Characterizations of Rad-supplemented modules

Ergül Türkmen and Ali Pancar
CHARACTERIZATIONS OF Rad-SUPPLEMENTED MODULES

ERGÜL TÜRKMEN AND ALİ PANCAR

Received 15 September, 2011

Abstract. We prove that a commutative ring R is an artinian principal ideal ring if and only if the ring is semilocal and every Rad-supplemented R-module is a direct sum of w-local R-modules. Moreover, we study of extensions of Rad-supplemented modules over commutative noetherian rings, and we show that if $\frac{M}{N}$ is reduced, M is Rad-supplemented if and only if N and $\frac{M}{N}$ are Rad-supplemented. We also prove that over a dedekind domain an indecomposable, amply Rad-supplemented radical module is hollow radical.

2000 Mathematics Subject Classification: 16G10; 16D10; 16D99

Keywords: Rad-supplement, Rad-supplemented module, extension, semilocal ring, artinian principal ideal ring

1. INTRODUCTION

In this note R will be an associative ring with identity. Unless otherwise mentioned, all modules will be unital left R-modules. Let R be such a ring and M be an R-module. The notation $N \subseteq M$ means that N is a submodule of M. A submodule S of M is called small in M, denoted by $S \ll M$, if $S + N \neq M$ for every proper submodule N of M. We denote by $\text{Rad}(M)$ the radical of M. A non-zero module M is called hollow if every proper submodule of M is small in M, and it is called local if it is hollow and $\text{Rad}(M)$ is a maximal submodule of M. Let M be a module. M is called supplemented if every submodule N of M has a supplement, that is a submodule K of M minimal with respect to $N \subseteq K \subseteq M$. Equivalently, $N + K = M$ and $N \cap K \ll K$ ([12]). Following [12], M is called amply supplemented if, for any two submodules U and V of M with $U + V = M$, V contains a supplement of U in M. Clearly, hollow modules are amply supplemented and amply supplemented modules are supplemented.

Recall from Lomp [7] that a module M is said to be semilocal if $\frac{M}{\text{Rad}(M)}$ is semisimple, and a ring R is said to be semilocal if it is semilocal as a left (right) module over itself. It is shown in [7, Theorem 3.5] that a ring R is semilocal if and only if every left R-module is semilocal.

As a proper generalization of supplemented modules, the notion of Rad-supplemented modules, which has been introduced by Xue [13], has been studied recently.
Let M be a module and N be a submodule of M. A submodule K of M is called a Rad-supplement of N in M (according to [13], generalized supplement) if $N + K = M$ and $N \cap K \subseteq \text{Rad}(K)$. Since $\text{Rad}(K)$ is the sum of all small submodules of K, every supplement submodule is a Rad-supplement in M. A module M is called Rad-supplemented (according to [13], generalized supplemented) if every submodule N of M has a Rad-supplement K in M, and it is called amply Rad-supplemented (according to [13], generalized amply supplemented) if every submodule N of M has ample Rad-supplements in M, i.e., $N + L = M$ implies that N has a Rad-supplement $K \subseteq L$. In [5], the various properties of Rad-supplemented modules are extensively studied. In addition, it is shown in [1, 2.2.(2) and 2.3.(3)] that factor modules of a Rad-supplemented module and finite sums of Rad-supplemented modules are Rad-supplemented. It is of obvious interest to investigate extensions and characterizations of Rad-supplemented modules. This is the focus of our investigations in this paper.

Let Γ be a class of modules and let $0 \rightarrow N \rightarrow M \rightarrow K \rightarrow 0$ be any short exact sequence. Here M is an extension of N by K and Γ is called closed under extensions if $N, K \in \Gamma$ implies $M \in \Gamma$. It is clear that, for modules $N \subseteq M$, M is an extension of N.

In this article, we prove that a commutative ring R is an artinian principal ideal ring if and only if the ring is semilocal and every Rad-supplemented R-module is a direct sum of w-local R-modules if and only if every left R-module is a direct sum of w-local R-modules. We give a characterization of semisimple rings via Rad-supplements. We show that a semilocal ring R is left perfect if and only if every Rad-supplemented module is (generalized) semiperfect. Some examples are given in order to show that the class of Rad-supplemented modules is not generally closed under extensions. Let R be a commutative noetherian ring and M be an R-module with $N \subseteq M$. If M/N is reduced, M is Rad-supplemented if and only if N and M/N are Rad-supplemented. It follows that a ring R is semilocal if and only if every left R-module with Rad-supplemented radical is Rad-supplemented. Over a Dedekind domain a radical module is amply Rad-supplemented and indecomposable if and only if the module is hollow radical. Every indecomposable, w-local and amply Rad-supplemented module over a Dedekind domain is local.

2. Rad-supplemented modules over any rings

Let R be any ring and M be an R-module. A submodule N of M is called radical if N has no maximal submodules, i.e. $N = \text{Rad}(N)$. Note that radical modules are Rad-supplemented. This fact plays a key role in our study. By $P(M)$ we denote the sum of all radical submodule of a module M. It is clear that, for any module M, $P(M)$ is the largest radical submodule and so $P(M)$ is Rad-supplemented. Using the mentioned facts, we give examples of a module, which is Rad-supplemented but not supplemented. We see, for example, the left \mathbb{Z}-module $M = \mathbb{Z} \mathbb{Q}$.

Firstly we have the following lemma.

Lemma 1. Let M be a module and $N \subseteq U \subseteq M$. Then U is Rad-supplemented if and only if $\frac{U}{P(N)}$ is Rad-supplemented.

Proof. (\Rightarrow) Let U be Rad-supplemented. By [1, 2.2 (2)], $\frac{U}{P(N)}$ is Rad-supplemented as a factor module of U.

(\Leftarrow) Let U be any submodule of U. By the assumption, there exists a submodule V of U such that $\frac{U + P(N)}{P(N)} = \frac{U}{P(N)}$ and

$$
\left(\frac{U' + P(N)}{P(N)} \right) \cap \left(\frac{V}{P(N)} \right) \subseteq \text{Rad} \left(\frac{V}{P(N)} \right).
$$

Then $(U' + P(N)) + V = U$ and hence $U' + V = U$. Since $P(N) = \text{Rad}(P(N)) \subseteq \text{Rad}(V)$, it follows that $\frac{U' + P(N)}{P(N)} = \left(\frac{U' + P(N)}{P(N)} \right) \cap \left(\frac{V}{P(N)} \right) \subseteq \text{Rad} \left(\frac{V}{P(N)} \right)$, which means that $U' \cap V \subseteq \text{Rad}(V)$. So V is a Rad-supplement of U in U. Hence U is Rad-supplemented. \(\square\)

Corollary 1. Let M be a module and N be a submodule of M. M is Rad-supplemented if and only if $\frac{M}{P(N)}$ is Rad-supplemented. In particular, M is Rad-supplemented if and only if $\frac{M}{P(M)}$ is Rad-supplemented.

Proof. It follows from Lemma 1. \(\square\)

Recall from [5, Corollary 4.2] that if a submodule V of a module M is a Rad-supplement in M, then $\text{Rad}(V) = V \cap \text{Rad}(M)$.

Now we shall show that the rings whose modules are Rad-supplement submodules in every extension are semisimple in the following theorem.

Theorem 1. Let R be any ring. Then the following statements are equivalent.

1. R is semisimple.
2. Every left R-module is a Rad-supplement in every extension.
3. Every left R-module is a Rad-supplement in every injective extension.
4. Every left ideal of R is a Rad-supplement in every injective extension.

Proof. $(1) \Rightarrow (2)$ Let N be an R-module and M be any extension of N. By the hypothesis and [6, Corollary 8.2.2 (a)], M is semisimple, and so N is a direct summand of M. It follows that N is a Rad-supplement in M.

$(2) \Rightarrow (3) \Rightarrow (4)$ Clear.

$(4) \Rightarrow (1)$ Let I be any left ideal of R. By the hypothesis, I is a Rad-supplement in its injective hull $E(I)$. Then we have $I + J = E(I)$ and $I \cap J \subseteq \text{Rad}(I)$ for some submodule $J \subseteq E(I)$. If $m \in I \cap J$, then $Rm \subseteq \text{Rad}(I) \subseteq \text{Rad}(E(I))$. By (4), Rm is a Rad-supplement in $E(I)$ and so $\text{Rad}(Rm) = Rm \cap \text{Rad}(E(I)) = Rm$.

Therefore \(m = 0 \). This means that \(I \oplus J = E(I) \) and so \(I \) is injective, and hence a direct summand of \(R \). By [6, Corollary 8.2.2 (a)], \(R \) is semisimple.

A ring \(R \) is Rad-supplemented if \(R_R \) (or \(R_R \)) is a Rad-supplemented module. It is clear that semiperfect (i.e., supplemented) rings are Rad-supplemented. Characterizations of semiperfect rings have been studied extensively by many authors recently.

Now we shall give a characterization of Rad-supplemented rings. Firstly, we need the following simple lemmas.

Lemma 2. Let \(R \) be any ring with identity. Then \(R \) is Rad-supplemented if and only if every cyclic \(R \)-module is Rad-supplemented.

Proof. Let \(R \) be a Rad-supplemented ring. Suppose that \(M \) is any cyclic \(R \)-module. Then there exists an element \(m \) of \(M \) such that \(M \cong Rm \). Note that \(\text{Ann}(m) = Rm \), where \(\text{Ann}(m) \) is the set of all elements \(r \) of \(R \) such that \(rm = 0 \). From [1, 2.2.(2)] the hypothesis implies that \(Rm \) is Rad-supplemented and so \(Rm \) is Rad-supplemented. The converse is clear.

Lemma 3. Let \(M \) be a module with \(U + V = M \) for submodules \(U, V \) of \(M \). If \(V \) contains a Rad-supplement of \(U \) in \(M \), then \(U \cap V \) has a Rad-supplement in \(V \).

Proof. Suppose that a submodule \(K \) of \(V \) is a Rad-supplement of \(U \) in \(M \). Then, we have \(U + K = M \) and \(U \cap K \subseteq \text{Rad}(K) \). From the modular law, \(U \cap V + K = V \). Since \(K \subseteq V \), then \((U \cap V) \cap K = U \cap K \subseteq \text{Rad}(K) \). So \(K \) is a Rad-supplement of \(U \cap V \) in \(V \).

Theorem 2. The following statements are equivalent for any ring \(R \).

1. \(R \) is Rad-supplemented.
2. \(R \) has ample Rad-supplements in every finitely generated extension.
3. Every cyclic \(R \)-module has ample Rad-supplements in every finitely generated extension.

Proof. (1) \(\Rightarrow \) (3) Let \(N \) be any cyclic \(R \)-module and \(M \) be any finitely generated extension of \(N \). Since \(R \) is Rad-supplemented, by Lemma 2, every cyclic submodule of \(M \) is Rad-supplemented and so \(M \) is amply Rad-supplemented by [11, Corollary 3.6]. Therefore \(N \) has ample Rad-supplements in \(M \).

(3) \(\Rightarrow \) (2) It is obvious.

(2) \(\Rightarrow \) (1) For any left ideal \(I \) of \(R \), consider the finitely generated pushout \(R \)-module \(N = \frac{R \oplus R}{K} \), where \(K \) is the set of all elements \(k \) of \(R \oplus R \) such that \(k = (r, -r) \) for all \(r \in I \). Then there exist monomorphisms \(f, g : R \to N \) such that \(N = f(R) + g(R) \). The hypothesis implies that \(f(R) \) has a Rad-supplement \(V \) in \(N \) with \(V \subseteq g(R) \). So, by Lemma 3, \(V \) is a Rad-supplement of \(f(R) \cap g(R) \) in \(g(R) \). Note that \(I = g^{-1}(f(R) \cap g(R)) \). It follows that \(R = I + g^{-1}(V) \) and \(I \cap g^{-1}(V) \subseteq \text{Rad}(g^{-1}(V)) \). Hence \(R \) is Rad-supplemented.

\(\square \)
We say that a module M is \textit{w-local} if $\text{Rad}(M)$ is a maximal submodule of M as in [4]. Every local module is w-local. It is well known that a commutative ring R has the property that every R-module is a direct sum of local R-modules if and only if R is an artinian principal ideal ring. Now, we prove that if R is a commutative ring and every R-module is a direct sum of w-local R-modules, then R is an artinian principal ideal ring in the following theorem.

Theorem 3. The following are equivalent for a commutative ring R.

1. Every left R-module is a direct sum of w-local R-modules.
2. R is semilocal and every Rad-supplemented left R-module is a direct sum of w-local R-modules.
3. R is an artinian principal ideal ring.

Proof. (1) \Rightarrow (2) Write $\frac{R}{\text{Rad}(R)} = \bigoplus_{i \in I} N_i$, where each N_i is w-local. Since $\text{Rad}(\frac{R}{\text{Rad}(R)}) = 0$, for all $i \in I$, $\text{Rad}(N_i) = 0$. So N_i is simple. Thus $\frac{R}{\text{Rad}(R)}$ is semisimple and so R is semilocal. The rest of the proof is clear.

(2) \Rightarrow (3) Let $F = R^{(\Lambda)}$ any index set Λ. Suppose that $\text{Rad}(\frac{F}{N}) = \frac{F}{N}$ for some submodule N of F. By the assumption, we can write $\frac{F}{N} = \bigoplus_{i \in I} M_i$ where M_i is w-local for all $i \in I$. By [12, 21.6.(5)], $\text{Rad}(\frac{F}{N}) = \bigoplus_{i \in I} \text{Rad}(M_i)$ and so each M_i is radical as a direct summand of $\frac{F}{N}$. Since M_i is w-local, we obtain that, for all $i \in I$, $M_i = 0$. Therefore $\frac{F}{N} = 0$. This means that $\text{Rad}(F) << F$. It follows from [12, 43.9] that R is left perfect. Applying [12, 43.9] again, we deduce that every left R-module is Rad-supplemented and so every left R-module is a direct sum of w-local R-modules. If N is aw-local, then N is local because R is left perfect. Hence every left R-module is a direct sum of cyclic R-modules. By [9, Theorem 6.7], R is an artinian principal ideal ring.

(3) \Rightarrow (1) is clear. □

The following corollary is an immediate consequence of Theorem 3.

Corollary 2. Let R be a commutative semilocal ring. Then, R is an artinian principal ideal ring if and only if every Rad-supplemented left R-module is a direct sum of w-local R-modules.

Let $f : P \to M$ be an epimorphism. Xue [13] calls f a \textit{(generalized) cover} if $(\text{Ker}(f) \subseteq \text{Rad}(P)) \text{Ker}(f) << P$, and calls a \textit{(generalized) cover} f a \textit{(generalized) projective cover} if P is a projective module. In the spirit of [13], a module M is said to be \textit{(generalized) semiperfect} if every factor module of M has a (generalized) projective cover. He [13, Theorem 2.2] proved that every generalized semiperfect module is Rad-supplemented. Now, we obtain the following result.

Proposition 1. Let R be a semilocal ring. Every Rad-supplemented left R-module is \textit{(generalized) semiperfect} if and only if R is left perfect.
Proof. (⇒) Let $M = \text{Rad}(M)$. Since M is Rad-supplemented, it follows from the hypothesis that M is generalized semiperfect. Then, there exists a generalized cover $f : F \to M$ with a projective module F. Since $\text{Ker}(f) \subseteq \text{Rad}(F) \neq F$, it follows that $M = 0$. By [12, 43.9], R is left perfect.

(⇐) This is immediate. □

3. Rad-supplemented modules over commutative Noetherian rings

Throughout this section, unless otherwise stated, we shall consider commutative noetherian rings.

An R-module M is called coatomic if every proper submodule of M is contained in a maximal submodule of M, and it is called reduced if every submodule of M contains a maximal submodule, that is, $P(M) = 0$. Note that $\text{Rad}(M)$ is small in M for every coatomic R-module M.

Lemma 4. The following statements are equivalent for a Rad-supplemented module M.

1. M is coatomic.
2. M is reduced.
3. $\text{Rad}(M)$ is small in M.

If the module M satisfies one of the equivalent conditions, then M is supplemented.

Proof. (1) ⇒ (2) Let M be a coatomic module. By [15, Lemma 1.1], every submodule of M is coatomic and so $P(M) = 0$, which means that M is reduced.

(2) ⇒ (3) Suppose that $M = \text{Rad}(M) + N$ for some submodule N of M. Then we can write $\text{Rad}(\frac{M}{N}) = \frac{M}{N}$. Since M is Rad-supplemented, N has a Rad-supplement V in M. From (2) it follows that V has a maximal submodule K. So $\frac{K}{N \cap V}$ is a maximal submodule of $\frac{V}{N \cap V}$. Note that $\frac{M}{N} \cong \frac{V}{N \cap V}$ contains a maximal submodule and thus $\frac{M}{N} = 0$. Therefore $M = N$. This proves (3).

(3) ⇒ (1) The assumption implies that, for any proper submodule $U \subseteq M$, there exists a submodule V of M such that $U + V = M$ and $U \cap V \subseteq \text{Rad}(V)$. Since $\text{Rad}(M) << M$, V is not contained in a maximal submodule K of M. Then the submodule $U + V \cap K$ of M is maximal. Thus M is coatomic.

Suppose that Rad-supplemented module M satisfies one of these conditions. Then M is supplemented by [5, Proposition 7.3].

The following result follows from [5, Proposition 7.3]. We give this result as a consequence of Lemma 4.

Corollary 3. For a module M, M is Rad-supplemented if and only if $\frac{M}{P(M)}$ is supplemented.
A submodule of a Rad-supplemented module need not be Rad-supplemented, in general. To see this actuality, we shall consider the left \(\mathbb{Z} \)-module \(M = \mathbb{Z} \mathbb{Q} \). It is well known that \(M \) is Rad-supplemented. On the other hand, the submodule \(\mathbb{Z} \mathbb{Z} \) of \(M \) is not semisimple.

Now, we show that a submodule of a Rad-supplemented module is Rad-supplemented under a certain condition.

Proposition 2. Let \(M \) be a module and \(N \subseteq M \). Suppose that \(\frac{M}{N} \) is reduced. If \(M \) is Rad-supplemented, then \(N \) is Rad-supplemented.

Proof. According to [1, 2.2.(2)], \(\frac{M}{N} \) is Rad-supplemented as a factor module of \(M \). Since \(\frac{M}{N} \) is reduced, \(P(\frac{M}{N}) = 0 \). Therefore \(\frac{M}{N} \) is supplemented by Lemma 4. Since \(M \) is Rad-supplemented, \(\frac{M}{P(N)} \) is Rad-supplemented by Corollary 1. Note that \(\frac{M}{P(N)} \approx \frac{M}{N} \) is reduced and thus \(\frac{M}{P(N)} \) is reduced by [14, Lemma 1.5 (a)]. It follows from Lemma 4 that \(\frac{N}{P(N)} \) is supplemented. Hence \(N \) is Rad-supplemented by Lemma 1.

Using Proposition 2, we obtain the following result.

Corollary 4. The following statements are equivalent for any module \(M \).

1. \(M \) is Rad-supplemented.
2. Every maximal submodule of \(M \) is Rad-supplemented.
3. Every cofinite submodule of \(M \) is Rad-supplemented.

Proof. (1) \(\Rightarrow \) (3) If \(N \) is a cofinite submodule of \(M \), then \(\frac{M}{N} \) is finitely generated and so \(\frac{M}{N} \) is reduced. From Proposition 2, the proof follows.

(3) \(\Rightarrow \) (2) is clear.

(2) \(\Rightarrow \) (1) Let \(M = M_1 + M_2 \), where \(M_1 \) and \(M_2 \) are maximal submodules of \(M \). Since \(M_1 \) and \(M_2 \) are Rad-supplemented modules, \(M \) is Rad-supplemented according to [1, 2.3.(3)]. If \(M \) is w-local, Rad\((M) \) is maximal and so \(M = \text{Rad}(M) + U \) for every proper submodule \(U \) of \(M \) with \(U \not\subseteq \text{Rad}(M) \). By [1, 2.3.(1)], \(U \) has a Rad-supplement in \(M \) since \(\text{Rad}(M) \) is Rad-supplemented. Hence \(M \) is Rad-supplemented.

The following example shows that the class of Rad-supplemented modules is not closed under extensions, in general.

Example 1. Let \(A \) be a collection of maximal ideals of the noetherian commutative ring \(\mathbb{Z} \). Suppose that \(M \) is the left \(\mathbb{Z} \)-module \(\prod_{P \in A}(\mathbb{Z}/p) \). Then \(\text{Rad}(M) = 0 \). By [3, Lemma 2.9], for some submodule \(N \) of \(M \), we have \(\frac{N}{T} \approx \mathbb{Q} \), where \(T \) is the...
direct sum of simple $\mathbb{Z}/p\mathbb{Z}$-modules. Then N is an extension of T by Q. Since T is semisimple, it is Rad-supplemented. On the other hand, the submodule N is not Rad-supplemented.

Later we shall give another example of such modules (see Example 2).

Theorem 4. Let $0 \rightarrow N \rightarrow M \rightarrow K \rightarrow 0$ be a short exact sequence. Suppose that K is reduced. Then M is Rad-supplemented if and only if N and K are Rad-supplemented.

Proof. (\Rightarrow) It follows from Proposition 2 and [1, 2.2.(2)].

(\Leftarrow) By Lemma 4, K is supplemented. Since N is Rad-supplemented, $\frac{N}{P(N)}$ is supplemented by Corollary 3. It follows from [8, Proposition 2.6] that $\frac{M}{P(M)}$ is Rad-supplemented. Hence M is Rad-supplemented by Corollary 1.

Corollary 5. A module M is Rad-supplemented if and only if it is an extension of a Rad-supplemented submodule by a reduced supplemented module.

Proof. If M has no maximal submodules, the result is obvious as $\frac{M}{P(M)} = 0$. Suppose that $M \neq P(M)$. Then this gives the existence of a reduced factor module of M. Therefore the assertion follows from Theorem 4.

Proposition 3. Let M be a module. M is Rad-supplemented if and only if M is semilocal and $\text{Rad}(M)$ is Rad-supplemented.

Proof. If M is Rad-supplemented, then M is semilocal. Thus $\frac{M}{\text{Rad}(M)}$ is reduced. By Proposition 2, $\text{Rad}(M)$ is Rad-supplemented. Conversely, suppose that M is semilocal and $\text{Rad}(M)$ is Rad-supplemented. From Theorem 4 the assumption implies that M is Rad-supplemented.

Using the above proposition we obtain the following characterization of semilocal rings.

Corollary 6. The following conditions on a ring R is equivalent:

1. R is semilocal.
2. Every left R-module with Rad-supplemented radical is Rad-supplemented.

Proof. (1) \Rightarrow (2) If R is semilocal, then every left R-module is semilocal by [7, Theorem 3.5]. The result follows from Proposition 3.

(2) \Rightarrow (1) Since $\text{Rad}(\frac{R}{\text{Rad}(R)}) = 0$, it follows from the hypothesis that $\frac{R}{\text{Rad}(R)}$ is Rad-supplemented. So $\frac{R}{\text{Rad}(R)}$ is semisimple, i.e. R is semilocal.

In [5], a module M is said to be totally Rad-supplemented if every submodule of M is Rad-supplemented. Every semisimple module is totally Rad-supplemented. It is easy to check that the class of totally Rad-supplemented modules is closed under factor modules and submodules. The following fact is a modification of Theorem 4.
Theorem 5. Let \(M \) be a module and \(\frac{M}{N} \) be reduced for some submodule \(N \) of \(M \). Then \(M \) is totally \(\text{Rad} \)-supplemented if and only if \(N \) and \(\frac{M}{N} \) are totally \(\text{Rad} \)-supplemented.

Proof. Suppose that \(N \) and \(\frac{M}{N} \) are totally \(\text{Rad} \)-supplemented. Let \(U \) be any submodule of \(M \). By the hypothesis, \(U \cap N \) and \(\frac{U + N}{N} \) are \(\text{Rad} \)-supplemented. Note that

\[
\frac{U + N}{N} \cong \frac{U}{U \cap N}
\]

is reduced because \(\frac{M}{N} \) is reduced. By Theorem 4, \(U \) is \(\text{Rad} \)-supplemented. Hence \(M \) is totally \(\text{Rad} \)-supplemented. □

Corollary 7. Let \(M \) be a \(\text{Rad} \)-supplemented module. Then, \(M \) is totally \(\text{Rad} \)-supplemented if and only if \(P(M) \) is totally \(\text{Rad} \)-supplemented.

Proof. Suppose that \(P(M) \) is totally \(\text{Rad} \)-supplemented. By the hypothesis, \(\frac{M}{P(M)} \) is supplemented. Applying [8, Proposition 2.6], we deduce that \(\frac{M}{P(M)} \) is totally supplemented. Therefore \(M \) is totally \(\text{Rad} \)-supplemented by Theorem 5. □

4. \(\text{Rad} \)-Supplemented Modules Over Commutative Domains

In this section a ring \(R \) will be a commutative domain. Let \(R \) be such a ring and \(M \) be an \(R \)-module. We denote by \(T(M) \) the set of all elements \(m \) of \(M \) for which there exists a non-zero element \(r \) of \(R \) such that \(rm = 0 \), i.e., \(\text{Ann}(m) \neq 0 \). Then \(T(M) \), which is a submodule of \(M \), called the torsion submodule of \(M \). If \(M = T(M) \), then \(M \) is called a torsion module and \(M \) is called torsion-free provided \(T(M) = 0 \).

Proposition 4. Let \(R \) be a non-semilocal commutative domain and \(M \) be an \(R \)-module. If \(M \) is totally \(\text{Rad} \)-supplemented, \(M \) is a torsion module.

Proof. Let \(0 \neq m \in M \). Suppose that \(\text{Ann}(m) = 0 \), i.e. \(R \cong \text{Ann}(m) \). Since \(M \) is totally \(\text{Rad} \)-supplemented, the left \(R \)-submodule \(\text{Ann}(m) \) of \(M \) is \(\text{Rad} \)-supplemented. So \(R \) is \(\text{Rad} \)-supplemented. Therefore \(\frac{R}{\text{Rad}(R)} \) is semisimple, i.e. \(R \) is semilocal. This contradicts the assumption. Hence \(\text{Ann}(m) \neq 0 \), this implies that \(M \) is torsion. □

Corollary 8. Let \(R \) be a non-semilocal dedekind domain and \(M \) be a totally \(\text{Rad} \)-supplemented \(R \)-module. Then \(M \) is torsion.

Let \(R \) be a dedekind domain and \(M \) be an \(R \)-module. We denote by \(\Omega \) the set of all maximal (i.e., prime) ideals of \(R \). Suppose that \(\mathfrak{p} \) is any element of \(\Omega \). We denote by \(T_{\mathfrak{p}}(M) \), which is a submodule of \(M \), the set of all elements \(m \) of \(M \) for which there exists a positive integer \(n \) such that \(\mathfrak{p}^n m = 0 \). Then \(T_{\mathfrak{p}}(M) \) is called the \(\mathfrak{p} \)-primary part of \(M \). For a torsion module \(M \) over a dedekind domain, we have the decomposition \(M = \bigoplus_{\mathfrak{p} \in \Omega} T_{\mathfrak{p}}(M) \).
Lemma 5. Let \(R \) be a non-local dedekind domain and \(M \) be an \(R \)-module. Then \(M \) is \(\text{Rad} \)-supplemented if and only if \(\frac{M}{P(M)} \) is torsion and every \(p \)-primary part of \(\frac{M}{P(M)} \) is (\(\text{Rad} \)-)supplemented.

Proof. According to [14, Theorem 3.1] and [5, Theorem 7.4], the proof of the lemma is clear. \(\square \)

Let \(R \) be a dedekind domain and \(M \) be an \(R \)-module. By [2, Lemma 4.4], \(P(M) \) is injective and so there exists a direct summand \(N \) of \(M \) such that \(\frac{M}{P(M)} \cong N \). This fact and Lemma 5 give the following basic result for torsion-free modules.

Corollary 9. Let \(M \) be a torsion-free \(\text{Rad} \)-supplemented module over a non-local dedekind domain. Then \(M \) is radical.

Let \(M \) be a radical module. \(M \) is called simply radical if \(M \) has no proper radical submodules.

Proposition 5. Let \(R \) be a noetherian ring and \(M \) be a simply radical \(R \)-module. If \(M \) is amply \(\text{Rad} \)-supplemented, \(M \) is hollow radical. In particular, every \(\text{Rad} \)-supplemented proper submodule of \(M \) is supplemented.

Proof. Let \(U \) be any proper submodule of \(M \). Suppose that \(U + V = M \) for some submodule \(V \) of \(M \). By the hypothesis, there exists a submodule \(V' \) of \(V \) such that \(U + V' = M \) and \(U \cap V' \subseteq \text{Rad}(V') \). Since \(M \) is simply radical, it follows that \(\text{Rad}(V') = V' \cap \text{Rad}(M) = V' \cap M = V' \). So \(V' \) is radical. Therefore \(V' = M \) and so \(V = M \). Then we deduce that \(U \) is small in \(M \). Hence \(M \) is hollow radical. Suppose that a proper submodule \(N \) of \(M \) is \(\text{Rad} \)-supplemented. Since \(M \) is simply radical, every submodule of \(N \) contains a maximal submodule, i.e., \(P(N) = 0 \). By Lemma 4, \(N \) is supplemented. \(\square \)

Corollary 10. Let \(R \) be a dedekind domain and \(M \) be a radical \(R \)-module. Then \(M \) is amply \(\text{Rad} \)-supplemented and indecomposable if and only if the module is hollow radical.

Proof. Since indecomposable radical modules over dedekind domains is simply radical, \(M \) is hollow radical by Proposition 5. The converse is clear. \(\square \)

Proposition 6. Let \(M \) be a module over a Dedekind domain. Then the following statements are equivalent.

1. \(M \) is indecomposable, \(w \)-local and amply \(\text{Rad} \)-supplemented.
2. \(M \) is local.

Proof. (1) \(\Rightarrow \) (2) Let \(U \) be any proper submodule of \(M \). Suppose that \(U \) is not contained \(\text{Rad}(M) \). Since \(M \) is \(w \)-local, \(\text{Rad}(M) \) is maximal and so \(U + \text{Rad}(M) = M \). By the hypothesis, there exists a submodule \(V \) of \(\text{Rad}(M) \) such that \(U + V = M \) and \(U \cap V \subseteq \text{Rad}(V) \). It follows that \(\text{Rad}(V) = V \cap \text{Rad}(M) = V \), i.e. \(V \) is radical.
Then, by [2, Lemma 4.4], \(V \) is injective and so there exists a submodule \(L \) of \(M \) such that \(M = V \oplus L \). Since \(M \) is indecomposable and w-local, we get \(V = 0 \). Thus, \(U = M \), implying that \(M \) is local.

(2) \(\Rightarrow\) (1) is clear.

Now, we give an analogous characterization of [14, Theorem 3.1] for totally Rad-supplemented modules.

Theorem 6. Let \(M \) be a non-semilocal Dedekind domain and \(M \) be an \(R \)-module. Then \(M \) is totally Rad-supplemented if and only if \(M \) is torsion and every \(p \)-primary part of \(M \) is totally Rad-supplemented.

Proof. The necessity of the condition is obvious by Corollary 8. Conversely, suppose that \(M \) is torsion and every \(p \)-primary part of \(M \) is totally Rad-supplemented. Let \(N \subseteq U \subseteq M \). Since \(M = \bigoplus_{p \in \Omega} T_p(M) \), we have \(U = \bigoplus_{p \in \Omega} (U \cap T_p(M)) \) and \(N = \bigoplus_{p \in \Omega} (N \cap T_p(M)) \). By the hypothesis, \(N \cap T_p(M) \) has a Rad-supplement \(V_p \) in \(U \cap T_p(M) \). So \(U \cap T_p(M) = N \cap T_p(M) + V_p \) and \(N \cap V_p \subseteq \text{Rad}(V_p) \). Let \(V = \bigoplus_{p \in \Omega} V_p \). Then \(N + V = U \). Since \(N \cap V_p \subseteq \text{Rad}(V_p) \) for every \(p \in \Omega \), by [6, Corollaries 9.1.5 (c)], \(N \cap V = (\bigoplus_{p \in \Omega} (N \cap T_p(M))) \cap (\bigoplus_{p \in \Omega} V_p) \subseteq \text{Rad}(V) \). Hence \(U \) is Rad-supplemented. This completes the proof.

Finally, we give an example showing the class of (totally) Rad-supplemented modules is not closed under extensions, in general. For a module \(M \), \(\text{Soc}(M) \) will indicate the sum of all simple submodules of \(M \).

Example 2. (see [10, Example 2.3]) Consider the non-Noetherian commutative ring which is the direct product \(\prod_{i \geq 1} F_i \), where \(F_i = F \) is any field. Suppose that \(R \) is the subring of the ring consisting of all sequences \((r_n)_{n \in \mathbb{N}} \) such that there exist \(r \in F, m \in \mathbb{N} \) with \(r_n = r \) for all \(n \geq m \). Let \(M =_R R \). Then \(M \) is a regular module which is not semisimple. Therefore \(\text{Soc}(M) \) is a maximal submodule of \(M \). This means that \(\text{Soc}(M) \) and \(M/\text{Soc}(M) \) are Rad-supplemented. On the other hand, \(M \) is not Rad-supplemented.

Acknowledgement

We would like to thank the referee for the valuable suggestions and comments which improved the revision of the paper.

References

Authors’ addresses

Ergül Türkmen
Ondokuz Mayıs University, Faculty of Art and Science, Department of Mathematics, 55139, Samsun, Turkey
E-mail address: eturkmen@omu.edu.tr

Ali Pancar
Ondokuz Mayıs University, Faculty of Art and Science, Department of Mathematics, 55139, Samsun, Turkey
E-mail address: apancar@omu.edu.tr