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Abstract. This study investigates the I qb-differentiability and I qb-integrability for interval-valu-
ed functions defined on the q-geometric set. We also establish some I qb-Hermite-Hadamard type
inequalities. Furthermore, some examples are presented to illustrate our results.
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1. INTRODUCTION

Quantum calculus was proposed by the famous mathematician Euler in the 18th
century. It uses the difference operator instead of the classical derivative to study
the set of non-differentiable functions. In 1910, Jackson introduced the concept of
quantum definite integral and extended the concept of quantum calculus. Quantum
calculus is a bridge between mathematics and physics. It has been widely used in
number theory, quantum theory, mechanics and other fields. In recent years, with the
higher and higher requirements of analog quantum computing on mathematics, it has
attracting considerable scholarly attention and triggered a huge amount of innovative
scientific research [6, 7, 9, 14].

As a branch of mathematics, interval analysis is an effective tool for dealing with
data inaccurate models caused by some types of measurements. Interval analysis has
been attracting considerable interest since it was firstly applied to automatic error
analysis by Moore. We now see applications in fuzzy set and possibility theory [5],
uncertain quantification and propagation procedure in the case of the small sample
measurement data [17], stochastic analysis of structures with uncertain-but-bounded
parameters [13], the terminal error bound of the Stewart platform [18], for more pro-
found results and applications, we refer to the papers [3, 10]. Particularly, Younus
[19] investigated the fractional q-differentiability and fractional q-integrability for
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interval-valued functions (IVFs) defined on the q-geometric set of real numbers. Lou
[11] proved the Iq-Hermite-Hadamard inequalities for IVFs. Recently, several stud-
ies have focused on the quantum differentials, integrals and inequalities of IVFs.

Motivated by the works mentioned, in this paper, we discuss the interval-valued
quantum calculus for (shortly, Iqb-calculus). Firstly, we give the concepts of Iqb-
calculus and define the Iqb-derivative and Iqb-integral. We also give some basic
properties and present some examples to illustrate our theorems. Moreover, using
the notion of I qb-derivative and I qb-integral, some new inequalities like Hermite-
Hadamard are offered. The results of this paper can serve as a base for future studies.
These results of this paper can be used as a powerful tool in fuzzy analysis, interval
optimization, and interval-valued differential equations.

2. PRELIMINARIES

2.1. Calculus for IVFs

Let RI be the set of all non-empty compact intervals on the real line R. For all
[a, a], [b, b] ∈ RI , λ ∈ R we have

[a, a]+ [b, b] = [a+ b, a+ b],

and

λ [a,a] =


[λ a, λ a] , λ > 0,
0, λ = 0,
[λ a, λ a] , λ < 0,

respectively.
The generalized Hukuhara (gH for brevity) difference of two intervals [a, a], [b, b]

∈ RI is defined by Stefanini [15]:

[a, a]⊖g [b, b] =
[
min{a−b, a−b}, max{a−b, a−b}

]
.

Let A = [a, a] ∈ RI , w(A) = a−a is called the length of the interval A. Then, for all
A = [a, a], B = [b, b] ∈ RI , we have

[a, a]⊖g [b, b] =

{[
a−b, a−b

]
, if w(A)≥ w(B),[

a−b, a−b
]
, if w(A)≤ w(B).

The gH-difference ⊖g have the following properties [12]:
(1) A⊖g A = {0}, A⊖g {0}= A, {0}⊖g A =−A,
(2) A⊖g B = (−B)⊖g (−A) =−(B⊖g A),
(3) A⊖g (−B) = B⊖g (−A) =−(B⊖g A),
(4) (A+B)⊖g B = A,
(5) λ A⊖g λ B = λ (A⊖g B).

For A, B, C, D ∈RI , consider t1 = w(A)−w(C), t2 = w(B)−w(D), t3 = w(A)−
w(B), t4 = w(C)−w(D). The following properties are satisfied [12]:
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(1)

(A+B)⊖g (C+D) =

{
(A⊖g C)+(B⊖g D), t1t2 ≥ 0,
(A⊖g C)⊖g (−B⊖g D), t1t2 < 0.

(2)

(A⊖g B)+(C⊖g D) =


(A⊖g (−C))⊖g (B⊖g (−D)), t1t2 ≥ 0, t3t4 < 0,
(A⊖g (−C))+(−B⊖g D), t1t2 < 0, t3t4 < 0,
(A+C)⊖g (B+D), t3t4 ≥ 0.

(3)

(A⊖g B)⊖g (C⊖g D) =


(A⊖g C)⊖g (B⊖g D), t1t2 ≥ 0, t3t4 ≥ 0,
(A⊖g C)+(−(B⊖g D)), t1t2 < 0, t3t4 ≥ 0,
(A+(−C))⊖g (B+(−D)), t3t4 < 0.

A function f : [a,b]→RI is said to be IVF, if f (x)=
[

f (x), f (x)
]

such that f (x)≤
f (x) for all x ∈ [a,b]. It is well known that lim

x→x0
f (x) exist if and only if lim

x→x0
f (x) and

lim
x→x0

f (x) exist, and is given by

lim
x→x0

f (x) =
[

lim
t→x0

f (x), lim
x→x0

f (x)
]
.

Particularly, an IVF f is continuous if and only if f , f are continuous. For two IVFs
f , g : [a,b]→ RI , we define the IVF f ⊖g g : [a,b]→ RI by

( f ⊖g g)(x) = f (x)⊖g g(x).

If lim
x→x0

f (x) = A and lim
x→t0

g(x) = B, then

lim
x→x0

( f ⊖g g)(x) = A⊖g B.

Further more, if f ,g : [a,b]→ RI are both continuous, then f ⊖g g is continuous.

Definition 1 ([1, Definition 20]). Let f : [a,b]→ RI be an IVF and let x0 ∈ [a,b].
We define f ′(x0) if it exist by

f ′(x0) = lim
h→0

f (x0 +h)⊖g f (x0)

h
,

and call it the gH-derivative of f at x0. We say that f is gH-differentiable on (a,b)
if it is differentiable at every point of (a,b). The IVF f ′ : [a,b] → RI is called a
gH-derivative of f on [a,b].
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Theorem 1 ([16, Theorem 17]). An IVF f : [a,b] → RI such that f (x) =[
f (x), f (x)

]
is gH-differentiable at x ∈ [a,b] if f , f are differentiable at x ∈ [a,b]

and
f ′(x) =

[
min

{
f ′(x), f ′(x)

}
,max

{
f ′(x), f ′(x)

}]
.

Let’s recall the definition of µ-monotone IVFs given by Markov in [12]:
An IVF f : [a,b]→ RI is µ-increasing (µ-decreasing) on [a,b] if the function x 7→

w( f (x)) is increasing (decreasing) on [a,b]. Therefore, f is called µ-monotone on
[a,b] if f is µ-decreasing or µ-increasing on [a,b].

Proposition 1 ([4, Proposition 2]). Let f : [a,b] → RI such that f (x) =[
f (x), f (x)

]
. If f is µ-monotone and gH-differentiable on [a,b], then d

dx f (x) and
d
dx f (x) exist for all x ∈ [a,b]. Moreover, we have

(i) f ′(x) =
[

f ′(x), f ′(x)
]

for all t ∈ [a,b], if f is µ-increasing;

(ii) f ′(x) =
[

f ′(x), f ′(x)
]

for all t ∈ [a,b], if f is µ-decreasing.

Definition 2 ([12, Definition 4]). The integral of an IVF f : [a,b]→ RI such that
f (x) =

[
f (x), f (x)

]
is defined by∫ b

a
f (x)dt =

[∫ b

a
f (x)dx,

∫ b

a
f (x)dx

]
.

2.2. q-calculus for real-valued functions

We first present some known Definitions and related inequalities in q-calculus. Set
the following notation [8]:

[n]q =
1−qn

1−q
= 1+q+q2 + · · ·+qn−1.

Let A be a subset of R and 0 < q < 1 be a fixed number. The set A is said to be
q-geometric if qz ∈ A whenever z ∈ A.

For a real-valued function f defined on a q-geometric set A, the q-difference oper-
ator Dq is defined by Bermudo in [2]:

Dq f (x) =
f (x)− f (qx)

x−qx
, for x ∈ A\{0}.

Definition 3 ([2, Definition 4]). For a continuous f : [a,b]→R and q ∈ (0,1), the
qb-derivative of f at x ∈ [a,b] is characterized by the expression

bDq f (x) =
f (qx+(1−q)b)− f (x)

(1−q)(b− x)
, x ̸= b.

For x = b, we define bDq f (b) = lim
x→b

Dq f (x) if it exist and it is finite.
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Definition 4 ([2, Definition 6]). For a continuous f : [a,b]→R and q ∈ (0,1), the
qb-integral of f at x ∈ [a,b] is characterized by the expression

bIq f (t) =
∫ b

t
f (x) bdqx = (1−q)(b− t)

∞

∑
n=0

qn f (qnt +(1−qn)b).

Theorem 2 ([2, Theorem 12]). Let f : [a,b] → R be a convex function and
q ∈ (0,1). Then we have

f
(

a+qb
[2]q

)
≤ 1

b−a

∫ b

a
f (x) bdqx ≤ f (a)+q f (b)

[2]q
. (2.1)

3. I qb-DERIVATIVE FOR IVFS

Now we introduce I qb-derivative and corresponding properties.

Definition 5 (I qb-derivative). For a continuous IVF f : [a,b] → R+
I , the I qb-

derivative of f at x ∈ [a,b] is given as:

bDq f (x) =


f (qx+(1−q)b)⊖g f (x)

(1−q)(b−x) , x ̸= b,

lim
x→b−

Dq f (x), x = b,

where q ∈ (0,1) and Dq f (x) = f (x)⊖g f (qx)
(1−q)x .

Example 1. Consider f : [0,1]→ RI given by f (x) = [−x,x]. It follows that f is
Iqb-differentiable. By Definition 5, for all x ∈ [0,1), we have

bDq f (x) =
f (qx+(1−q)b)⊖g f (x)

(1−q)(b− x)

=
[−qx− (1−q),qx+(1−q)]⊖g [−x,x]

(1−q)(1− x)

=
[(1−q)(x−1),(1−q)(1− x)]⊖g [−x,x]

(1−q)(1− x)
= [−1,1],

and for x = 1, we get

bDq f (1) = lim
x→1−

Dq f (x) = lim
x→1−

f (x)⊖g f (qx)
(1−q)x

= lim
x→1−

[−x,x]⊖g [−qx,qx]
(1−q)x

= [−1,1].

Theorem 3. An IVF f : [a,b] → R+
I such that f (x) =

[
f (x), f (x)

]
. Then f is

I qb-differentiable function if and only if f , f are qb-differentiable function, and

bDq f (x) =
[
min

{
bDq f (x),b Dq f (x)

}
,max

{
bDq f (x),b Dq f (x)

}]
. (3.1)
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Proof. Suppose f is a I qb-differentiable function, then there exist g,g such that

bDq f (x) =
[
g(x), g(x)

]
.

According to Definition 5,

g(x) = min
{

f (qx+(1−q)b)− f (x)
(1−q)(b− x)

,
f (qx+(1−q)b)− f (x)

(1−q)(b− x)

}
and

g(x) = max
{

f (qx+(1−q)b)− f (x)
(1−q)(b− x)

,
f (qx+(1−q)b)− f (x)

(1−q)(b− x)

}
exist. Then bDq f (x) and bDq f (x) exist, and (3.1) is feasible.

Conversely, if f , f are qb-differentiable at x and suppose bDq f (x) ≤ bDq f (x),
then[

bDq f (x), bDq f (x)
]
=

[
f (qx+(1−q)b)− f (x)

(1−q)(b− x)
,

f (qx+(1−q)b)− f (x)
(1−q)(b− x)

]
=

f (qx+(1−q)b)⊖g f (x)
(1−q)(b− x)

= bDq f (x).

So, f is a I qb-differentiable IVF.
Similarly, If bDq f (x)≥ bDq f (x), then bDq f (x) =

[
bDq f (x), bDq f (x)

]
. □

To illustrate the nature of the derivatives more clears, we give the following results.

Theorem 4. Let f : [a,b]→ R+
I . If f is I qb-differentiable on [a,b], then we have

(1) bDq f (x) =
[

bDq f (x), bDq f (x)
]

for all x ∈ [a,b] if f is µ-increasing;
(2) bDq f (x) =

[
bDq f (x), bDq f (x)

]
for all x ∈ [a,b] if f is µ-decreasing.

Proof. First, we supposed f is µ-increasing and I qb-differentiable on [a,b]. For
all x ∈ [a,b], we have[

f (qx+(1−q)b)− f (qx+(1−q)b)
]
−
[

f (x)− f (x)
]
> 0,

f (qx+(1−q)b)− f (x)> f (qx+(1−q)b)− f (x).

Therefore,

bDq f (x) =

[
f (qx+(1−q)b)− f (qx+(1−q)b)

]
⊖g
[

f (x)− f (x)
]

(1−q)(b− x)

=

[
f (qx+(1−q)b)− f (x)

(1−q)(b− x)
,

f (qx+(1−q)b)− f (x)
(1−q)(b− x)

]
=
[

bDq f (x), bDq f (x)
]
.

The other condition can be similarly proved. □
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Example 2. Furthermore, by Example 1, we have

w( f (x)) = 2x, x ∈ [0,1].

So, f is a µ-increasing IVF.
On the other hand,

bDq f (x) =
f (qx+(1−q)b)− f (x)

(1−q)(b− x)
=

(1−q)(x−1)
(1−q)(1− x)

=−1,

bDq f (x) =
f (qx+(1−q)b)− f (x)

(1−q)(b− x)
=

(1−q)(1− x)
(1−q)(1− x)

= 1.

Then, we obtained
bDq f (x) = [−1,1] = [bDq f (x),b Dq f (x)].

Theorem 5. Let f ,g : [a,b] → R+
I be I qb-differentiable IVFs. For all x ∈ [a,b],

q ∈ (0,1), consider

t1 = w( f (qx+(1−q)b))−w( f (x)) ,

t2 = w(g(qx+(1−q)b))−w(g(x)) ,

t3 = w( f (qx+(1−q)b))−w(g(qx+(1−q)b)) ,

t4 = w( f (x))−w(g(x)) .

(1) The sum f +g : [a,b]→ R+
I is a I qb-differentiable IVF with

bDq ( f +g)(x) =

{
bDq f (x)+b Dqg(x), t1t2 ≥ 0,
bDq f (x)⊖g

(
−bDqg(x)

)
, t1t2 < 0.

(2) For any constant λ ∈ R, λ f : [a,b]→ R+
I is a I qb-differentiable IVF with

bDq λ f (x) = λ
bDq f (x).

(3) The difference f ⊖g g : [a,b]→ R+
I is a I qb-differentiable IVF with

bDq ( f ⊖g g)(x) =

{
bDq f (x)⊖g

bDqg(x), t1t2 ≥ 0, t3t4 ≥ 0,
bDq f (x)+

(
−bDqg(x)

)
, t1t2 < 0, t3t4 ≥ 0.

Proof.

(1) By Definition 5, we have

bDq ( f +g)(x) =
( f +g)(qx+(1−q)b)⊖g ( f +g)(x)

(1−q)(b− x)

=
( f (qx+(1−q)b)+g(qx+(1−q)b))⊖g ( f (x)+g(x))

(1−q)(b− x)
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=


( f (qx+(1−q)b)⊖g f (x))+(g(qx+(1−q)b)⊖gg(x))

(1−q)(b−x) , t1t2 ≥ 0,

( f (qx+(1−q)b)⊖g f (x))⊖g(−g(qx+(1−q)b)⊖gg(x))
(1−q)(b−x) , t1t2 < 0,

=


( f (qx+(1−q)b)⊖g f (x))

(1−q)(b−x) +
(g(qx+(1−q)b)⊖gg(x))

(1−q)(b−x) , t1t2 ≥ 0,

( f (qx+(1−q)b)⊖g f (x))
(1−q)(b−x) ⊖g

(−g(qx+(1−q)b)⊖gg(x))
(1−q)(b−x) , t1t2 < 0,

=

{
bDq f (x)+b Dqg(x), t1t2 ≥ 0,
bDq f (x)⊖g

(
−bDqg(x)

)
, t1t2 < 0.

(2) By Definition 5, we have

bDq (λ f )(x) =
(λ f )(qx+(1−q)b)⊖g (λ f )(x)

(1−q)(b− x)

= λ
f (qx+(1−q)b)⊖g f (x)

(1−q)(b− x)

= λ
bDq f (x).

(3) By Definition 5, we have

bDq ( f ⊖g g)(x) =
( f ⊖g g)(qx+(1−q)b)⊖g ( f ⊖g g)(x)

(1−q)(b− x)

=


( f (qx+(1−q)b)⊖g f (x))⊖g(g(qx+(1−q)b)⊖gg(x))

(1−q)(b−x) , t1t2 ≥ 0, t3t4 ≥ 0,

( f (qx+(1−q)b)⊖g f (x))+(−g(qx+(1−q)b)⊖gg(x))
(1−q)(b−x) , t1t2 < 0, t3t4 ≥ 0,

=

{
bDq f (x)⊖b

g Dqg(x), t1t2 ≥ 0, t3t4 ≥ 0,
bDq f (x)+

(
−bDqg(x)

)
, t1t2 < 0, t3t4 ≥ 0.

□

4. I qb-INTEGRAL FOR INTERVAL-VALUED FUNCTIONS

In this section, we present the concepts of I qb-integral for IVFs and give some
properties.

Definition 6 (I qb-integral). Let f : [a,b]→ RI be a continuous IVF, the definite
integral I qb-integral of f on [a,b] is given by

bIq f (x) =
∫ b

x
f (t) bdI

q t = (1−q)(b− x)
∞

∑
n=0

qn f (qnx+(1−qn)b).
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Theorem 6. Let f , g : [a,b] → RI are continuous IVFs and λ ∈ R, we have the
following properties:

(1) bIq( f +g)(x) = bIq f (x)+ bIqg(x),
(2) bIq(λ f )(x) = λ bIq f (x).

Proof. By Definition 6, we have

bIq( f +g)(x) = (1−q)(b− x)
∞

∑
n=0

qn( f +g)(qnx+(1−qn)b)

= (1−q)(b− x)
∞

∑
n=0

qn ( f (qnx+(1−qn)b)+g(qnx+(1−qn)b))

= (1−q)(b− x)
∞

∑
n=0

qn f (qnx+(1−qn)b)

+(1−q)(b− x)
∞

∑
n=0

qng(qnx+(1−qn)b)

= bIq f (x)+ bIqg(x),

and

bIq(λ f )(x) = (1−q)(b− x)
∞

∑
n=0

qn(λ f )(qnx+(1−qn)b)

= λ (1−q)(b− x)
∞

∑
n=0

qn f (qnx+(1−qn)b) = λ
bIq f (x).

□

Theorem 7. Let f : [a,b] → RI be a continuous IVF, then f is I qb-integral on
[a,b] if and only if f and f is qb-integral on [a,b], and

bIq f (x) =
[

bIq f (x), bIq f (x)
]
.

Proof. The proof can be obtained by combining Definitions 4 and 6 and hence is
omitted. □

Example 3. Let f : [0,1]→ RI be given by

f (x) =
[
x2, x

]
.

For 0 < q < 1, we have∫ 1

0
f (x) 1dI

q x =
[∫ 1

0
x2 1dI

q x,
∫ 1

0
x 1dI

q x
]

=

[
(1−q)

∞

∑
n=0

qn(1−qn)2, (1−q)
∞

∑
n=0

qn(1−qn)

]
=

[
q(1+q2)

[3]q
,

q
[2]q

]
.
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Theorem 8. Let f ,g : [a,b]→ RI are continuous IVFs, then∫ b

a
f (x) bdI

q x⊖g

∫ b

a
g(x) bdI

q x ⊆
∫ b

a
( f (x)⊖g g(x)) bdI

q x.

Moreover, if w( f (x))−w(g(x)) has a constant sign on [a,b], then∫ b

a
f (x) bdI

q x⊖g

∫ b

a
g(x) bdI

q x =
∫ b

a
( f (x)⊖g g(x)) bdI

q x.

Proof. First, we have∫ b

a
min

[
f (x)−g(x), f (x)−g(x)

] bdI
q x

≤ min
{∫ b

a

(
f (x)−g(x)

) bdI
q x,

∫ b

a

(
f (x)−g(x)

) bdI
q x
}

≤ max
{∫ b

a

(
f (x)−g(x)

) bdI
q x,

∫ b

a

(
f (x)−g(x)

) bdI
q x
}

≤
∫ b

a
max

[
f (x)−g(x), f (x)−g(x)

] bdI
q x.

This implies that∫ b

a
f (x) bdI

q x⊖g

∫ b

a
g(x) bdI

q x

=

[
min

{∫ b

a

(
f (x)−g(x)

) bdI
q x,

∫ b

a

(
f (x)−g(x)

) bdI
q x
}
,

max
{∫ b

a

(
f (x)−g(x)

) bdI
q x,

∫ b

a

(
f (x)−g(x)

) bdI
q x
}]

⊆
[∫ b

a
min

{
f (x)−g(x), f (x)−g(x)

} bdI
q x,∫ b

a
max

{
f (x)−g(x), f (x)−g(x)

} bdI
q x
]

=
∫ b

a
( f (x)⊖g g(x)) bdI

q x.

Moreover, we assume that w( f (x))−w(g(x))≥ 0, x ∈ [a,b], then

f (x)⊖g g(x) =
[

f (x)−g(x), f (x)−g(x)
]
.

So, we have ∫ b

a

(
f (x)−g(x)

) bdI
q x ≤

∫ b

a

(
f (x)−g(x)

) bdI
q x.

This implies that∫ b

a
f (x) bdI

q x⊖g

∫ b

a
g(x) bdI

q x
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=

[
min

{∫ b

a

(
f (x)−g(x)

) bdI
q x,

∫ b

a

(
f (x)−g(x)

) bdI
q x
}
,

max
{∫ b

a

(
f (x)−g(x)

) bdI
q x,

∫ b

a

(
f (x)−g(x)

) bdI
q x
}]

=

[∫ b

a
f (x) bdI

q x,
∫ b

a
f (x) bdI

q x
]
⊖g

[∫ b

a
g(x) bdI

q x,
∫ b

a
g(x) bdI

q x
]

=
∫ b

a
( f (x)⊖g g(x)) bdI

q x.

□

Example 4. Let f ,g,h : [0,1]→ RI are given by

f (x) = [−x,x], g(x) = [−x2,x2], h(x) = [−2x2,2x2].

We have w( f (x))−w(g(x)) = 2x(1− x)≥ 0, x ∈ [0,1] and

f (x)⊖g g(x) = [−x+ x2,x− x2],

f (x)⊖g h(x) =

{[
2x2 − x,x−2x2

]
, x ∈

[
0, 1

2

]
,[

x−2x2,2x2 − x
]
, x ∈

[1
2 ,1
]
.

Then, we obtained that∫ 1

0
f (x) bdI

q x⊖g

∫ 1

0
g(x) bdI

q x =
[
− q2

[2]q[3]q
,

q2

[2]q[3]q

]
,∫ 1

0
f (x) bdI

q x⊖g

∫ 1

0
h(x) bdI

q x =
[
−q(1−q+q2)

[2]q[3]q
,
q(1−q+q2)

[2]q[3]q

]
,∫ 1

0
( f (x)⊖g g(x)) bdI

q x =
[
− q2

[2]q[3]q
,

q2

[2]q[3]q

]
,∫ 1

0
( f (x)⊖g h(x)) bdI

q x =
1
2

[
− q
[2]q

,
q
[2]q

]
.

Hence, ∫ 1

0
f (x) bdI

q x⊖g

∫ 1

0
g(x) bdI

q x =
∫ 1

0
( f (x)⊖g g(x)) bdI

q x

and ∫ 1

0
f (x) bdI

q x⊖g

∫ 1

0
h(x) bdI

q x ⊆
∫ 1

0
( f (x)⊖g h(x)) bdI

q x.

Theorem 9. Let f : [a,b]→ RI . If f is Iqb-differentiable on [a,b], then bDq f (x)
is Iqb-integrable. Moreover, if f is µ-monotone on [a,b], then

f (c)⊖g f (x) =
∫ c

x

bDq f (s) bdI
q s for all s ∈ [x,b]. (4.1)
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Proof. If f is Iqb-integrable on [a,b], then from Theorem 7 it follows that f and
f are qb-integrable. Hence, bDq f (x) and bDq f (x) are qb-integrable. Therefore, The-
orem 3 imply that bDq f (x) is Iqb-integrable.

If f is µ-increasing on [a,b], then

bDq f (x) =
[

bDq f (x), bDq f (x)
]
,

for all x ∈ [a,b]. Then we have that

f (c)− f (x) =
∫ c

x

bDq f (s) bdqs, f (c)− f (x) =
∫ c

x

bDq f (s) bdqs.

It follows that

f (c) = f (x)+
∫ c

x

bDq f (s) bdI
q s.

Since f is µ-increasing on [a,b], we have

f (c)⊖g f (x) =
∫ c

x

bDq f (s) bdI
q s.

If f is µ-decreasing on [a,b], then

bDq f (x) =
[

bDq f (x), bDq f (x)
]
,

for all x ∈ [a,b]. Then we get that∫ c

x

bDq f (s) bdI
q s =

[∫ c

x

bDq f (s) bdqs,
∫ c

x

bDq f (s) bdqs
]

=
[

f (c)− f (x), f (c)− f (x)
]

=
[

f (c), f (c)
]
⊖g
[

f (x), f (x)
]
= f (c)⊖g f (x).

□

Remark 1. If f is µ-increasing on [a,b], then (4.1) is equivalent with

f (c) = f (x)+
∫ c

x

bDq f (s) bdI
q s,

and if f is µ-decreasing on [a,b], then (4.1) is equivalent with

f (x) = f (c)+
(
−
∫ c

x

bDq f (s) bdI
q s
)
.
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5. I qb-HERMITE-HADAMARD INEQUALITIES

Now we review the definition of interval convex function.

Definition 7. [20, Definition 5] Let f : [a,b] → R+
I be an IVF. We say that f is

interval convex function or that f ∈ SX([a,b],R+
I ), if for all x,y ∈ [a,b] and t ∈ [0,1],

we have

f (tx+(1− t)y)⊇ t f (x)+(1− t) f (y).

Next, we prove the Hermite-Hadamard type inequalities for Iqb-integrable IVFs.

Theorem 10. Let f : [a,b] → R+
I be a gH-differentiable convex IVF over [a,b],

then the following inequalities hold for I qb-integral:

f
(

a+qb
[2]q

)
⊇ 1

b−a

∫ b

a
f (x) bdI

q x ⊇ f (a)+q f (b)
[2]q

, (5.1)

where q ∈ (0,1).

Proof. We observe that

a+qb
[2]q

=
∞

∑
n=0

(1−q)qn (qna+(1−qn)b) ,

where
∞

∑
n=0

(1−q)qn = 1. Thus, by the convexity of f , Jensen’s inequality implies

f
(

a+qb
[2]q

)
⊇

∞

∑
n=0

(1−q)qn f (qna+(1−qn)b) =
1

b−a

∫ b

a
f (x) bdI

q x

and the first inequality in (5.1) is proved.
Now, for the second inequality in (5.1), we suppose that

s(x) = f (b)+
f (b)− f (a)

b−a
(x−b) =

f (b)− f (a)
b−a

x+
b f (a)−a f (b)

b−a

and for the convexity of f , we have

f (x)⊇ s(x).

Hence by using I qb-integration, we have∫ b

a
f (x) bdI

q x ⊇
∫ b

a
s(x) bdI

q x = (b−a)
[

f (a)+q f (b)
[2]q

]
and the second inequality in (5.1) is also proved. The proof is completed. □

Lemma 1. If f (x) =
[

f (x), f (x)
]

and f (x) = f (x) for all x ∈ [a,b], then we get
the (2.1). If in (5.1), we get the classical Hermite-Hadamard inequality.
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Example 5. Let f : [0,1]→R+
I is given by f (x) =

[
x2,x

]
, then f is interval convex

function, and

f
(

a+qb
[2]q

)
=

[
q2

[2]2q
,

q
[2]q

]
,

1
b−a

∫ b

a
f (x) bdI

q x =
[

q(1+q2)

[2]q[3]q
,

q
[2]q

]
,

f (a)+q f (b)
[2]q

=

[
q
[2]q

,
q
[2]q

]
.

Then, we obtain that[
q2

[2]2q
,

q
[2]q

]
⊇
[

q(1+q2)

[2]q[3]q
,

q
[2]q

]
⊇
[

q
[2]q

,
q
[2]q

]
.

Consequently, Theorem 10 is verified.

Summing up the results in Theorem 10 and Theorem 5.3 of [11] yields the next
corollary.

Corollary 1. Let f : [a,b] → R+
I be a gH-differentiable convex IVF over [a,b],

then we have

f
(

qa+b
[2]q

)
+ f

(
a+qb
[2]q

)
⊇ 1

b−a

∫ b

a
f (x) bdI

q x+
1

b−a

∫ b

a
f (x) adI

q x

⊇ f (a)+ f (b)
(5.2)

where q ∈ (0,1).

Corollary 2. Let f : [a,b] → R+
I be a gH-differentiable convex IVF over [a,b],

then we have

2 f
(

a+b
2

)
⊇ 1

b−a

{∫ b

a
f (x) bdI

q x+
∫ b

a
f (x) adI

q x
}
⊇ f (a)+ f (b), (5.3)

where q ∈ (0,1).

Proof. By Corollary 1, it is enough to see that by the convexity of f ,

f
(

a+b
2

)
= f

(
1
2

qa+b
[2]q

+
1
2

a+qb
[2]q

)
⊇ 1

2
f
(

qa+b
[2]q

)
+

1
2

f
(

aq+b
[2]q

)
.

□

Remark 2. If in (5.2) or (5.3), we make q → 1, we get the classical Hermite-
Hadamard inequality.
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Theorem 11. Let f : [a,b] → R+
I be a gH-differentiable convex IVF over [a,b],

then the following inequalities hold for I qb-integral:

f
(

qa+b
[2]q

)
+

(1−q)(b−a)
[2]q

bDq f
(

qa+b
[2]q

)
⊇ 1

b−a

∫ b

a
f (x) bdI

q x

⊇ f (a)+q f (b)
[2]q

,

where q ∈ (0,1).

Proof. According to the I qb-differentiability of f on [a,b], there are two tangents
at the point qa+b

1+q ∈ (a,b), and their equations are

h2(x) = f
(

qa+b
[2]q

)
+

(1−q)(b−a)
1+q

bDq f
(

qa+b
[2]q

)
and

h2(x) = f
(

qa+b
[2]q

)
+

(1−q)(b−a)
1+q

bDq f
(

qa+b
[2]q

)
.

Since f ∈ SX([a,b],RI ), we have

h2(x)⊇ f (x),

for all x ∈ [a,b]. By Iqb-integrating this inequality with respect to x on [a,b] we have∫ b

a
h2(x) bdI

q x

=
∫ b

a

[
f
(

qa+b
[2]q

)
+ bDq f

(
qa+b
[2]q

)(
x− qa+b

[2]q

)]
bdI

q x

= (b−a) f
(

qa+b
[2]q

)
+ bDq f

(
qa+b
[2]q

)(∫ b

a
x bdI

q x− (b−a)
qa+b
[2]q

)
= (b−a) f

(
qa+b
[2]q

)
+ bDq f

(
qa+b
[2]q

)
×

(
(1−q)(b−a)

∞

∑
n=0

qn (qna+(1−qn)b)− (b−a)
qa+b
[2]q

)

= (b−a) f
(

qa+b
[2]q

)
+ bDq f

(
qa+b
[2]q

)
×
(
(1−q)(b−a)

[(
1

1−q
− 1

1−q2

)
a+

1
1−q2 b

]
− (b−a)

a+qb
[2]q

)
= (b−a) f

(
qa+b
[2]q

)
+ bDq f

(
qa+b
[2]q

)(
(b−a)

a+qb
[2]q

− (b−a)
qa+b
[2]q

)
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= (b−a) f
(

a+qb
[2]q

)
+ bDq f

(
qa+b
[2]q

)
(b−a)2(1−q)

1+q

⊇
∫ b

a
f (x) bdI

q x.

Combining the above formula with (5), we come to the conclusion. □

CONCLUSIONS

We introduced the concept of I qb-calculus of interval-valued functions and studied
their important properties. Furthermore, we gave Hermite-Hadamard-type inequalit-
ies by using these results. Our results generalized some existing theories of quantum
calculus. Next, we intend to further study some applications of quantum calculus and
quantum calculus of fuzzy interval-valued functions.
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