.

2. STATEMENT OF THE PROBLEM

In the space Rn we consider a system of differential equation of the following
form:

x′(t)+A(t)x(t) = f (t), (2.1)
where vector-function f ∈ Lm

∞(Rn), which means it has bounded semi-norms || f ||m,

Lm
∞(Rn) =

{
f : R→ Rn : || f ||m = sup

t∈[−m;m]

|| f (t)||<+∞,m ∈ N

}
,

matrix-valued function A(t) ∈ L(Rn) which is strongly continuous and ||A||m <+∞

for any m:
||A||m = sup

t∈[−m,m]

||A(t)||
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and the homogeneous system

x′(t)+A(t)x(t) = 0 (2.2)

allows µ,ν dichotomy on the semi-axes Rs
+ = [s;+∞) and Rs

− = (−∞;s] with matrix
projector-valued functions P+(t), t ≥ s, P−(t), t ≤ s. We denote by X(t,τ) funda-
mental matrix (2.2) normalized at t = τ. Let us recall the corresponding definition of
ν,µ dichotomy [7].

Definition 1. System (2.2) allows µ,ν dichotomy on the interval J, if projector-
valued function P(t) = P2(t), t ∈ J exist, such that

i) X(t,s)P(s) = P(t)X(t,s); constants α,β,d > 0 and ε≥ 0 exist, such that

ii) ||X(t,s)P(s)|| ≤ d
(

µ(t)
µ(s)

)−α

ν(|s|)ε, t ≥ s, t,s ∈ J

and

iii) ||X(t,s)Q(s)|| ≤ d
(

µ(s)
µ(t)

)−β

ν(|s|)ε,s≥ t, t,s ∈ J where Q(t) = I−P(t).

3. MAIN RESULTS

Consider the case when f ∈ Lm
∞(R) and dichotomy from the point s = 0 on the

semi-axes R+, R−. In fact, we can consider a family of equations

x′ε(t)+A(t)xε(t) = fε(t) (3.1)

instead of the equation (2.1), where fε(t) = e−ε|t|b f (t). It is easy to see that

|| f − fε||m = sup
t∈[−m;m]

|(1− e−ε|t|b) f (t)| ≤ || f ||Lm
∞
(1− e−εmb)→ 0,ε→ 0.

Thus, the sequence fε converges to function f in the corresponding Frechet space.
Using projectors that correspond for the dichotomy on the semi-axes P+(t), t ≥ 0 and
P−(t), t ≤ 0 we introduce such matrix

D = P+(0)− (I−P−(0))

and projectors PN(D) and PN(D∗) on the kernel and cokernel of the matrix D, respect-
ively. First, let us explore the question concerning Lyapunov’s terms of the homo-
geneous equation.

Further, for simplicity, we would consider the case when µ(t) = eat ,ν(t) = ebt .
Note that the set of bounded solutions of the homogeneous equation on the semi-
axes looks as follows

x(t,ξ1,ξ2) =

{
X(t,0)P+(0)ξ1, t ≥ 0
X(t,0)(I−P−(0))ξ2, t ≤ 0.

Indeed
||X(t,0)P+(0)ξ1|| ≤ d1e−α1at ||ξ1||, t ≥ 0.
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Then
sup

t∈[0,m]

||X(t,0)P+(0)ξ1|| ≤ d1||ξ1||, t ≥ 0.

Similarly

||X(t,0)(I−P−(0))ξ2|| ≤ d2eβ2at ||ξ2||, t ≤ 0.

sup
t∈[−m;0]

||X(t,0)(I−P−(0))ξ2|| ≤ d2||ξ2||, t ≤ 0.

In order for this expression to define bounded on the entire axis solutions, it is neces-
sary to unite them at zero. From the condition

x(0+,ξ1,ξ2) = x(0−,ξ1,ξ2)

we obtain such matrix equation

P+(0)ξ1 = (I−P−(0))ξ2.

It is easy to prove, that the set of solutions of such system coincides with the set of
solutions of the equation

P+(0)ξ = (I−P−(0))ξ
which can be rewritten as follows

Dξ = 0.

It is known [1] that the set of solutions of such equation can be presented as

ξ = PN(D)c, ∀c ∈ Rn.

The dimensionality of projector PN(D) determines the linearly independent number of
solutions of such system. If r = dimPN(D), then we can rewrite the set of solutions in
the following form

ξ = PN(D)r cr, ∀cr ∈ Rr (r = dimPN(D)).

Note also that the definition of projector implies that

P+(0)PN(D) = (I−P−(0))PN(D).

Then the set of bounded solutions of a homogeneous system can be represented in
the following form

x(t,cr) = X(t,0)P+(0)PN(D)r cr

or
x(t,cr) = X(t,0)(I−P−(0))PN(D)r cr.

If we consider such limit as

lim
t→+∞

ln||x(t,cr)||
t

≤ lim
t→+∞

ln(d1e−α1at ||PN(D)r cr||)
t

=−α1a.

Similarly

lim
t→−∞

ln||x(t,cr)||
t

≤ lim
t→∞

ln(d2eβ2at ||PN(D)r cr||)
t

= β2a.
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Theorem 3. Under the conditions µ,ν dichotomy, solutions of the system (2.1) for
the right-hand side of f ∈ Lm

∞(R) exist if and only if the following solvability condition
fulfills

PN(D∗)

{∫
∞

0
X(0,τ)(I−P+(τ)) f (τ)dτ+

∫ 0

−∞

X(0,τ)P−(τ) f (τ)dτ

}
= 0. (3.2)

Under condition (3.2) the set of bounded solutions has the following form

x(t,cr) = X(t,0)P+(0)PN(D)r cr +(G[ f ])(t,0),

where (G[ f ])(t,0) is generalized Green’s operator:

(G[ f ])(t,0) =


−
∫ +∞

t X(t,τ)(I−P+(τ)) f (τ)dτ

+
∫ t

0 X(t,τ)P+(τ) f (τ)dτ, t ≥ 0∫ t
−∞

X(t,τ)P−(τ) f (τ)dτ

−
∫ 0

t X(t,τ)(I−P−(τ)) f (τ)dτ, t ≤ 0.

(3.3)

Moreover, if f ∈ Lm
∞(R), then x,x′ ∈ Lm

∞(R).

Proof. For simplicity, we take µ(t) = eat , ν(t) = ebt , a ≥ b. Bounded on semi-
axes R+ and R− solutions of the inhomogeneous family of equations (3.1), have the
following form:

x(t,ξ) =


X(t,0)P+(0)ξ−

∫ +∞

t X(t,τ)(I−P+(τ)) f (τ)dτ

+
∫ t

0 X(t,τ)P+(τ) f (τ)dτ, t ≥ 0
X(t,0)(I−P−(0))ξ+

∫ t
−∞

X(t,τ)P−(τ) f (τ)dτ

−
∫ 0

t X(t,τ)(I−P−(τ)) f (τ)dτ, t ≤ 0

(3.4)

Indeed:

||X(t,0)P+(0)ξ|| ≤ d1e−α1at ||ξ||, t ≥ 0,∫ t

0
||X(t,τ)P+(τ) f (τ)||dτ≤ d1

∫ t

0
e−α1a(t−τ)+εbτ|| f ||Lm

∞
dτ

≤ d1

α1a+ εb
(eεbt − e−α1at)|| f ||Lm

∞
.

Similarly∣∣∣∣∣∣∣∣∫ +∞

t
X(t,τ)(I−P+(τ)) f (τ)dτ

∣∣∣∣∣∣∣∣≤ ∫ +∞

t
||X(t,τ)(I−P+(τ)) f (τ)||dτ

≤ d1

∫ +∞

t
e−β1a(τ−t)+εbτ|| f ||Lm

∞
dτ

≤ d1eεbt

β1a− εb
|| f ||Lm

∞
.

Thus, adding the obtained inequalities, we have

||x(t,ξ)|| ≤ d1e−α1at ||ξ||
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+

(
d1eεbt

(
1

α1a+ εb
+

1
β1a− εb

)
− d1

α1a+ εb
e−α1at

)
|| f ||Lm

∞
.

Finally we obtain

sup
t∈[0;m]

||x(t,ξ)|| ≤ d1||ξ|| (3.5)

+

(
d1eεbm

(
1

α1a+ εb
+

1
β1a− εb

)
− d1

α1a+ εb
e−α1am

)
|| f ||Lm

∞
.

�

It is also easy to obtain appropriate estimates for negative real numbers and the
derivative of the solutions. The boundedness of other integrals is checked in the
same way. Based on that

∂(−
∫ +∞

t X(t,τ)(I−P+(τ)) f (τ)dτ+
∫ t

0 X(t,τ)P+(τ) f (τ)dτ)

∂t

= X(t, t)(I−P+(t)) f (t)−A(t)
∫ +∞

t
X(t,τ)(I−P+(τ)) f (τ)dτ

+X(t, t)P+(t) f (t)+A(t)
∫ t

0
X(t,τ)P+(τ) f (τ)dτ

= f (t)+A(t)
{
−
∫ +∞

t
X(t,τ)(I−P+(τ)) f (τ)dτ+

∫ t

0
X(t,τ)P+(τ) f (τ)dτ

}
which proves that expression (3.4) defines all bounded solutions of the system (2.1)
on the semi-axes.

In order for the system (3.4) to define bounded solutions on the whole axis, it is
necessary and sufficient that the next condition is fulfilled

x(0+,ξ) = x(0−,ξ).

This condition is equivalent to the solvability of the matrix equation

P+(0)ξ−
∫ +∞

0
X(0,τ)(I−P+(τ)) f (τ)dτ (3.6)

= (I−P−(0))ξ+
∫ 0

−∞

X(0,τ)P−(τ) f (τ)dτ.

If ξ is the solution of the equation (3.6), then substituting it into (3.4) leads us to the
bounded on the whole axis solution of the system (2.1). Actually, based on the fact
that matrix

D = P+(0)− I +P−(0)
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always has a pseudo-inverse by Moore-Penrose, the set of the bounded on the whole
axis solutions of the system (2.1) could be represented in the following form

x(t,ξ) =


X(t,0)P+(0)ξ−

∫ +∞

t X(t,τ)(I−P+(τ)) f (τ)dτ

+
∫ t

0 X(t,τ)P+(τ) f (τ)dτ, t ≥ 0
X(t,0)(I−P−(0))ξ+

∫ t
−∞

X(t,τ)P−(τ) f (τ)dτ−
−
∫ 0

t X(t,τ)(I−P−(τ)) f (τ)dτ, t ≤ 0

(3.7)

Let g =
∫ 0
−∞

X(0,τ)P−(τ) f (τ)dτ+
∫ +∞

0 X(0,τ)(I−P+(τ)) f (τ)dτ.
Condition PN(D∗)g = 0 [1] is necessary and sufficient for the solvability of the

equation Dξ = g. Then we obtain that the condition for the existence of bounded
on the whole axis solutions of the system (2.1) is equivalent to the solvability of the
following matrix equation:

Dξ =
∫

∞

0
X(0,τ)(I−P+(τ)) f (τ)dτ+

∫ 0

−∞

X(0,τ)P−(τ) f (τ)dτ. (3.8)

Since matrix D has pseudo-inverse by Moore-Penrose matrix, then equation (3.8) has
solutions if and only if

PN(D∗)

{∫
∞

0
X(0,τ)(I−P+(τ)) f (τ)dτ+

∫ 0

−∞

X(0,τ)P−(τ) f (τ)dτ

}
= 0.

Under this condition, equation (3.8) has a set of solutions

ξ=D+

(∫
∞

0
X(0,τ)(I−P+(τ)) f (τ)dτ+

∫ 0

−∞

X(0,τ)P−(τ) f (τ)dτ

)
+PN(D)c, (3.9)

where c is an arbitrary vector of the corresponding dimensionality. Substituting the
obtained solutions into (3.4) we obtain a general view of the solutions bounded on
the entire axis in this form

x(t,cr) = X(t,0)P+(0)PN(D)r cr +(G[ f ])(t,0),

where (G[ f ])(t,0) is generalized Green’s operator:

(G[ f ])(t,0) =


−
∫ +∞

t X(t,τ)(I−P+(τ)) f (τ)dτ

+
∫ t

0 X(t,τ)P+(τ) f (τ)dτ, t ≥ 0∫ t
−∞

X(t,τ)P−(τ) f (τ)dτ

−
∫ 0

t X(t,τ)(I−P−(τ)) f (τ)dτ, t ≤ 0.

(3.10)

Green’s operator has the following property at 0 relative to the jump:

(G[ f ])(0+0)− (G[ f ])(0−0)

=−
∫

∞

0
X(0,τ)(I−P+(τ)) f (τ)dτ+P+(0)D−g

−
∫ 0

−∞

X(0,τ)P−(τ) f (τ)dτ− (I−P−(0))D−g

=−g+P+(0)D−g−D−g+P−(0)D−g
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= (P+(0)− I +P−(0))D−g−g = DD−g−g

=−(I−DD−)g =−PN(D∗)g =−
∫ +∞

−∞

H(t) f (t)dt = 0.

The corresponding solution is bounded. Thus, we obtain the statement of the the-
orem.

Remark 1. If the condition (3.2) isn’t hold then expression (3.9) defines the set of
quasisolutions of the system (3.8) (elements ξ from the set (3.9) give the minimum
of the norm ||Dξ−g||).

Corollary 1. For any f ∈ Lm
∞(Rn) there are constants d, N1(m)> 0 such that the

following estimates are satisfied

||x||Lm
∞
≤ d||PN(D)c||+N1(m)|| f ||Lm

∞
,

||G[ f ]||Lm
∞
≤ N1(m)|| f ||Lm

∞
.

For any fε(t) = e−ε|t|b f (t) ∈ Lm
∞(Rn) there are constants d, N2(m) > 0 such that the

following estimates are satisfied

||xε||Lm
∞
≤ d||PN(D)c||+N2(m)|| f ||Lm

∞

or

||xε||Lm
∞
≤ d||PN(D)c||+N2(m)eεmb|| fε||Lm

∞

||G[ fε]||Lm
∞
≤ N2(m)|| f ||Lm

∞

or

||G[ fε]||Lm
∞
≤ N2(m)eεmb|| fε||Lm

∞

Proof. Together with the inequality (3.5) we can obtain the following inequalities
with the right hand side f (t):

sup
t∈[0;m]

||x(t,ξ)|| ≤ d1||ξ||+
(

d1eεbm
(

1
α1a+ εb

+
1

β1a− εb

)
− d1

α1a+ εb
e−α1am

)
|| f ||Lm

∞
,

sup
t∈[−m;0]

||x(t,ξ)|| ≤ d2||ξ||+
(

d2eεbm
(

1
α2a− εb

+
1

β2a+ εb

)
− d2

β2a+ εb
e−β2am

)
|| f ||Lm

∞
.

If d = max{d1,d2},

K1(m) = max
{

d1eεbm
(

1
α1a+ εb

+
1

β1a− εb

)
,d2eεbm

(
1

α2a− εb
+

1
β2a+ εb

)}
,

L1(m) = min

{
d1e−α1am

α1a+ εb
,
d2e−β2am

β2a+ εb

}
,

and N1(m) = K1(m)−L1(m), then

||x||Lm
∞
≤ d||PN(D)c||+N1(m)|| f ||Lm

∞
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For fε(t) = e−εb|t| f (t) we have

sup
t∈[0;m]

||x(t,ξ)|| ≤ d1||ξ||+
(

d1

(
1

α1a
+

1
β1a

)
− d1

β1a
e−α1am

)
|| f ||Lm

∞

sup
t∈[−m;0]

||x(t,ξ)|| ≤ d2||ξ||+
(

d2

(
1

α2a
+

1
β2a

)
− d2

β2a
e−β2am

)
|| f ||Lm

∞

If

K2 = max
{

d1

(
1

α1a
+

1
β1a

)
,d2

(
1

α2a
+

1
β2a

)}
L2(m) = min

{
d1

β1a
e−α1am,

d2

β2a
e−β2am

}
and N2(m) = K2−L2(m), then

||xε||Lm
∞
≤ d||PN(D)c||+N2(m)|| f ||Lm

∞

or
||xε||Lm

∞
≤ d||PN(D)c||+N2(m)eεmb|| fε||Lm

∞

�

Corollary 2. Operator

L :=
d
dt

+A(t).

under conditions µ,ν dichotomy is Noetherian with index r−d, as the operator from
the space

Hm
∞ (Rn) = {g ∈ Lm

∞(Rn), such that g′ ∈ Lm
∞(Rn)}

into space Lm
∞(Rn). Thus L : Hm

∞ (Rn)→ Lm
∞(Rn).

Proof. Indeed, it follows from the proof of the previous theorem that the operator

L :=
d
dt

+A(t)

is Noetherian. The following numbers determine its index. Let us denote the number
of linear independent solvability conditions

+PN(D∗)

{∫
∞

0
T (0,τ)(I−P+(τ)) fε(τ)dτ+

∫ 0

−∞

T (0,τ)P−(τ) fε(τ)dτ

}
= 0,

as d, and the number of linearly independent bounded solutions of the homogeneous
equation of the form PN(D)c as r. Then the index of the operator L is determined as

ind L = r−d.

�
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Remark 2. Let us consider the case when this system is considered only on semi-
axis. In this case, the system has a set of bounded solutions in the following form:

x(t,ξ1) = T (t,0)P+(0)ξ1−
∫ +∞

t
T (t,τ)(I−P+(τ)) fε(τ)dτ

+
∫ t

0
T (t,τ)P+(τ) fε(τ)dτ, t ≥ 0

for the arbitrary heterogeneity and vector ξ1. The boundedness of the solution from
this set is proved in the same way as Theorem 1.

Example 1. Consider an example of a two-dimensional system

dx1(t)
dt

= th tx1(t)+ f1ε(t),

dx2(t)
dt

=−th tx2(t)+ f2ε(t).

Let us show that this system admits a uniform exponential dichotomy on the axes. In
this case, we show that

X(t,τ) = diag
{

et + e−t

eτ + e−τ
,
eτ + e−τ

et + e−t

}
.

Projectors

P+(τ) = diag{0,1},P−(τ) = diag{1,0},

f (t) = ( f1(t), f2(t))T , fε(t) = ( f1ε(t), f2ε(t))T = e−ε|t|b( f1(t), f2(t))T

and || fε||τ = e−ε|τ|b|| f ||L∞(R). It is easy to show that the system allows uniform ex-
ponential dichotomy on the axes under such conditions. So let us write down the
necessary and sufficient condition of solvability of such system. In this case, the mat-
rix D = P+(0)− (I−P−(0)) = 0 and respectively PN(D) = PN(D∗) = I. The solvability
condition takes the following form∫ +∞

−∞

f1ε(τ)

eτ + e−τ
dτ = 0

or ∫ +∞

−∞

e−ε|τ|b f1(τ)

eτ + e−τ
dτ = 0

The set of bounded solutions looks like this

x(t,c) =
(

0
2

et+e−t c2

)
+(G[ fε])(t,0),∀c2 ∈ R

where

(G[ fε])(t,0) =

(
−
∫ +∞

t
et+e−t

eτ+e−τ f1ε(τ)dτ,τ≤ t∫ t
0

eτ+e−τ

et+e−t f2ε(τ)dτ,τ≥ t

)
, t ≥ 0
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(G[ fε])(t,0) =

( ∫ t
−∞

et+e−t

eτ+e−τ f1ε(τ)dτ,τ≤ t
−
∫ 0

t
eτ+e−τ

et+e−t f2ε(τ)dτ,τ≥ t

)
, t ≤ 0.

or in the form

x(t,c) =
(

0
2

et+e−t c2

)
+(G[ f ])(t,0),∀c2 ∈ R

where

(G[ f ])(t,0) =

(
−
∫ +∞

t
et+e−t

eτ+e−τ e−ε|τ|b f1(τ)dτ,τ≤ t∫ t
0

eτ+e−τ

et+e−t e−ε|τ|b f2(τ)dτ,τ≥ t

)
, t ≥ 0

(G[ f ])(t,0) =

( ∫ t
−∞

et+e−t

eτ+e−τ e−ε|τ|b f1(τ)dτ,τ≤ t
−
∫ 0

t
eτ+e−τ

et+e−t e−ε|τ|b f2(τ)dτ,τ≥ t

)
, t ≤ 0.
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