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Abstract. In 2004, Patrı́cio and Puystjens characterized the relation between Drazin invertible
elements (resp., Moore-Penrose invertible elements) of two semigroups pRp and pRp+1− p of
a ring R for some idempotent (resp., projection) p ∈ R. In this paper, we consider the relevant
result for pseudo core invertible elements of such two semigroups of a ring for some projection,
which is then applied to characterize the relation between pseudo core invertible elements of the
matrix semigroup AA†Rm×mAA† + Im−AA† and the matrix semigroup A†ARn×nA†A+ In−A†A,
where A ∈ Rm×n with A† existing. Also, similar equivalence involving DMP invertible elements
is investigated.
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1. INTRODUCTION

Moore-Penrose inverses [22] and Drazin inverses [5] are well-known classical
generalized inverses, which play important roles in many fields. Some character-
izations of Moore-Penrose invertibility and Drazin invertibility are given, such as
[13, 19–21, 23]. Let R be a ring with identity 1 and Rm×n the set of m× n matrices
over R. In [21], Patrı́cio and Puystjens first characterized the relation between Drazin
invertible elements of two semigroups pRp and pRp+1− p of R when p is an idem-
potent. Specifically, for any x ∈ R, they proved that pxp+ 1− p is Drazin invert-
ible in R if and only if pxp is Drazin invertible in pRp, in which case, (pxp)d =
p(pxp+1− p)d p∈ pRp and (pxp+1− p)d = (pxp)d +1− p∈ pRp+1− p. Similar
equivalence appeared in the characterization of Moore-Penrose invertibility when R is
a ring with an involution and p is a projection. Using the previous result, they related
the Drazin invertible elements between the semigroup AA−Rm×mAA− + Im − AA−

and the semigroup A=ARn×nA=A+ In−A=A, where A− and A= are inner inverses
of A, and also related the Moore-Penrose invertible elements between the semigroup
AA†Rm×mAA†+ Im−AA† and the semigroup A†ARn×nA†A+ In−A†A when A† exists.
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In addition to Drazin inverses and Moore-Penrose inverses, some new generalized
inverses, such as core inverses, pseudo core inverses and DMP inverses, have also
been introduced and deeply studied in recent years. The concept of the core inverse
of a complex matrix was defined by Baksalary and Trenkler [1] in 2010, which was
generalized to a ring with involution by Rakić et al. [24] later. As two extensions of
the core inverse, in 2014, Manjunatha Prasad and Mohana [17], Malik and Thome
[16] introduced, respectively, namely the core-EP inverse and DMP inverse which
both exist for arbitrary square complex matrices. Later, Gao and Chen [7] defined
the pseudo core inverse by three equations in a ring with involution, extending the
core-EP inverse of a complex matrix. Additionally, Gao et al. [8] discussed existence
criteria and formulae of the pseudo core inverse of a companion matrix over a ring
with involution. Zhou and Chen [27] showed some characterizations of pseudo core
inverses and the relation with other generalized inverses. For more details of pseudo
core inverses and DMP inverses, for example, see [18, 28]. Noted that some general-
ized inverse matrices can provide a method to define pre-orders or partial orders and
to analyze binary relations, for example, see [3,9,11,12,15]. Except that, many schol-
ars have studied projections related to generalized inverses and their generalizations,
such as [4, 14, 25].

Motivated by the above discussion, it is natural to ask whether similar equivalences
hold for pseudo core invertibility and DMP invertibility. The article is organized as
follows. In Section 2, we present some necessary definitions mentioned above and
lemmas. In Section 3, we characterize the relation between pseudo core invertible
elements (resp., DMP invertible elements) of two semigroups pRp and pRp+1− p
of R, where R is equipped with an involution and p is a projection. As an applica-
tion, in Section 4, the relation between pseudo core invertible elements (resp., DMP
invertible elements) of the semigroup AA†Rm×mAA† + Im−AA† and the semigroup
A†ARn×nA†A+ In−A†A is characterized, assuming that A ∈ Rm×n with A† existing.

2. PRELIMINARIES

Let R be a ring with involution ∗ and have identity 1, where an involution ∗ : a 7→ a∗

is an anti-isomorphism satisfying (a∗)∗ = a, (a+b)∗ = a∗+b∗ and (ab)∗ = b∗a∗ for
all a,b ∈ R.

Definition 1 ([10, 22]). An element a ∈ R is said to be Moore-Penrose invertible
if there exists x ∈ R such that

(1) axa = a, (2) xax = x, (3) (ax)∗ = ax, (4) (xa)∗ = xa.
Such x is called the Moore-Penrose inverse of a and is unique if it exists, denoted

by a†. If axa = a, then a is called regular and x is called an inner inverse of a. We
use a− to denote an inner inverse of a. If the equations (1) and (3) hold, then x is
called a {1,3}-inverse of a. We use a(1,3) to denote a {1,3}-inverse of a. The set of
all {1,3}-invertible elements in R will be denoted by R{1,3}.
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Definition 2 ([5]). Let a ∈ R. Then a is said to be Drazin invertible if there exist
x ∈ R and a positive integer k such that

xak+1 = ak, ax2 = x, ax = xa.
Such x is unique if it exists and called the Drazin inverse of a, denoted by ad . If k

is the smallest positive integer such that the above equations hold, then k is called the
Drazin index of a and denoted by ind(a). When ind(a) = 1, the Drazin inverse of a
is called the group inverse of a, denoted by a#.

Definition 3 ([7]). Let a ∈ R. If there exist x ∈ R and a positive integer k such that
xak+1 = ak, ax2 = x, (ax)∗ = ax,

then x is called the pseudo core inverse of a. It is unique and denoted by a D© when the
pseudo core inverse of a exists. If a is pseudo core invertible, then it must be Drazin
invertible. The smallest positive integer k satisfying the above equations is called the
pseudo core index of a, which coincides with its Drazin index, and still denoted by
ind(a). When ind(a) = 1, the pseudo core inverse of a reduces to its core inverse a #©.

Lemma 1 ([26]). Let a ∈ R. Then x = a #© is the core inverse of a if and only if
there exists x ∈ R such that

xa2 = a, ax2 = x, (ax)∗ = ax.

Let a ∈ R. Gao and Chen [7] proved that a is pseudo core invertible if and only if
an is core invertible for some positive integer n. Here we give the further result.

Lemma 2. Let a ∈ R. Then a is pseudo core invertible with ind(a) = n if and
only if n is the smallest positive integer such that an is core invertible. In this case,
a D© = an−1(an) #© and (an) #© = (a D©)n.

Proof. Suppose that n is the smallest positive integer such that an is core invertible.
Then we obtain

(an) #©(an)2 = an, an
(
(an) #©)2

= (an) #©,
(
an(an) #©)∗ = an(an) #©.

According to the proof of [7, Theorem 2.5], we get that a D© = an−1(an) #© with
ind(a)≤ n. Assume ind(a) = k < n, then it is easy to obtain that ak is core invertible,
a contradiction. Hence, ind(a) = n.

Conversely, following the proof of [7, Theorem 2.5], we know that an is core
invertible with (an) #© = (a D©)n. We suppose that there exists a positive integer k < n
such that ak is core invertible. Then according to the sufficiency of the proof, it
follows that k ≥ ind(a) = n, a contradiction. Therefore, n is the smallest positive
integer such that an is core invertible. �

Let R† and Rd denote the sets of all Moore-Penrose invertible elements and Drazin
invertible elements in R, respectively.

Definition 4 ([16]). Let a ∈ Rd ∩R†. The DMP inverse of a, denoted by ad,†, is
the unique solution x ∈ R of the system
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xax = x, xa = ada, akx = aka†,

where k = ind(a). In fact, it can be proved that ad,† = adaa†.

3. PSEUDO CORE INVERTIBILITY AND DMP INVERTIBILITY IN A CORNER RING

The following lemmas will be useful in the sequel.

Lemma 3 ([2]). Let a,b ∈ R with ab = ba and a∗b = ba∗. If a ∈ R #©, then
a #©b = ba #©.

Lemma 4 ([26]). Let a,b ∈ R be core invertible. If ab = ba = 0 and a∗b = 0, then
a+b is core invertible, and (a+b) #© = a #©+b #©.

Lemma 5 ([7]). Let a,b∈R be pseudo core invertible. If ab= ba= 0 and a∗b= 0,
then a+b is pseudo core invertible, and (a+b)D© = a D©+b D©.

Recall that an element p ∈ R is a projection if p2 = p = p∗. Let p ∈ R be a
projection. Then pRp+1− p= {pxp+1− p : x∈ R} is a (multiplicative) semigroup.
The subrings of the form pRp are called corner rings. It should be remarked that for
pseudo core inverses (resp., core inverses) and DMP inverses we still keep the usual
notation as (pxp)D© (resp., (pxp) #©) and (pxp)d,† both belong to pRp if they exist
in R. Next, we illustrate the relation between pseudo core invertibility (resp., core
invertibility) of the corresponding elements in two semigroups pRp and pRp+1− p
of R. The next two theorems will play an important role in the forthcoming section.

Theorem 1. Let p ∈ R be a projection and x ∈ R. Then the following statements
hold.

(1) pxp+1− p is core invertible in R if and only if pxp is core invertible in pRp.
In this case,

(pxp) #© = p(pxp+1− p) #©p ∈ pRp,

and
(pxp+1− p) #© = (pxp) #©+1− p ∈ pRp+1− p.

(2) pxp+ 1− p is pseudo core invertible with ind(pxp+ 1− p) = k in R if and
only if pxp is pseudo core invertible with ind(pxp) = k in pRp. In this case,

(pxp)D© = p(pxp+1− p)D©p ∈ pRp,

and
(pxp+1− p)D© = (pxp)D©+1− p ∈ pRp+1− p.

Proof. (1) Suppose that pxp+1− p is core invertible. Then(
(pxp+1− p)(pxp+1− p) #©)∗ = (pxp+1− p)(pxp+1− p) #©.

Multiplying on both sides by p, we have(
(pxp)p(pxp+1− p) #©p

)∗
= (pxp)p(pxp+1− p) #©p.
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Moreover,

(pxp+1− p) #©(pxp+1− p)2 = pxp+1− p.

Multiplying the both sides by p, it follows that p(pxp + 1− p) #©p(pxp)2 = pxp.
Also,

(pxp+1− p)
(
(pxp+1− p) #©)2

= (pxp+1− p) #©.

Multiplying on both sides by p, we get

(pxp)p
(
(pxp+1− p) #©)2 p = p(pxp+1− p) #©p.

Since

(pxp+1− p)(1− p) = 1− p = (1− p)(pxp+1− p),

(pxp+1− p)∗(1− p) = 1− p = (1− p)(pxp+1− p)∗,

by Lemma 3, we have

(pxp+1− p) #©(1− p) = (1− p)(pxp+1− p) #©,

that is

(pxp+1− p) #©p = p(pxp+1− p) #©.

Hence,

(pxp)
(

p(pxp+1− p) #©p
)2

= p(pxp+1− p) #©p.

According to Lemma 1, (pxp) #© = p(pxp+1− p) #©p ∈ pRp.
Conversely, if (pxp) #© is the core inverse of pxp in pRp⊆ R, then by Lemma 4,

(pxp+1− p) #© = (pxp) #©+(1− p) #©

= (pxp) #©+1− p

since (pxp)(1− p) = 0 = (1− p)(pxp) and (pxp)∗(1− p) = 0.
(2) According to Lemma 2, if pxp + 1 − p is pseudo core invertible with

ind(pxp+1− p)= k, then k is the smallest positive integer such that (pxp+1− p)k =
(pxp)k + 1 − p = p

(
x(px)k−1

)
p + 1 − p is core invertible, and therefore

p
(
x(px)k−1

)
p = (pxp)k is core invertible. We remark that k is also the smallest

positive integer such that (pxp)k is core invertible according to (1). In fact, we sup-
pose that there exists a positive integer m < k such that (pxp)m is core invertible.
It follows that p

(
x(px)m−1

)
p = (pxp)m is core invertible, then (pxp+ 1− p)m =

(pxp)m+1− p= p
(
x(px)m−1

)
p+1− p is core invertible according to (1), and there-

fore m≥ ind(pxp+1− p) = k, a contradiction. Hence, pxp is pseudo core invertible
with ind(pxp) = k. For the expression of (pxp)D©, by Lemma 2 we can obtain that

(pxp)D© = (pxp)k−1
(
(pxp)k

) #©
= (pxp)k−1 p

(
(pxp)k

) #©
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=
(
(pxp)k−1 +1− p

)
p
(
(pxp)k +1− p

) #©
p

= p(pxp+1− p)k−1
(
(pxp+1− p)k

) #©
p

= p(pxp+1− p)D©p.

Conversely, if (pxp)D© is the pseudo core inverse of pxp in pRp⊆R and ind(pxp)=
k, then by Lemma 5 it follows that pxp + 1− p is pseudo core invertible since
(pxp)(1− p) = 0 = (1− p)(pxp) and (pxp)∗(1− p) = 0, and

(pxp+1− p)D© = (pxp)D©+(1− p)D©

= (pxp)D©+1− p.

Moreover, it can be derived from the necessity of the proof that ind(pxp+1− p) =
k. �

Similar equivalence involving DMP invertibility is given in the following result.

Theorem 2. Let p ∈ R be a projection and x ∈ R. Then pxp+ 1− p is DMP
invertible in R if and only if pxp is DMP invertible in pRp. In this case,

(pxp)d,† = p(pxp+1− p)d,† p ∈ pRp,
and

(pxp+1− p)d,† = (pxp)d,† +1− p ∈ pRp+1− p.

Proof. According to [21, Theorem 1] and Definition 4, it is easy to obtain the suffi-
ciency and necessity of the theorem. For the expressions of (pxp)d,† and
(pxp+ 1− p)d,†, since (pxp+ 1− p)d ∈ pRp+ 1− p, (pxp)d ∈ pRp and (pxp)† ∈
pRp, it follows that

(pxp)d,† = (pxp)d(pxp)(pxp)†

= p(pxp+1− p)d p(pxp)p(pxp+1− p)† p

= p(pxp+1− p)d(pxp+1− p)(pxp+1− p)† p

− p(pxp+1− p)d(1− p)(pxp+1− p)† p

= p(pxp+1− p)d,† p,

and
(pxp+1− p)d,† = (pxp+1− p)d(pxp+1− p)(pxp+1− p)†

= ((pxp)d +1− p)(pxp+1− p)((pxp)† +1− p)

= (pxp)d(pxp)(pxp)† +1− p

= (pxp)d,† +1− p.

�
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4. PSEUDO CORE INVERTIBILITY AND DMP INVERTIBILITY IN TWO MATRIX
SEMIGROUPS

Let Rm×n denote the set of m×n matrices over R. And A∗ ∈Rn×m is defined as (a∗ji)
for A = (ai j) ∈ Rm×n. Let P ∈ Rm×m be a projection. In Section 3, we relate pseudo
core invertible (resp., DMP invertible) elements between the semigroup PRm×mP+
Im−P and the corner ring PRm×mP. If A ∈ Rm×n is Moore-Penrose invertible, then
AA† and A†A are two projections. As an application, in this section, we will relate
pseudo core invertible elements between the semigroup AA†Rm×mAA†+Im−AA† and
the semigroup A†ARn×nA†A+ In−A†A using Theorem 1. Also, the DMP invertibility
case is investigated.

Let R be a ring with involution ι and S a ring with involution τ. Recall from [21]
that ϕ : R→ S is a (ι,τ)-invariant homomorphism if ϕ is a ring homomorphism and
ϕ(xι) = (ϕ(x))τ for all x ∈ R. If ι and τ coincide, then it is written as ι-invariant
for short. Let A ∈ Rm×n such that A† exists. Suppose that φA : AA†Rm×mAA† →
A†ARn×nA†A is defined by φA(AA†XAA†) = A†XA. Then they called that A is ∗-
invariant if φA is ∗-invariant. Furthermore, they showed that φA is ∗-invariant if and
only if A†YA = A∗Y (A†)∗ for all Y ∈ Rm×m.

Let A ∈ Rm×n such that A† exists and B ∈ Rm×m. Denote Γ = AA†BAA† + Im−
AA† and Ω = A†BA + In − A†A. In [21], Patrı́cio and Puystjens proved that Γ is
Moore-Penrose invertible if and only if Ω is Moore-Penrose invertible, under the
hypothesis that A is ∗-invariant. Furthermore, they gave examples to explain that the
∗-invariance of A is sufficient but not necessary for this equivalence. Analogously,
we will give equivalences for pseudo core inverses and DMP inverses providing that
A is ∗-invariant, respectively. Moreover, the examples in [21] can also show that ∗-
invariance of A is sufficient but not necessary for the pseudo core inverse case. For
completeness of the conclusion, we employ examples again as follows.

Let a ∈ R. We first recall that a is {1,3}-invertible if and only if a ∈ Ra∗a [10].
Also, an element a is core invertible if and only if a ∈ R#∩R{1,3} [26].

Let R = C2×2 be the set of 2×2 matrices over the complex field C.

Example 1. Take A =

[
1 0
1 1

]
, B =

[
1 0
i 0

]
∈C2×2 and transposition as the invol-

ution. Then A† =

[
1 0
−1 1

]
. By calculation,

Γ =

[
1 0
i 0

]
, Ω =

[
1 0

−1+ i 0

]
,

and we get that Γ and Ω are two idempotents, and hence are group invertible. In
addition, it is easy to check that Ω ∈ R{1,3} however Γ /∈ R{1,3}. Therefore, Ω is core
invertible, but Γ is not core invertible.

The example above is to say that the equivalence that Γ is core invertible if and
only if Ω is core invertible does not hold. Therefore, we consider to give a sufficient
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condition that A is ∗-invariant for this equivalence concerning core invertibility ana-
logously. Furthermore, the example as follow is to show that the ∗-invariance of A is
not necessary for the equivalence that Γ is pseudo core invertible if and only if Ω is
pseudo core invertible.

Example 2. Consider A =

[1
2 0
0 1

3

]
∈ C2×2 and let ∗ be the involution defined as

the transposed conjugate. Then A† =

[
2 0
0 3

]
. Clearly Γ and Ω are pseudo core

invertible since every complex matrix has a pseudo core inverse. We next prove that

φA is not ∗-invariant. In fact, if we take X =

[
0 1
0 0

]
∈ C2×2, then A†XA =

[
0 2

3
0 0

]
,

AXA† =

[
0 3

2
0 0

]
. Hence, A†XA = A∗X(A†)∗ does not hold.

Theorem 3. Let A ∈ Rm×n be Moore-Penrose invertible and B ∈ Rm×m. Consider
the following conditions:

(1) Γ = AA†BAA† + Im− AA† is pseudo core invertible with ind(Γ) = k (core
invertible if k = 1).

(2) Ω = A†BA+ In−A†A is pseudo core invertible with ind(Ω) = k (core invert-
ible if k = 1).

If A is ∗-invariant then (1)⇔(2), in which case
Γ

D© = AΩ
D©A† + Im−AA†

and
Ω

D© = A†Γ
D©A+ In−A†A.

Proof. Let us first consider the case k = 1, i.e., the core invertibility case.
Suppose that Γ is core invertible. Then by Theorem 1, we have that AA†BAA† has

a core inverse Γ
#©

0 in AA†Rm×mAA†. As Γ
#©

0 (AA†BAA†)2 = AA†BAA† then we have

A†Γ
#©

0 A(A†BA)2 = A†BA.

Moreover, AA†BAA†(Γ
#©

0 )2 = Γ
#©

0 . Since

AA†(AA†BAA†) = (AA†BAA†)AA†,

AA†(AA†BAA†)∗ = (AA†BAA†)∗AA†,

it follows that AA†Γ
#©

0 = Γ
#©

0 AA† by Lemma 3, and therefore

A†BA(A†Γ
#©

0 A)2 = A†Γ
#©

0 A.

Since φA is ∗-invariant, for all Y ∈ Rm×m, we have

A†YA = A∗Y (A†)∗.
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Also, (AA†BAA†Γ
#©

0 )∗ = AA†BAA†Γ
#©

0 . Multiplying on left side by A∗, it follows that

(AA†BAA†
Γ

#©
0 A)∗ = A∗AA†BAA†

Γ
#©

0

= A∗B(A†)∗A∗Γ #©
0

= A†BAA∗Γ #©
0 ,

then multiplying on right side by (A†)∗, we get

(A†BAA†
Γ

#©
0 A)∗ = A†BAA∗Γ #©

0 (A†)∗

= A†BAA†
Γ

#©
0 A.

Therefore, by Lemma 1, A†Γ
#©

0 A is the core inverse of A†AΩA†A in A†ARn×nA†A.
Then by Theorem 1, it follows that Ω

#©=A†Γ
#©

0 A+In−A†A. Since Γ
#©

0 =AA†Γ
#©AA†,

we get

Ω
#© = A†Γ

#©A+ In−A†A.

The converse is analogous. If Ω
#© exists, then Ω

#©
0 = A†AΩ

#©A†A is the core in-
verse of A†BA = A†AΩA†A in the ring A†ARn×nA†A. Analogous to the necessity of
the proof, we can check that AΩ

#©
0 A† is the core inverse of AA†ΓAA† in AA†Rm×mAA†.

Therefore,

Γ
#© = AΩ

#©
0 A† + Im−AA†

= AΩ
#©A† + Im−AA†.

For the general case, suppose Γ
D© exists with ind(Γ) = k . Then by Lemma 2,

(Γk) #© =
(
AA†(BAA†)kAA† + Im−AA†

) #©

exists. Using the first part of the proof and keeping in mind that B is arbitrary, we
can obtain that Ωk = A†(BAA†)kA+ In−A†A is core invertible. Thus, Ω

D© exists with
ind(Ω)≤ k. Moreover,

Ω
D© = Ω

k−1(Ωk) #©

= Ω
k−1

(
A†(BAA†)kA+ In−A†A

) #©

= Ω
k−1

(
A†(Γk) #©A+ In−A†A

)
=
(

A†(BAA†)k−1A+ In−A†A
)(

A†(Γk) #©A+ In−A†A
)

= A†(BAA†)k−1AA†(Γk) #©A+ In−A†A

= A†
Γ

k−1(Γk) #©A+ In−A†A

= A†
Γ

D©A+ In−A†A.
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The converse is analogous and ind(Γ)≤ k . For the expression of Γ
D©, we have

Γ
D© = Γ

k−1(Γk) #©

= Γ
k−1

(
AA†(BAA†)kAA† + Im−AA†

) #©

= Γ
k−1

(
A(Ωk) #©A† + Im−AA†

)
=
(

AA†(BAA†)k−1AA† + Im−AA†
)(

A(Ωk) #©A† + Im−AA†
)

= AA†(BAA†)k−1A(Ωk) #©A† + Im−AA†

= AΩ
k−1(Ωk) #©A† + Im−AA†

= AΩ
D©A† + Im−AA†.

�

Finally, we will show that a similar equivalence holds for DMP inverses.

Lemma 6 ([6]). Let a,b ∈ R with ab = ba. If a ∈ Rd , then adb = bad .

Theorem 4. Let A ∈ Rm×n be Moore-Penrose invertible and B ∈ Rm×m. Consider
the following conditions:

(1) Γ = AA†BAA† + Im−AA† is DMP invertible.
(2) Ω = A†BA+ In−A†A is DMP invertible.

If A is ∗-invariant then (1)⇔(2), in which case

Γd,† = AΩd,†A† + Im−AA†

and

Ωd,† = A†Γd,†A+ In−A†A.

Proof. According to [21, Propositions 5 and 6] and Definition 4, the sufficiency
and necessity of the theorem are obtained. Since A†AΩ=ΩA†A and AA†Γ= ΓAA†, it
follows that A†AΩd = ΩdA†A and AA†Γd = ΓdAA† by Lemma 6. For the expressions
of Γd,† and Ωd,†, we can obtain

Γ
d,† = Γ

d
ΓΓ

†

= (AΩ
dA† + Im−AA†)(AA†BAA† + Im−AA†)(AΩ

†A† + Im−AA†)

= AΩ
dA†BAΩ

†A† + Im−AA†

= AΩ
dA†AΩΩ

†A† + Im−AA†

= AΩ
d
ΩΩ

†A† + Im−AA†

= AΩ
d,†A† + Im−AA†,
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and
Ω

d,† = Ω
d
ΩΩ

†

= (A†
Γ

dA+ In−A†A)(A†BA+ In−A†A)(A†
Γ

†A+ In−A†A)

= A†
Γ

dAA†BAA†
Γ

†A+ In−A†A = A†
Γ

dAA†
ΓΓ

†A+ In−A†A

= A†
Γ

d
ΓΓ

†A+ In−A†A = A†
Γ

d,†A+ In−A†A.
�
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[24] D. S. Rakić, N. Č. Dinčić, and D. S. Djordjević, “Group, Moore-Penrose, core and dual core
inverse in rings with involution.” Linear Algebra Appl., vol. 463, pp. 115–133, 2014, doi:
10.1016/j.laa.2014.09.003.

[25] X. P. Sheng and G. L. Chen, “An oblique projection iterative method to compute Drazin in-
verse and group inverse.” Appl. Math. Comput., vol. 211, no. 2, pp. 417–421, 2009, doi:
10.1016/j.amc.2009.01.066.

[26] S. Z. Xu, J. L. Chen, and X. X. Zhang, “New characterizations for core inverses in rings with
involution.” Front. Math. China, vol. 12, no. 1, pp. 231–246, 2017, doi: 10.1007/s11464-016-
0591-2.

[27] Y. K. Zhou and J. L. Chen, “Weak core inverses and pseudo core inverses in a ring
with involution.” Linear Multilinear Algebra, vol. 70, no. 21, pp. 6876–6890, 2022, doi:
10.1080/03081087.2021.1971151.

[28] H. H. Zhu and P. Patrı́cio, “Characterizations for pseudo core inverses in a ring with
involution.” Linear Multilinear Algebra, vol. 67, no. 6, pp. 1109–1120, 2019, doi:
10.1080/03081087.2018.1446506.

Authors’ addresses

Wende Li
Southeast University, School of Mathematics, 210096 Nanjing, P.R. China
E-mail address: wendly155@163.com

Jianlong Chen
(Corresponding author) Southeast University, School of Mathematics, 210096 Nanjing, P.R. China
E-mail address: jlchen@seu.edu.cn

Yukun Zhou
Southeast University, School of Mathematics, 210096 Nanjing, P.R. China
E-mail address: 2516856280@qq.com

Yuanyuan Ke
Jianghan University, School of Artificial Intelligence, 430056 Wuhan, P.R. China
E-mail address: keyy086@126.com

http://dx.doi.org/10.1080/03081087.2013.791690
http://dx.doi.org/10.2298/FIL1719015M
http://dx.doi.org/10.1016/S0024-3795(01)00298-1
http://dx.doi.org/10.1016/S0024-3795(03)00391-4
http://dx.doi.org/10.1016/j.laa.2003.08.004
http://dx.doi.org/10.1017/S0305004100030401
http://dx.doi.org/10.1016/0024-3795(90)90374-L
http://dx.doi.org/10.1016/j.laa.2014.09.003
http://dx.doi.org/10.1016/j.amc.2009.01.066
http://dx.doi.org/10.1007/s11464-016-0591-2
http://dx.doi.org/10.1007/s11464-016-0591-2
http://dx.doi.org/10.1080/03081087.2021.1971151
http://dx.doi.org/10.1080/03081087.2018.1446506

	1. Introduction
	2. Preliminaries
	3. Pseudo core invertibility and DMP invertibility in a corner ring
	4. Pseudo core invertibility and DMP invertibility in two matrix semigroups
	References

