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Abstract. We prove that a commutative ring R is an artinian principal ideal ring if and only if the
ring is semilocal and every Rad-supplemented R-module is a direct sum of w-local R-modules.
Moreover, we study of extensions of Rad-supplemented modules over commutative noetherian
rings, and we show that if % is reduced, M is Rad-supplemented if and only if N and %
are Rad-supplemented. We also prove that over a dedekind domain an indecomposable, amply
Rad-supplemented radical module is hollow radical.
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1. INTRODUCTION

In this note R will be an associative ring with identity. Unless otherwise men-
tioned, all modules will be unital left R-modules. Let R be such a ring and M be an
R-module. The notation N € M means that N is a submodule of M. A submodule
S of M is called small in M, denoted by § << M, if S + N # M for every proper
submodule N of M. We denote by Rad (M) the radical of M. A non-zero module
M is called hollow if every proper submodule of M is small in M, and it is called
local if it is hollow and Rad (M) is a maximal submodule of M. Let M be a module.
M is called supplemented if every submodule N of M has a supplement, that is a
submodule K of M minimal with respectto N + K = M. Equivalently, N + K = M
and N N K << K ([12]). Following [12], M is called amply supplemented if, for any
two submodules U and V of M with U +V = M, V contains a supplement of U
in M. Clearly, hollow modules are amply supplemented and amply supplemented
modules are supplemented.

Recall from Lomp [7] that a module M is said to be semilocal if %(M) is
semisimple, and a ring R is said to be semilocal if it is semilocal as a left (right)
module over itself. It is shown in [7, Teorem 3.5] that a ring R is semilocal if and
only if every left R-module is semilocal.

As a proper generalization of supplemented modules, the notion of Rad-supple-
mented modules, which has been introduced by Xue [13], has been studied recently

(© 2012 Miskolc University Press



570 ERGUL TURKMEN AND ALI PANCAR

(see [1,4,5]). Let M be a module and N be a submodule of M. A submodule K
of M is called a Rad-supplement of N in M (according to [13], generalized sup-
plement) if N+ K = M and N N K C Rad(K). Since Rad(K) is the sum of all
small submodules of K, every supplement submodule is a Rad-supplement in M. A
module M is called Rad-supplemented (according to [13], generalized supplemen-
ted) if every submodule N of M has a Rad-supplement K in M, and it is called
amply Rad-supplemented (according to [13], generalized amply supplemented) if
every submodule N of M has ample Rad-supplements in M, i.e, N+ L =M
implies that N has a Rad-supplement K C L. In [5], the various properties of Rad-
supplemented modules are extensively studied. In addition, it is shown in [1, 2.2.(2)
and 2.3.(3)] that factor modules of a Rad-supplemented module and finite sums of
Rad-supplemented modules are Rad-supplemented. It is of obvious interest to in-
vestigate extensions and characterizations of Rad-supplemented modules. This is the
focus of our investigations in this paper.

Let I" be a class of modules and let 0 - N — M — K — 0 be any short exact
sequence. Here M is an extension of N by K and I' is called closed under extensions
if N,K € I" implies M € I'. Itis clear that, for modules N € M, M is an extension
of N.

In this article, we prove that a commutative ring R is an artinian principal ideal
ring if and only if the ring is semilocal and every Rad-supplemented R-module is
a direct sum of w-local R-modules if and only if every left R-module is a direct
sum of w-local R-modules. We give a characterization of semisimple rings via Rad -
supplements. We show that a semilocal ring R is left perfect if and only if every
Rad-supplemented module is (generalized) semiperfect. Some examples are given
in order to show that the class of Rad-supplemented modules is not generally closed
under extensions. Let R be a commutative noetherian ring and M be an R-module
with N C M. If % is reduced, M is Rad-supplemented if and only if N and %
are Rad-supplemented. It follows that a ring R is semilocal if and only if every left
R-module with Rad-supplemented radical is Rad-supplemented. Over a dedekind
domain a radical module is amply Rad-supplemented and indecomposable if and
only if the module is hollow radical. Every indecomposable, w-local and amply
Rad-supplemented module over a dedekind domain is local.

2. Rad-SUPPLEMENTED MODULES OVER ANY RINGS

Let R be any ring and M be an R-module. A submodule N of M is called radical
if N has no maximal submodules, i.e. N = Rad(N). Note that radical modules are
Rad-supplemented. This fact plays a key role in our study. By P(M) we denote the
sum of all radical submodule of a module M. It is clear that, for any module M,
P(M) is the largest radical submodule and so P(M) is Rad-supplemented. Using
the mentioned facts, we give examples of a module, which is Rad-supplemented but
not supplemented. We see, for example, the left Z-module M =7z Q.
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Firstly we have the following lemma.

Lemma 1. Let M be a module and N C U C M. Then U is Rad-supplemented
if and only if % is Rad -supplemented.

Proof. (=) Let U be Rad-supplemented. By [I, 2.2 (2)], %N) is Rad-supple-
mented as a factor module of U.
(<) Let U be any submodule of U. By the assumption, there exists a submodule

14 U U +P(N) v _ U
POV) of PV such that PN) + PN) = P(V) and

U + P(N 14 14
()N (5iw) <R ()
P(N) P(N) P(N)
Then (U’ + P(N))+V = U andhence U 4+ V = U. Since P(N) =Rad(P(N)) C
Rad (V), it follows that Lyl — WALENAV — (TAEW) 0 (1) <
Rad (%N)) = %%), which means that U’ NV € Rad(V). So V is a Rad-supple-

ment of U’ in U. Hence U is Rad-supplemented. O

Corollary 1. Let M be a module and N be a submodule of M. M is Rad-
supplemented if and only if % is Rad-supplemented. In particular, M is Rad-

supplemented if and only if % is Rad-supplemented.
Proof. 1t follows from Lemma 1. Il

Recall from [5, Corollary 4.2] that if a submodule V' of a module M is a Rad-
supplement in M, then Rad (V) = VN Rad(M).

Now we shall show that the rings whose modules are Rad -supplement submodules
in every extension are semisimple in the following theorem.

Theorem 1. Let R be any ring. Then the following statements are equivalent.
(1) R is semisimple.
(2) Every left R-module is a Rad -supplement in every extension.
(3) Every left R-module is a Rad -supplement in every injective extension .
(4) Every left ideal of R is a Rad-supplement in every injective extension.

Proof. (1) = (2) Let N be an R-module and M be any extension of N. By
the hypothesis and [6, Corollary 8.2.2 (a)], M is semisimple, and so N is a direct
summand of M. It follows that N is a Rad-supplement in M .

(2) = (3) = (4) Clear.

(4) = (1) Let I be any left ideal of R. By the hypothesis, / is a Rad-supplement
in its injective hull £(/). Then we have I +J = E(I) and I NJ C Rad(7) for
some submodule J € E([). If m € I N J, then Rm C Rad(/) € Rad(E(/)). By
(4), Rm is a Rad-supplement in £ (/) and so Rad(Rm) = RmNRad(E(])) = Rm.
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Therefore n = 0. This means that / & J = E(/) and so [ is injective, and hence a
direct summand of R. By [6, Corollary 8.2.2 (a)], R is semisimple. O

A ring R is Rad-supplemented if g R (or Rp) is a Rad-supplemented module. It
is clear that semiperfect (i.e., supplemented) rings are Rad-supplemented. Character-
izations of semiperfect rings have been studied extensively by many authors recently.
Now we shall give a characterization of Rad-supplemented rings. Firstly, we need
the following simple lemmas.

Lemma 2. Let R be any ring with identity. Then R is Rad-supplemented if and
only if every cyclic R-module is Rad -supplemented.

Proof. Let R be a Rad-supplemented ring. Suppose that M is any cyclic R-
module. Then there exists an element m of M such that M = Rm. Note that
>~ Rm, where Ann(m) is the set of all elements r of R such that rm = 0.

Ann(m) —
From [1, 2.2.(2)] the hypothesis implies that ﬁlm) is Rad-supplemented and so
Rm is Rad -supplemented. The converse is clear. O

Lemma 3. Let M be a module with U +V = M for submodules U,V of M. If V
contains a Rad -supplement of U in M, then U NV has a Rad-supplement in V.

Proof. Suppose that a submodule K of V' is a Rad-supplement of U in M. Then,
wehave U + K = M and U N K CRad(K). From the modularlaw, UNV + K=V,
Since K C V,then (UNV)NK =UNK CRad(K). So K is a Rad-supplement of
UnNnvinV. 0

Theorem 2. The following statements are equivalent for any ring R.

(1) R is Rad-supplemented.

(2) R has ample Rad-supplements in every finitely generated extension.

(3) Every cyclic R-module has ample Rad-supplements in every finitely gener-
ated extension.

Proof. (1) = (3) Let N be any cyclic R-module and M be any finitely generated
extension of N. Since R is Rad-supplemented, by Lemma 2, every cyclic submodule
of M is Rad-supplemented and so M is amply Rad-supplemented by [1 1, Corollary
3.6]. Therefore N has ample Rad-supplements in M .

(3) = (2) It is obvious.

(2) = (1) For any left ideal I of R, consider the finitely generated pushout R-
module N = RLER, where K is the set of all elements kK of R @ R such that k =
(r,—r) for all r € I. Then there exist monomorphisms f,g : R — N such that N =
F(R) + g(R). The hypothesis implies that f(R) has a Rad-supplement V in N with
V C g(R). So, by Lemma 3, V is a Rad-supplement of f(R) N g(R) in g(R). Note
that 7 = g7 1(f(R)N g(R)). It follows that R =1 + g~ " (V)and I Ng= (V) C
Rad (g~ !(V)). Hence R is Rad-supplemented. O
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We say that a module M w-local if Rad (M) is a maximal submodule of M as in
[4]. Every local module is w-local. It is well known that a commutative ring R has
the property that every R-module is a direct sum of local R-modules if and only if R
is an artinian principal ideal ring. Now, we prove that if R is a commutative ring and
every R-module is a direct sum of w-local R-modules, then R is an artinian principal
ideal ring in the following theorem.

Theorem 3. The following are equivalent for a commutative ring R.

(1) Every left R-module is a direct sum of w-local R-modules.

(2) R is semilocal and every Rad -supplemented left R-module is a direct sum of
w-local R-modules.

(3) R is an artinian principal ideal ring.

Proof. (1) = (2) Write ﬁ@) = P, s Ni, where each N; is w-local. Since
Rad(ﬁ}m) =0, for all i € I, Rad(N;) = 0. So Nj is simple. Thus RadR(R) is
semisimple and so R is semilocal. The rest of the proof is clear.

(2) = (3) Let F = R™any index set A. Suppose that Rad(%) = % for some
submodule N of F. By the assumption, we can write % = P, M; where M; is
w-local for all i € 7. By [12, 21.6.(5)], Rad(%) = P;; Rad (M;) and so each M;
is radical as a direct summand of % Since M; is w-local, we obtain that, for all
i €I, M; = 0. Therefore % = 0. This means that Rad (F) << F. It follows from
[12, 43.9] that R is left perfect. Applying [12, 43.9] again, we deduce that every left
R-module is Rad-supplemented and so every left R-module is a direct sum of w-
local R-modules. If N is aw-local, then N is local because R is left perfect. Hence
every left R-module is a direct sum of cyclic R-modules. By [9, Theorem 6.7], R is
an artinian principal ideal ring.

(3) = (1) is clear. O

The following corollary is an immediate consequence of Theorem 3.

Corollary 2. Let R be a commutative semilocal ring. Then, R is an artinian
principal ideal ring if and only if every Rad -supplemented left R-module is a direct
sum of w-local R-modules.

Let f : P — M be an epimorphism. Xue [13] calls f a (generalized) cover if
(Ker(f) C Rad(P)) Ker(f) << P, and calls a ( generalized) cover f a (general-
ized) projective cover if P is a projective module. In the spirit of [13], a module M is
said to be (generalized) semiperfect if every factor module of M has a (generalized)
projective cover. He [13, Theorem 2.2] proved that every generalized semiperfect
module is Rad-supplemented. Now, we obtain the following result.

Proposition 1. Let R be a semilocal ring. Every Rad-supplemented left R-module
is (generalized) semiperfect if and only if R is left perfect.
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Proof. (=) Let M = Rad(M). Since M is Rad-supplemented, it follows from
the hypothesis that M is generalized semiperfect. Then, there exists a generalized
cover [ : F — M with a projective module F. Since Ker(f) C Rad(F) # F, it
follows that M = 0. By [12, 43.9], R is left perfect.

(<) This is immediate. O

3. Rad-SUPPLEMENTED MODULES OVER COMMUTATIVE NOETHERIAN RINGS

Throughout this section, unless otherwise stated, we shall consider commutative
noetherian rings.

An R-module M is called coatomic if every proper submodule of M is contained
in a maximal submodule of M, and it is called reduced if every submodule of M
contains a maximal submodule, that is, P(M) = 0. Note that Rad (M) is small in M
for every coatomic R-module M.

Lemma 4. The following statements are equivalent for a Rad -supplemented mod-
ule M.

(1) M is coatomic.

(2) M is reduced.
(3) Rad(M) is small in M.

If the module M satisfies one of the equivalent conditions, then M is supplemented.

Proof. (1) = (2) Let M be a coatomic module. By [15, Lemma 1.1], every
submodule of M is coatomic and so P (M) = 0, which means that M is reduced.

(2) = (3) Suppose that M = Rad (M) + N for some submodule N of M. Then
we can write Rad (%) = % Since M is Rad-supplemented, N has a Rad-supplement
V in M. From (2) it follows that V' has a maximal submodule K. So % is a max-

. | 4
imal submodule of NAv- Note that
M. _V

‘N = Nnv

contains a maximal submodule and thus % = 0. Therefore M = N. This proves (3).
(3) = (1) The assumption implies that, for any proper submodule U € M, there
exists a submodule V of M such that U +V = M and U NV C Rad(V). Since
Rad(M) << M, V is not contained in a maximal submodule K of M. Then the
submodule U + V N K of M is maximal. Thus M is coatomic.
Suppose that Rad -supplemented module M satisfies one of these conditions. Then
M is supplemented by [5, Proposition 7.3]. O

The following result follows from [5, Proposition 7.3]. We give this result as a
consequence of Lemma 4.

Corollary 3. For a module M, M is Rad-supplemented if and only if %M) is
supplemented.
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A submodule of a Rad-supplemented module need not be Rad-supplemented, in
general. To see this actuality, we shall consider the left Z-module M =z Q. Itis
well known that M is Rad-supplemented. On the other hand, the submodule zZ of
M is not semisimple.

Now, we show that a submodule of a Rad -supplemented module is Rad -supplement
ed under a certain condition.

Proposition 2. Let M be a module and N € M. Suppose that % is reduced. If
M is Rad-supplemented, then N is Rad-supplemented.

Proof. According to [1, 2.2.(2)], % is Rad-supplemented as a factor module of
M. Since % is reduced, P (%) = 0. Therefore % is supplemented by Lemma 4.
Since M is Rad-supplemented, % is Rad-supplemented by Corollary 1. Note that

K
3
IR

==

P(N)
is reduced and thus %N) isreduced by [ 14, Lemma 1.5 (a)]. It follows from Lemma 4
that %N) is supplemented. Thus % is supplemented by [&, Proposition 2.6]. So
%N) is Rad-supplemented. Hence N is Rad-supplemented by Lemma 1. O

Using Proposition 2, we obtain the following result.

Corollary 4. The following statements are equivalent for any module M .

(1) M is Rad-supplemented.
(2) Every maximal submodule of M is Rad-supplemented.
(3) Every cofinite submodule of M is Rad -supplemented.

Proof. (1) = (3) If N is a cofinite submodule of M, then % is finitely generated
and so % is reduced. From Proposition 2, the proof follows.

(3) = (2) is clear.

(2) = (1) Let M = My + M;, where M| and M» are maximal submodules of M.
Since M and M, are Rad-supplemented modules, M is Rad-supplemented accord-
ingto [1,2.3.(3)]. If M is w-local, Rad (M) is maximal and so M = Rad(M) + U
for every proper submodule U of M with U € Rad(M). By [I, 2.3.(1)], U has
a Rad-supplement in M since Rad (M) is Rad-supplemented. Hence M is Rad-

supplemented. O

The following example shows that the class of Rad-supplemented modules is not
closed under extensions, in general.

Example 1. Let A be a collection of maximal ideals of the noetherian commutative
ring Z. Suppose that M is the left Z-module HpeA(%)‘ Then Rad(M) = 0. By

[3, Lemma 2.9], for some submodule N of M, we have % >~ @, where T is the
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direct sum of simple Z- modules £ v Then N is an extension of 7" by Q. Since T
is semisimple, it is Rad-supplemented. On the other hand, the submodule N is not
Rad-supplemented.

Later we shall give another example of such modules (see Example 2).

Theorem 4. Let 0 > N — M — K — 0 be a short exact sequence. Suppose
that K is reduced. Then M is Rad-supplemented if and only if N and K are Rad-
supplemented.

Proof. (=) It follows from Proposition 2 and [1, 2.2.(2)].
(<) By Lemma 4, K is supplemented. Since N is Rad-supplemented, % is

supplemented by Corollary 3. It follows from [8, Proposition 2.6] that %N) is Rad-
supplemented. Hence M is Rad-supplemented by Corollary 1.

Corollary 5. A module M is Rad-supplemented if and only if it is an extension of
a Rad-supplemented submodule by a reduced supplemented module.

Proof. If M has no maximal submodules, the result is obvious as P( M = = 0. Sup-

pose that M # P(M). Then this gives the existence of a reduced factor module of
M . Therefore the assertion follows from Theorem 4. O

Proposition 3. Let M be a module. M is Rad-supplemented if and only if M is
semilocal and Rad (M) is Rad -supplemented.

Proof. If M is Rad-supplemented, then M is semilocal. Thus ( 178 is reduced.
By Proposition 2, Rad (M) is Rad-supplemented . Conversely, suppose that M is
semilocal and Rad (M) is Rad-supplemented. From Theorem 4 the assumption im-
plies that M is Rad-supplemented. (|

Using the above proposition we obtain the following characterization of semilocal
rings.

Corollary 6. The following conditions on a ring R is equivalent:

(1) R is semilocal.
(2) Every left R-module with Rad -supplemented radical is Rad -supplemented.

Proof. (1) = (2) If R is semilocal, then every left R-module is semilocal by [7,
Theorem 3.5]. The result follows from Proposition 3.

(2) = (1) Since Rad(R 2 R)) = 0, it follows from the hypothesis that ¢ ( R)

Rad-supplemented. So is semisimple, i.e. R is semilocal. O

Rad (R)

n [5], a module M is said to be totally Rad -supplemented if every submodule of
M is Rad-supplemented. Every semisimple module is totally Rad-supplemented. It
is easy to check that the class of totally Rad-supplemented modules is closed under
factor modules and submodules. The following fact is a modification of Theorem 4.
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Theorem 5. Let M be a module and % be reduced for some submodule N of

M. Then M is totally Rad-supplemented if and only if N and % are totally Rad-
supplemented.

Proof. Suppose that N and % are totally Rad-supplemented. Let U be any sub-

mhodule of M. By the hypothesis, U N N and UZ'\';N are Rad-supplemented. Note
that

U+N U
N = UNN
is reduced because % is reduced. By Theorem 4, U is Rad-supplemented. Hence
M is totally Rad-supplemented. O

Corollary 7. Let M be a Rad-supplemented module. Then, M is totally Rad-
supplemented if and only if P(M) is totally Rad -supplemented.

Proof. Suppose that P(M) is totally Rad-supplemented. By the hypothes is and
Corollary 3, % is supplemented. Applying [8, Proposition 2.6], we deduce that

% is totally supplemented. Therefore M is totally Rad-supplemented by The-
orem 5. O

4. Rad-SUPPLEMENTED MODULES OVER COMMUTATIVE DOMAINS

In this section a ring R will be a commutative domain. Let R be such aring and M
be an R-module. We denote by 7'(M ) the set of all elements m of M for which there
exists a non-zero element r of R such that rm = 0, i.,e., Ann(m) # 0. Then T (M),
which is a submodule of M, called the torsion submodule of M. If M = T(M) ,
then M is called a torsion module and M is called rorsion-free provided T (M) = 0.

Proposition 4. Let R be a non-semilocal commutative domain and M be an R-
module. If M is totally Rad -supplemented, M is a torsion module.

Proof. Let 0 # m € M. Suppose that Ann(m) = 0, i.e. R = Rm. Since M is
totally Rad -supplemented, the left R-submodule Rm of M is Rad-suppleme nted. So
R

R R is Rad-supplemented. Therefore Rad (R) is semisimp le, i.e. R is semilocal. This

contradicts the assumption. Hence Ann (/) # 0, this implies that M is torsion. [

Corollary 8. Let R be a non-semilocal dedekind domain and M be a totally Rad -
supplement ed R-module. Then M is torsion.

Let R be a dedekind domain and M be an R-module. We denote by 2 the set
of all maximal (i.e., prime) ideals of R. Suppose that p is any element of £2. We
denote by T,(M), which is a submodule of M, the set of all elements m of M for
which there exists a positive integer n such that p”m = 0. Then 7,(M) is called the
p-primary part of M. For a torsion module M over a dedekind domain, we have the
decomposition M = @pe o Tp(M).
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Lemma 5. Let R be a non-local dedekind domain and M be an R-module. Then
M is Rad-supplemented if and only if % is torsion and every p-primary part of

P_%/]) is (Rad-)supplemented.

Proof. According to [14, Theorem 3.1] and [5, Theorem 7.4], the proof of the
lemma is clear. O

Let R be a dedekind domain and M be an R-module. By [2, Lemma 4.4], P(M)
is injective and so there exists a direct summand N of M such that %M) >~ N. This
fact and Lemma 5 give the following basic result for torsion-free modules.

Corollary 9. Let M be a torsion-free Rad -supplemented module over a non-local
dedekind domain. Then M is radical.

Let M be a radical module. M is called simply radical if M has no proper radical
submodules.

Proposition 5. Let R be a noetherian ring and M be a simply radical R-module.
If M is amply Rad-supplemented, M is hollow radical. In particular, every Rad-
supplemented proper submodule of M is supplemented.

Proof. Let U be any proper submodule of M. Suppose that U 4+ V = M for some
submodule V' of M. By the hypothesis, there exists a submodule V" of V such that
U4V =M and UNV' CRad(V'). Since M is simply radical, it follows that
Rad(V)=V' NRad(M) =V N M = V. So V' is radical. Therefore V' = M
and so V = M. Then we deduce that U is small in M. Hence M is hollow radical.
Suppose that a proper submodule N of M is Rad-supplemented. Since M is simply
radical, every submodule of N contains a maximal submodule, i.e., P(N) = 0. By
Lemma 4, N is supplemented. O

Corollary 10. Let R be a dedekind domain and M be a radical R-module. Then
M is amply Rad -supplemented and indecomposable if and only if the module is hol-
low radical.

Proof. Since indecomposable radical modules over dedekind domains is simply
radical, M is hollow radical by Proposition 5. The converse is clear. O

Proposition 6. Let M be a module over a Dedekind domain. Then the following
statements are equivalent.

(1) M is indecomposable, w-local and amply Rad -supplemented.
(2) M is local.

Proof. (1) = (2) Let U be any proper submodule of M. Suppose that U is not
contained Rad (M'). Since M is w-local, Rad (M) is maximal and so U +Rad (M) =
M . By the hypothesis, there exists a submodule V of Rad (M) suchthat U +V = M
and U NV C Rad (V). It follows that Rad (V) = VNRad (M) =V, i.e. V isradical.
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Then, by [2, Lemma 4.4], V is injective and so there exists a submodule L of M
such that M = V @ L. Since M is indecomposable and w-local, we get V' = (.
Thus, U = M, implying that M is local.

(2) = (1) is clear. a

Now, we give an analogous characterization of [14, Theorem 3.1] for totally Rad -
supplemented modules.

Theorem 6. Let M be a non-semilocal dedekind domain and M be an R-module.
Then M is totally Rad -supplemented if and only if M is torsion and every p-primary
part of M is totally Rad -supplemented.

Proof. The necessity of the condition is obvious by Corollary 8. Conversely, sup-
pose that M is torsion and every p-primary part of M is totally Rad-supplemented.
Let N CU C M. Since M =P, T,(M), we have U = P,,c o (U N T(M)) and
N = @pGQ(N NT,(M)). By the hypothesis, N N T,(M) has a Rad-supplement
VoinUNT,(M). SoUNT,(M)=NNT,(M)+V, and NNV, CRad(V}). Let
V= @peg Vo Then N +V = U. Since N NV, € Rad(V,) for every p € £2, by
[6, Corollaries 9.1.5 ()], NNV = (Bpee(N NT,(M)) N (Dpee Vy) S Rad (V).
Hence U is Rad-supplemented. This completes the proof. 0

Finally, we give an example showing the class of (totally) Rad -supplemented mod-
ules is not closed under extensions, in general. For a module M, Soc (M) will indic-
ate the sum of all simple submodules of M.

Example 2. (see [10, Example 2.3]) Consider the non-Noetherian commutative
ring which is the direct product [7S, F;, where F; = F is any field. Suppose that
R is the subring of the ring consisting of all sequences (r,,)nen such that there exist
re F,meNwithr, =rforalln >m. Let M =r R. Then M is a regular module
which is not semisimple. Therefore Soc (M) is a maximal submodule of M. This
means that Soc (M) and %(M) are Rad-supplemented. On the other hand, M is not
Rad-supplemented.
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