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Abstract. The aim of this paper is to propose a new faster iterative method, called the MN-
iteration process, for approximating a fixed point of continuous functions on an arbitrary interval.
Then, a necessary and sufficient condition for the convergence of the MN-iteration of continu-
ous functions on an arbitrary interval is established. We also compare the rate of convergence
between the proposed iteration and some other iteration processes in the literature. Specifically,
our main result shows that MN-iteration converges faster than NSP-iteration to the fixed point.
We finally give numerical examples to compare the result with Mann, Ishikawa, Noor, SP and
NSP iterations. Our findings improve corresponding results in the contemporary literature.

2010 Mathematics Subject Classification: 47H09; 47H10

Keywords: rate of convergence, continuous function, convergence theorem, fixed point, closed
interval

1. INTRODUCTION

Let C be a closed interval on the real line and let f : C→C be a continuous func-
tion. A point x ∈C is called a fixed point of f if f (x) = x.

Iteration procedures are used in nearly every branch of applied mathematics. There
are many iterative methods for finding a fixed point of f . In computational mathem-
atics, it is important to compare the iterative schemes with regard to their rate of
convergence.

The classical iteration process was introduced by Mann [7] which is formulated as
follows:

un+1 = (1−αn)un +αn f (un) (1.1)

for all n≥ 1, where αn ∈ [0,1]. Such an iteration process is known as Mann iteration.
In 1991, Borwein and Borwein [3] proved the convergence theorem for a continuous
function on the closed and bounded interval in the real line by using iteration (1.1).
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The Ishikawa iterative scheme, usually called the two-step iteration method, due
to Ishikawa [6] is given by s1 ∈C and

tn = (1−βn)sn +βn f (sn),

sn+1 = (1−αn)sn +αn f (tn)
(1.2)

for all n ≥ 1, where {αn} and {βn} are sequences in [0,1]. Such iterative method
is called Ishikawa iteration. In 2006, Qing and Qihou [11] proved the convergence
theorem of the sequence generated by iteration (1.2) for a continuous function on the
closed interval in the real line (see also [15]).

In 2000, Noor [8] defined the following iterative scheme by l1 ∈C and

mn = (1−µn)ln +µn f (ln),

vn = (1−βn)ln +βn f (mn),

ln+1 = (1−αn)ln +αn f (vn)

(1.3)

for all n≥ 1, where {αn}, {βn} and {µn} are sequences in [0,1], which is called Noor
iteration for continuous functions on an arbitrary interval in the real line.

Clearly, the Mann and Ishikawa iteration processes are special cases of the Noor
iteration. However, there are only a few articles concerning comparison of those
iterative methods in order to establish which one converges faster. For more details,
we orient the reader to [1, 2, 10, 12, 14] and references therein.

Rhoades [13] introduced the concept to compare iterative methods which one con-
verges faster as follows.

Definition 1 ([9, Definition 3.1]). Let C be a closed interval on the real line and let
f : C→C be a continuous mapping. Suppose that {xn} and {wn} are two iterations
which converge to the fixed point p of f . Then {xn} is said to converge faster than
{wn} if

|xn− p| ≤ |wn− p|
for all n≥ 1.

In 2011, Phuengrattana and Suantai [9] introduced and studied the SP-iteration as
follows: h1 ∈C and

en = (1−µn)hn +µn f (hn),

dn = (1−βn)en +βn f (en),

hn+1 = (1−αn)dn +αn f (dn)

(1.4)

for all n ≥ 1, where {αn}, {βn} and {µn} are sequences in [0,1]. They showed that
(1.4) converges to a fixed point of f . Moreover, the rate of convergence is better than
those of Mann (1.1), Ishikawa (1.2) and Noor (1.3) in the sense of Rhoades [13].

Clearly Mann iteration is special cases of SP-iteration. Some interesting results
concerning fixed point theory of continuous functions can be found in [5].
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Recently, by combining the SP-iteration and Noor iteration, Cholamjiak and Pho-
lasa [4] proposed the NSP-iteration as follows: w1 ∈C and

rn = (1−µn)wn +µn f (wn),

qn = (1− τn−βn)wn + τnrn +βn f (rn),

wn+1 = (1− γn−αn)wn + γnqn +αn f (qn)

(1.5)

for all n ≥ 1, where {αn}, {βn}, {µn}, {τn} and {γn} are sequences in [0,1]. They
proved some convergence theorems of such iterations for continuous functions on an
arbitrary interval. Also, they compared the rate of convergence of Mann, Ishikawa,
Noor and NSP iterations by numerical examples and concluded that NSP-iteration
converges faster than all of them.

Inspired and motivated by these facts, we introduce and study a new modified
Noor-iteration process for solving a fixed point problem for continuous function on
an arbitrary interval in the real line. The scheme is defined as follows.

Let C be a closed interval on the real line and f : C→C given mapping. Then for
an arbitrary x1 ∈C, the following iteration scheme is studied :

zn = (1−µn)xn +µn f (xn),

yn = (1− τn−βn)xn + τn f (xn)+βn f (zn),

xn+1 = (1− γn−αn)xn + γn f (zn)+αn f (yn), n≥ 1,
(1.6)

where, {αn},{βn},{µn},{γn} and {τn} are appropriate real sequences in [0,1]. The
iterative scheme (1.6) is called the modified Noor iteration for continuous functions
(abbreviate MN-iteration).

The first purpose of this article is to give a necessary and sufficient condition for
the strong convergence of the MN-iteration of continuous functions on an arbitrary
interval. The second purpose is to improve the rate of convergence compared to previ-
ous work. Specifically, our main result shows that MN-iteration converges faster than
NSP-iteration to the fixed point. Numerical examples are also presented to compare
the result with Mann, Ishikawa, Noor, SP and NSP iterations.

Consequently, we have that MN-iteration converges faster than the other schemes
in the same category.

2. CONVERGENCE THEOREM

In this section, we provide the convergence theorem of MN-iteration (1.6) for con-
tinuous functions on an arbitrary closed interval. Now, we will give some crucial
lemmas for proofs of our main results.

Lemma 1. Let C be a closed interval on the real line (can be unbounded) and
let f : C→ C be a continuous function. Let {αn},{βn},{µn},{γn} and {τn} be se-

quences in [0,1] such that
∞

∑
n=1

αn = ∞, lim
n→∞

αn = 0,
∞

∑
n=1

βn < ∞,
∞

∑
n=1

µn < ∞,
∞

∑
n=1

γn < ∞
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and
∞

∑
n=1

τn < ∞. From an arbitrary initial guess x1 ∈ C, define the sequence {xn}

using (1.6). If xn→ a, then a is a fixed point of f .

Proof. Let xn→ a, and suppose a 6= f (a). Then {xn} is bounded. So, { f (xn)} is
bounded by the continuity of f . So are {yn},{zn},{ f (yn)} and { f (zn)}. Moreover,
zn → a since xn → a and µn → 0. We also have yn → a since xn → a, βn → 0 and
τn→ 0. From (1.6), we get

xn+1 = (1− γn−αn)xn + γn f (zn)+αn f (yn)

= xn + γn( f (zn)− xn)+αn( f (yn)− xn).
(2.1)

Let pk = f (zk)− xk,qk = f (yk)− xk. Then, we have

lim
k→∞

pk = lim
k→∞

( f (zk)− xk) = f (a)−a 6= 0,

lim
k→∞

qk = lim
k→∞

( f (yk)− xk) = f (a)−a 6= 0.

From (2.1) we get

xn = x1 +
n

∑
k=1

γk( f (zk)− xk)+
n

∑
k=1

αk( f (yk)− xk)

= x1 +
n

∑
k=1

γk pk +
n

∑
k=1

αkqk.

It is worth noting here that
∞

∑
k=1

γk pk < ∞ since lim
k→∞

pk 6= 0 and
∞

∑
k=1

γk < ∞. This shows

that {xn} is a divergent sequence since lim
k→∞

qk 6= 0 and
∞

∑
k=1

αk = ∞. This contradicts

to the convergence of {xn}. Hence f (a) = a and a is fixed point of f . �

Lemma 2. Let C be a closed interval on the real line (can be unbounded) and
let f : C→ C be a continuous function. Let {αn},{βn},{µn},{γn} and {τn} be se-

quences in [0,1] such that
∞

∑
n=1

αn = ∞, lim
n→∞

αn = 0,
∞

∑
n=1

βn < ∞,
∞

∑
n=1

µn < ∞,
∞

∑
n=1

γn < ∞

and
∞

∑
n=1

τn < ∞. From an arbitrary initial guess x1 ∈ C, define the sequence {xn}

using (1.6). If {xn} is bounded, then {xn} is convergent.

Proof. Suppose {xn} is not convergent. Let a = liminfn xn and b = limsupn xn.
Then a < b. We first show that if a < m < b, then f (m) = m. Suppose f (m) 6= m.
Without loss of generality, we suppose f (m)−m > 0. Since f is continuous, there
exists δ with 0 < δ < b−a such that for |x−m| ≤ δ,

f (x)− x > 0.
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By continuity of f and {xn} is bounded we have that { f (xn)} is bounded, so {zn},
{yn}, { f (zn)} and { f (yn)} are bounded sequences. Using

xn+1− xn = γn( f (zn)− xn)+αn( f (yn)− xn),

yn− xn = τn( f (xn)− xn)+βn( f (zn)− xn),

zn− xn = µn( f (xn)− xn),

we can easily show that |zn−xn| → 0, |yn−xn| → 0 and |xn+1−xn| → 0. Thus, there
exists a positive integer N such that

|xn+1− xn|<
δ

2
, |yn− xn|<

δ

2
, |zn− xn|<

δ

2
,∀n > N. (2.2)

Since b = limsupn xn > m, there exists k1 > N such that xnk1
> m. Let nk1 = k, then

xk > m. For xk, there exist two cases as follows:

(i) xk > m+ δ

2 , then xk+1 > xk− δ

2 ≥ m using (2.2). So, we have xk+1 > m.
(ii) m < xk < m+ δ

2 , then m− δ

2 < yk < m+δ and m− δ

2 < zk < m+δ by (2.2).
So, we obtain |xk−m|< δ

2 < δ, |yk−m|< δ, |zk−m|< δ. Hence

f (xk)− xk > 0, f (yk)− yk > 0, f (zk)− zk > 0. (2.3)

From (2.1) and (2.3), we have

xk+1 = xk + γk( f (zk)− xk)+αk( f (yk)− xk)

= xk + γk( f (zk)− zk)+ γk(zk− xk)+αk( f (yk)− yk)+αk(yk− xk)

= xk + γk( f (zk)− zk)+ γkµk( f (xk)− xk)+αk( f (yk)− yk)

+αkτk( f (xk)− xk)+αkβk( f (zk)− xk)

= xk + γk( f (zk)− zk)+ γkµk( f (xk)− xk)+αk( f (yk)− yk)

+αkτk( f (xk)− xk)+αkβk( f (zk)− zk)+αkβk(zk− xk)

= xk + γk( f (zk)− zk)+ γkµk( f (xk)− xk)+αk( f (yk)− yk)

+αkτk( f (xk)− xk)+αkβk( f (zk)− zk)+αkβkµk( f (xk)− xk)

> xk.

Thus xk+1 > xk > m. This together with (i) and (ii), imply xk+1 > m. Similarly,
we get that xk+2 > m, xk+3 > m, ... . Thus we have xn > m for all n > k = nk1 . So
a = limk→∞ xnk ≥ m, which is a contradiction with a < m. Thus f (m) = m.

We next consider the following two cases.

(i) There exists xM such that a < xM < b. Then f (xM) = xM. It follows that

zM = (1−µM)xM +µM f (xM) = xM
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and

yM = (1− τM−βM)zM + τM f (xM)+βM f (zM)

= (1− τM−βM)xM + τM f (xM)+βM f (xM)

= xM.

It follows that

xM+1 = (1− γM−αM)yM + γM f (zM)+αM f (yM)

= (1− τM− γM)xM + γM f (xM)+αM f (xM)

= xM.

Similarly, we obtain xM = xM+1 = xM+2 = ... . It clear that xn→ xM. Since
there exists xnk→ a,xM = a. This shows that xn→ a, which is a contradiction.

(ii) For all n,xn ≤ a or xn ≥ b. Since b− a > 0 and lim
n→∞
|xn+1− xn| = 0, there

exists Ñ such that |xn+1− xn| < (b−a)
2 for n > Ñ. So, it is seen that xn ≤ a

for n > Ñ, or it is always that xn ≥ b for n > Ñ. If xn ≤ a for n > Ñ, then
b = lim

j→∞
xn j ≤ a, which is a contradiction with a < b. If xn ≥ b for n > Ñ,

then a = lim
k→∞

xnk ≥ b, which is a contradiction with a < b. Thus we conclude

that xn→ a. The proof is completed.

�

We are now ready to prove the main theorem.

Theorem 1. Let C be a closed interval on the real line (can be unbounded) and
let f : C→ C be a continuous function. Let {αn},{βn},{µn},{γn} and {τn} be se-

quences in [0,1] such that
∞

∑
n=1

αn = ∞, lim
n→∞

αn = 0,
∞

∑
n=1

βn < ∞,
∞

∑
n=1

µn < ∞,
∞

∑
n=1

γn < ∞

and
∞

∑
n=1

τn < ∞. From an arbitrary initial guess x1 ∈ C, define the sequence {xn}

using (1.6). Then {xn} is bounded if and only if it converges to a fixed point of f .

Proof. Sufficiency is obvious. It suffices to show that if {xn} is bounded, then
{xn} converges to a fixed point. Let {xn} be a bounded sequence. Using Lemma 2,
we have {xn} is a convergent sequence. Hence, by Lemma 1, it converges to a fixed
point of f . �

When C = [a,b] in Theorem 1, we obtain the following result.
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Corollary 1. Let f : [a,b] → [a,b] be a continuous function. Let {αn},{βn},
{µn},{γn} and {τn} be sequences in [0,1]. Let {xn} be a sequence generated it-
eratively by x1 ∈ [a,b] and

zn = (1−µn)xn +µn f (xn),

yn = (1− τn−βn)xn + τn f (xn)+βn f (zn),

xn+1 = (1− γn−αn)xn + γn f (zn)+αn f (yn), n≥ 1,

where
∞

∑
n=1

αn = ∞, lim
n→∞

αn = 0,
∞

∑
n=1

βn < ∞,
∞

∑
n=1

µn < ∞,
∞

∑
n=1

γn < ∞ and

∞

∑
n=1

τn < ∞. Then {xn} converges to a fixed point of f .

3. RATE OF CONVERGENCE

In this section, we provide a theoretical estimation proof of the rate of convergence
of the sequence {xn} defined by (1.6). We compare the convergence rate of (1.6) with
the NSP-iteration proposed in [4]. We show that the MN-iteration (1.6) converges
faster than the NSP-iteration (1.5) for the class of continuous nondecreasing functions
on an arbitrary interval in the sense of Rhoades [13].

We next prove some crucial lemmas which will be used in the sequel.

Lemma 3. Let C be a closed interval on the real line and let f : C → C be a
continuous and nondecreasing function. Let {αn},{βn},{µn},{γn} and {τn} be se-
quences in [0,1). Let {wn} and {xn} be sequences defined by (1.5) and (1.6), respect-
ively. Then the following hold :

(i) If f (w1)< w1, then f (wn)< wn for all n≥ 1 and {wn} is nonincreasing.
(ii) If f (w1)> w1, then f (wn)> wn for all n≥ 1 and {wn} is nondecreasing.

(iii) If f (x1)< x1, then f (xn)< xn for all n≥ 1 and {xn} is nonincreasing.
(iv) If f (x1)> x1, then f (xn)> xn for all n≥ 1 and {xn} is nondecreasing.

Proof.

(i) Let f (w1)< w1. Then f (w1)< r1 ≤ w1. Since f is nondecreasing, we have
f (r1) ≤ f (w1) < r1 ≤ w1. This implies f (r1) < q1 ≤ w1. Thus f (q1) ≤
f (w1)< r1 ≤ w1. For q1, we consider the following two cases.
Case 1: f (r1) < q1 ≤ r1. Then f (q1) ≤ f (r1) < q1 ≤ r1 ≤ w1. This im-

plies f (q1)< w2 ≤ w1. Thus f (w2)≤ f (w1)< r1 ≤ w1. It follows that
if f (q1) < w2 ≤ q1, then f (w2) ≤ f (q1) < w2, if q1 < w2 ≤ r1, then
f (w2) ≤ f (r1) < q1 < w2 and if r1 < w2 ≤ w1, then f (w2) ≤ f (w1) <
r1 < w2. Thus we have f (w2)< w2.

Case 2: r1 < q1 ≤w1. Then f (q1)≤ f (w1)< r1 ≤w1. This implies f (q1)<
w2 ≤w1. Thus f (w2)≤ f (w1)< r1 < q1 ≤w1. It follows that if f (q1)<
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w2 ≤ q1, then f (w2) ≤ f (q1) < w2 and if q1 < w2 ≤ w1, then f (w2) ≤
f (w1)< q1 < w2. Hence, we have f (w2)< w2.

In conclusion by Case 1 and Case 2, we have f (w2)< w2. By continuing
in this way, we can show that f (wn)< wn for all n≥ 1. This implies rn ≤ wn
for all n ≥ 1. Since f is nondecreasing, we have f (rn)≤ f (wn)< wn for all
n ≥ 1. Thus qn ≤ wn for all n ≥ 1, then f (qn) ≤ f (wn) < wn for all n ≥ 1.
Hence, we have wn+1 ≤ wn for all n≥ 1, that is {wn} is nonincreasing.

(ii) By using the same argument as in (i), we obtain the desired result.
(iii) Let f (x1) < x1. Then f (x1) < z1 ≤ x1. Since f is nondecreasing, we have

f (z1)≤ f (x1)< z1≤ x1. This implies f (z1)< y1≤ x1. Thus f (y1)≤ f (x1)<
z1 ≤ x1. For y1, we consider the following two cases.
Case 1: f (z1) < y1 ≤ z1. Then f (y1) ≤ f (z1) < z1 < x1. It follows that if

f (y1)< x2 ≤ y1, then f (x2)≤ f (y1)< x2, if y1 < x2 ≤ z1, then f (x2)≤
f (z1)< y1 < x2 and if z1 < x2 ≤ x1, then f (x2)≤ f (x1)< z1 < x2. Thus
we have f (x2)< x2.

Case 2: z1 < y1 ≤ x1. Then f (y1) ≤ f (x1) < z1 ≤ x1. This implies f (y1) <
x2 ≤ x1. Thus f (x2) ≤ f (x1) < z1 < y1 ≤ x1. It follows that if f (y1) <
x2 ≤ y1, then f (x2) ≤ f (y1) < x2 and if y1 < x2 ≤ x1, then f (x2) ≤
f (x1)< y1 < x2. Hence, we have f (x2)< x2.

In conclusion by Case 1 and Case 2, we have f (x2) < x2. By continuing in
this way, we can show that f (xn)< xn for all n≥ 1. This implies zn ≤ xn for
all n≥ 1. Since f is nondecreasing, we have f (zn)≤ f (xn)< xn for all n≥ 1.
Thus yn ≤ xn for all n≥ 1, then f (yn)≤ f (xn)< xn for all n≥ 1. Hence, we
have xn+1 ≤ xn for all n≥ 1, that is {xn} is nonincreasing.

(iv) Following the proof line as in (iii), we obtain the desired result.
�

Lemma 4. Let C be a closed interval on the real line and let f : C → C be a
continuous and nondecreasing function. Let {αn},{βn},{µn},{γn} and {τn} be se-
quences in [0,1). For w1 = x1 ∈ C, let {wn} and {xn} be sequences defined by the
NSP-iteration (1.5) and MN-iteration (1.6), respectively. Then the following are sat-
isfied:

(i) If f (w1)< w1, then xn ≤ wn for all n≥ 1.
(ii) If f (w1)> w1, then xn ≥ wn for all n≥ 1.

Proof.
(i) Let f (w1)< w1. Then f (x1)< x1 since w1 = x1. From (1.6), we get f (x1)<

z1 ≤ x1. Since f is nondecreasing, we obtain f (z1) ≤ f (x1) < z1 ≤ x1.
Hence f (z1) < y1 ≤ z1. Using the NSP-iteration (1.5) and MN-iteration
(1.6), we obtain the following estimation : z1 − r1 = (1− µ1)(x1 −w1) +
µ1( f (x1)− f (w1)) = 0. So, z1 = r1, and so y1 − q1 = (1− τ1 − β1)(x1 −
w1)+τ1( f (x1)−r1)+β1( f (z1)− f (r1))≤ 0. Hence, we have y1 ≤ q1. Since
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f is nondecreasing, we have f (y1) ≤ f (q1). We next obtain x2−w2 = (1−
γ1−α1)(x1−w1)+γ1( f (z1)−q1)+α1( f (y1)− f (q1))≤ 0, so, x2 ≤w2. As-
sume that xk ≤ wk. Thus f (xk) ≤ f (wk). From Lemma 3 (i) and Lemma 3
(iii), we get f (wk) < wk and f (xk) < xk. It follows that f (xk) < zk ≤ xk and
f (zk)≤ f (xk)< zk. Thus zk−rk = (1−µk)(xk−wk)+µk( f (xk)− f (wk))≤ 0.
So, zk ≤ rk. Since f (zk)≤ f (rk), we have yk−qk = (1− τk−βk)(xk−wk)+
τk( f (xk)− rk) + βk( f (zk)− f (rk)) ≤ 0, so, yk ≤ qk, which yields f (yk) ≤
f (qk). In addition, f (zk)≤ f (xk)< zk ≤ xk, using (1.6), we have

f (zk)− yk = (1− τk − βk)( f (zk)− xk) + τk( f (zk)− f (xk)) + βk( f (zk)−
f (zk)) ≤ 0. So, f (zk)− qk = ( f (zk)− yk)+ (yk− qk) ≤ 0. This shows that
xk+1−wk+1 = (1−γk−αk)(xk−wk)+γk( f (zk)−qk)+αk( f (yk)− f (qk))≤
0, which gives, xk+1 ≤ wk+1. By induction, we conclude that xn ≤ wn for all
n≥ 1.

(ii) From Lemma 3 (ii), Lemma 3 (iv) and the same argument as in (i), we can
show that xn ≥ wn for all n≥ 1.

�

For convenience, we write algorithm (1.6) by MN(x1,αn,βn,µn,γn,τn, f ).

Proposition 1. Let C be a closed interval on the real line and let f : C→C be a
continuous and nondecreasing function such that F( f ) is nonempty and bounded with
x1 > sup{p ∈ C : p = f (p)}. Let {αn},{βn},{µn},{γn} and {τn} be sequences in
[0,1). If f (x1)> x1, then {xn} defined by NSP(x1,αn,βn, µn,γn,τn, f ) and MN(x1,αn,
βn,µn,γn,τn, f ) do not converge to a fixed point of f .

Proof. From Lemma 3 ((ii),(iv)), we know that {xn} is nondecreasing. Since the
initial point x1 > sup{p ∈C : p = f (p)}, it follows that {xn} does not converge to a
fixed point of f . �

Proposition 2. Let C be a closed interval on the real line and let f : C→ C be
a continuous and nondecreasing function such that F( f ) is nonempty and bounded
with x1 < inf{p∈C : p= f (p)}. Let {αn},{βn},{µn},{γn} and {τn} be sequences in
[0,1). If f (x1)< x1, then {xn} defined by NSP(x1,αn,βn, µn,γn,τn, f ) and MN(x1,αn,
βn,µn,γn,τn, f ) do not converge to a fixed point of f .

Proof. From Lemma 3 ((i),(iii)), we know that {xn} is nonincreasing. Since the
initial point x1 < inf{p ∈C : p = f (p)}, it follows that {xn} does not converge to a
fixed point of f . �

Next, we compare the rate of convergence of MN-iteration with NSP-iteration.

Theorem 2. Let C be a closed interval on the real line and let f : C→ C be a
continuous and nondecreasing function such that F( f ) is nonempty and bounded.
Let {αn},{βn},{µn},{γn} and {τn} be sequences in [0,1). For w1 = x1 ∈C, let {wn}
and {xn} be sequences defined by the NSP-iteration (1.5) and the MN-iteration (1.6),
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respectively. If the NSP-iteration {wn} converges to p ∈ F( f ), then the MN-iteration
{xn} converges to p. Moreover, the MN-iteration (1.6) converges faster than the NSP-
iteration (1.5).

Proof. Assume that the NSP-iteration {wn} converges to p ∈ F( f ). Put L =
inf{p ∈ C : p = f (p)} and U = sup{p ∈ C : p = f (p)}. For w1 = x1, we divide
our proof into the following three cases :

Case 1: w1 = x1 >U , Case 2: w1 = x1 < L, Case 3: L≤ w1 = x1 ≤U .

Case 1: w1 = x1 > U . By Proposition 1, we get f (w1) < w1 and f (x1) < x1. So,
by Lemma 4 (i), we have xn ≤ wn for all n ≥ 1. By induction, we can show
that U ≤ xn for all n ≥ 1. Then, we have 0 ≤ xn− p ≤ wn− p, which yields
|xn− p| ≤ |wn− p| for all n≥ 1. This shows that xn→ p. By Definition 1, we
conclude that the MN-iteration {xn} converges faster than the NSP-iteration
{wn}.

Case 2: w1 = x1 < L. By Proposition 2, we get f (w1) > w1 and f (x1) > x1. This
implies, by Lemma 4 (ii), that xn ≥ wn for all n ≥ 1. So, by induction, we
can show that xn ≤ L for all n≥ 1. Then, we have |xn− p| ≤ |wn− p| for all
n≥ 1. It follows that xn→ p and the MN-iteration {xn} converges faster than
the NSP-iteration {wn}.

Case 3: L ≤ w1 = x1 ≤U . Suppose that f (w1) 6= w1. If f (w1) < w1, we have, by
Lemma 3 (i), that {wn} is nonincreasing with limit p. Lemma 4 (i) gives
p ≤ xn ≤ wn for all n ≥ 1. It follows that |xn− p| ≤ |wn− p| for all n ≥ 1.
Therefore xn→ p and the result follows. If f (w1)> w1, by Lemma 3 (ii) and
Lemma 4 (ii), then we can also show that the result holds.

�

4. NUMERICAL EXAMPLES

In this section, some numerical examples are given to demonstrate the convergence
of the algorithm defined in this paper. For convenience, we call the iteration (1.6) the
MN-iteration.

Example 1. f : [−1,4]→ [−1,4] defined by f (x) = x3+x−3
19 . The fixed point of

the function is p = −0.166925. Initial point is x1 = 4 and control conditions are
αn =

1
(n+1)0.5 , βn =

1
(n+1)1.7 , µn =

1
(n+1)2.3 , γn =

1
(n+1)1.5 and τn =

1
(n+1)1.1 . The stopping

criteria is |xn− p|< 10−8.

Example 2. f : [1,∞]→ [1,∞] defined by f (x) = x0.3− (
√

log(x+9)−1)3. The
fixed point of the function is p = 1. Initial point is x1 = 9 and control conditions
are αn = 1

(n+1)0.5 , βn = 1
(n+1)2.0 , µn = 1

(n+1)3.6 , γn = 1
(n+1)2.5 and τn = 1

(n+1)1.1 . The

stopping criteria is |xn− p|< 10−6.
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n Mann Ishikawa Noor NSP SP MN-iteration
un sn ln wn hn xn |xn− p|

1 4 4 4 4 4 4 4.166925
5 1.393239 0.753340 0.628636 0.451696 0.293228 0.016801 0.183726
10 0.046198 -0.049731 -0.066200 -0.090005 -0.119193 -0.150974 0.015950
15 -0.120743 -0.141524 -0.145086 -0.150271 -0.157307 -0.163938 0.015950
20 -0.153846 -0.159732 -0.160740 -0.162211 -0.164309 -0.166147 0.000777
25 -0.162557 -0.164523 -0.164860 -0.165351 -0.166074 -0.166679 0.000245
30 -0.165290 -0.166026 -0.166152 -0.166336 -0.166612 -0.166836 0.000088
35 -0.166258 -0.166558 -0.166610 -0.166685 -0.166799 -0.166890 0.000034

No. of 133 126 124 121 113 99
iterations

TABLE 1. Mann, Ishikawa, Noor, NSP, SP and MN iterations for
f (x) = x3+x−3

19 .
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FIGURE 1. Error values obtained from MN, Ishikawa, Noor, SP,
NSP and Mann iterations for f (x) = x3+x−3
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FIGURE 2. Mann, Ishikawa, Noor, SP, NSP and MN iterations for given x1= 9 of f (x) =
x0.3− (

√
log(x+9)−1)3.
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n Mann Ishikawa Noor NSP SP MN-iteration
un sn ln wn hn xn |xn− p|

1 9 9 9 9 9 9 8
5 1.590135 1.567476 1.567411 1.493424 1.382242 1.235851 0.235851

10 1.127788 1.122291 1.122277 1.107154 1.079598 1.048813 0.048813
15 1.042340 1.040461 1.040456 1.035520 1.025965 1.015841 0.015841
20 1.017031 1.016264 1.016262 1.014287 1.010351 1.006290 0.006290
25 1.007706 1.007356 1.007355 1.006463 1.004656 1.002821 0.002821
30 1.003782 1.003609 1.003609 1.003172 1.002276 1.001375 0.001375
35 1.001972 1.001882 1.001882 1.001654 1.001183 1.000714 0.000714
40 1.001078 1.001029 1.001029 1.000904 1.000645 1.000389 0.000389
45 1.000613 1.000584 1.000584 1.000514 1.000366 1.000220 0.000220

No. of 124 123 123 121 116 109
iterations

TABLE 2. Mann, Ishikawa, Noor, NSP, SP and MN iterations for
x1 = 9 and f (x) = x0.3− (

√
log(x+9)−1)3.

Table 1, Table 2, Figure 1 and Figure 2 show the behavior of six comparative meth-
ods consisting of Mann iteration, Ishikawa iteration, Noor iteration, NSP-iteration,
SP-iteration and MN-iteration in converging to the fixed point of the numerical ex-
periments. The results of the both examples indicates that the MN-iteration converges
faster than the other methods.

Next, we will consider on the rate of convergence between the MN-iteration and
the algorithm defined in this paper. The Definition 1 will be used to indicate the rate
of convergence in the numerical aspects and results are scoped only on the Example
1 and Example 2.

Mann Ishikawa Noor NSP SP MN
n |un− p| |sn− p| |ln− p| |wn− p| |hn− p| |xn− p|
1 4.166925 4.166925 4.166925 4.166925 4.166925 4.166925
· · · · · · · · · · · · · · · · · · · · ·
22 8.29793E-03 4.56306E-03 3.92351E-03 2.99014E-03 1.63974E-03 4.81195E-04
23 6.66600E-03 3.66550E-03 3.15176E-03 2.40187E-03 1.31039E-03 3.82269E-04
24 5.38267E-03 2.95970E-03 2.54489E-03 1.93931E-03 1.05299E-03 3.05476E-04
· · · · · · · · · · · · · · · · · · · · ·
58 2.15202E-05 1.18252E-05 1.01680E-05 7.74561E-06 3.91320E-06 1.03354E-06
59 1.88782E-05 1.03734E-05 8.91967E-06 6.79466E-06 3.42936E-06 9.04423E-07
60 1.65801E-05 9.11051E-06 7.83376E-06 5.96744E-06 3.00896E-06 7.92411E-07

TABLE 3. The rate of convergence of Mann, Ishikawa, Noor, NSP,
SP and MN iterations for f (x) = x3+x−3

19 given in Example 1.

We also give a graphic to compare the rates of convergence of the iterations men-
tioned in Example 1 visually.
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Rate of convergence between two sequences
n |xn−p|

|un−p|
|xn−p|
|sn−p|

|xn−p|
|ln−p|

|xn−p|
|wn−p|

|xn−p|
|hn−p|

1 1.0000 1.0000 1.0000 1.0000 1.0000
5 0.1178 0.1996 0.2309 0.2970 0.3993

10 0.0748 0.1361 0.1584 0.2074 0.3342
20 0.0595 0.1081 0.1257 0.1650 0.2973
30 0.0540 0.0981 0.1141 0.1498 0.2823
40 0.0510 0.0928 0.1079 0.1417 0.2735
50 0.0491 0.0894 0.1040 0.1365 0.2676
60 0.0478 0.0870 0.1012 0.1328 0.2634

TABLE 4. Convergence comparison of sequences generated by
Mann iteration, Ishikawa iteration, Noor iteration, NSP-iteration and
SP-iteration with MN-iteration (see in Table 3) for numerical exper-
iment of Example 1.
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FIGURE 3. Convergence comparison of sequence generated by
Mann iteration (un), Ishikawa iteration (sn), Noor iteration (ln),
NSP-iteration (wn) and SP-iteration (hn) with MN-iteration (xn) for
Example 1.

Mann Ishikawa Noor NSP SP MN
n |un− p| |sn− p| |ln− p| |wn− p| |hn− p| |xn− p|
1 8 8 8 8 8 8
· · · · · · · · · · · · · · · · · · · · ·
35 1.97255E-03 1.88222E-03 1.88202E-03 1.65419E-03 1.18342E-03 7.14044E-04
36 1.74222E-03 1.66239E-03 1.66221E-03 1.46101E-03 1.04470E-03 6.30133E-04
37 1.54156E-03 1.47089E-03 1.47074E-03 1.29272E-03 9.23939E-04 5.57109E-04
· · · · · · · · · · · · · · · · · · · · ·
86 1.44878E-05 1.38175E-05 1.38160E-05 1.21448E-05 8.59461E-06 5.13795E-06
87 1.34005E-05 1.27804E-05 1.27791E-05 1.12333E-05 7.94884E-06 4.75143E-06
88 1.24005E-05 1.18267E-05 1.18254E-05 1.03950E-05 7.35501E-06 4.39603E-06

TABLE 5. The rate of convergence of Mann, Ishikawa, Noor, NSP,
SP and MN iterations for f (x) = x0.3− (

√
log(x+9)−1)3 given in

Example 2.
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Rate of convergence between two sequences

n |xn−p|
|un−p|

|xn−p|
|sn−p|

|xn−p|
|ln−p|

|xn−p|
|wn−p|

|xn−p|
|hn−p|

1 1.0000 1.0000 1.0000 1.0000 1.0000
5 0.3997 0.4156 0.4157 0.4780 0.6170
10 0.3820 0.3992 0.3992 0.4555 0.6132
20 0.3694 0.3868 0.3868 0.4403 0.6077
40 0.3606 0.3779 0.3780 0.4300 0.6024
60 0.3570 0.3743 0.3744 0.4259 0.5998
80 0.3551 0.3551 0.3723 0.4236 0.5982

100 0.3538 0.3710 0.3710 0.4221 0.5971

TABLE 6. Convergence comparison of sequences generated by
Mann iteration, Ishikawa iteration, Noor iteration, NSP-iteration and
SP-iteration with MN-iteration (see in Table 5) for numerical exper-
iment of Example 2.

We also give a graphic to compare the rates of convergence of the iterations men-
tioned in Example 2 visually.
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FIGURE 4. Convergence comparison of sequence generated by
Mann iteration (un), Ishikawa iteration (sn), Noor iteration (ln),
NSP-iteration (wn) and SP-iteration (hn) with MN-iteration (xn) for
Example 2.

Table 3 and 5 show the absolute errors of Mann, Ishikawa, Noor, NSP, SP and
MN iterations of the Example 1 and Example 2, respectively. Table 4 and Table 6
show ratios between the absolute error of MN-iteration and those of other methods
and graphs of Table 4 and Table 6 are represented on Figure 3 and Figure 4. Clearly,
the graphs on both figures converge to constants less than 1. It indicates that the
sequences of absolute error of MN-iteration are less than those sequences of other
methods. By Definition 1, we can conclude that MN-iteration converges to the fixed
point faster than other method. These results verify the proof on the section 3 which
show that MN-iteration converge faster than Mann, Ishikawa, Noor, NSP, and SP
iterations.
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