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Abstract. Here, we prove the Haraux-Weissler equation has no solution on a domain which is
strictly starshped with respect to 0. Finally, we present some questions.
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1. INTRODUCTION

A Porous Medium Equation (in short PME) is the equation

ut = ∆(um),

where u = u(x, t) is a scalar function and m is a constant larger than 1. The space
variable x takes values in Rd ,d ≥ 1, while t ∈ R. Physical considerations lead to the
restriction u ≥ 0, which is mathematically convenient and currently followed, but not
essential.

The PME is an example of a nonlinear evolution equation, formally of parabolic
type and there are a number application in boundary layer theory mathematical bio-
logy, lubrication, water infiltration, heat radiation in plasmas, processes involving
diffusion or heat transfer (such as description of the flow of an isentropic gas through
a porous medium) and other fields (see [1, 2, 5, 6, 14–17, 19, 20]).

Consider a quasilinear PME with a source term

ut −∆(|u|m−1u) = |u|p−1u in RN × (0,T ),

where the parameters are taken as m > 0 and p > 1. In studying this equation, the
self-similar solution u(x, t) = t−αU(r), where r = |x|t−β, are of interest, as usually
describe the large time behaviour of solutions of the Cauchy problem with general
initial data (see [12]). Concerning this structure, Haraxu and Weissler [10] proposed

(|U |m−1U)′′+
N −1

r
(|U |m−1U)′+βrU ′+αU +(|U |p−1U) = 0, in R+, (1.1)
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for the semilinear case m = 1, where α,β > 0,α(m− 1)+ 2β = 1,(|U |m−1U)(0) =
0,U(0) = a > 0. In fact, if the equation originates from (PME), the parameters α, β

have to fulfill the additional condition αp = p+1 and are thus given by

α =
1

p−1
, β =

p−m
2(p−1)

.

Another aspect of problem (1.1) is that it can be regarded as the equation satisfied by
radial solutions of a quasilinear elliptic equation with a gradient term

∆(|u|m−1u)+βx ·∇u+αu+ |u|p−1u = 0 in RN .

This equation was studied by Hirose [11], Chipot et al. [4] and Serrin et al. [18].
Haraxu and Weissler [10] studied the equation

∆u+
1
2

x ·∇u+
1

p−1
u+ |u|p−1u = 0qquadin RN , (1.2)

where m = 1 for the self-similar solutions of the semilinear heat equation

∂tw = ∆w+wp. (1.3)

Equation (1.3) has a special scaling invariance in the sense that w is a solution if and
only if wλ, defined by

wλ(x, t) = λ
2

p−1 w(λx,λ2t),

is a solution for some (equivalently, all) λ > 0.

Definition 1. A solution w is said to self-similar if wλ = w for all λ > 0.

Remark 1. Notice that w is a self-similar solution to (1.3) iff w(x, t) = t−
1

p−1 u( x√
t ),

where u satisfies (1.2).

Also, Kavian et al. [13] study the self-similar solutions to the nonlinear Schrödinger
equation

iut +∆u+ ε|u|αu = 0, (1.4)

where u = u(t,x) is a complex-valued function of t ∈R (or a subset of R) and x ∈RN ,
α is a positive real number, and ε := ±1. Self-similar solution of (1.4) have played
an important role in the study of the blow-up behavior of nonglobal solutions to (1.4)
with ε = 1.

Also, the nonlinear Schrödinger equation (1.4) with the critical power α = 4
N , that

is,
iut +∆u+ ε|u|

4
N u = 0, (1.5)

admits a special conservation law, called the pseudo-conformal conservation law, and
is invariant under a corresponding transformation.

Finally, in [21], the existence of rapidly decaying radial solution of equation (1.2)
when (N −2)p ≤ N is proved. Also, Fukuizumi et al. [9] gave a sufficient condition
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that non-radial H1-solutions to the Haraux-Weissler equation should belong to the
weighted Sobolev space H1

ρ(RN), where ρ is the weight function exp( |x|
2

4 ).
The main statement of this paper is to prove the existence of positive singular

solutions of Haraux-Weissler equation ∆u+ 2−N
2 x ·∇u = 0 in Ω,

x ·∇u > 0 in Ω,
u = 0 on ∂Ω.

(1.6)

where Ω is a unite ball in RN which is strictly starshaped with respect to zero, N ≥ 3

2. NONEXISTENCE RESULT

Due to prove the nonexistence result, we need to recall some definitions and facts
([3, 8]) as follows.

Definition 2. We say that an open subset Ω of RN is starshaped with respect to a
point y ∈ Ω if for every x ∈ Ω, the segment joining y to x, namely the set

{λx+(1−λ)y : λ ∈ [0,1]}
is entirely contained in Ω.

Definition 3. We say that an open subset Ω of RN is strictly starshaped with re-
spect to a point y ∈ Ω if for every x ∈ Ω, the segment joining y to x, namely the
set

{λx+(1−λ)y : λ ∈ [0,1)}
is entirely contained in Ω.

Remark 2. If x ∈ Ω then λx ∈ Ω for λ ∈ [0,1), when 0 ∈ Ω.

Lemma 1. ([3, 8]) Let Ω ⊂ RN be smooth and strictly starshaped with respect to
0 and ν(x) denote the outward normal to ∂Ω at x. Then ν(x) · x > 0 for x ∈ ∂Ω.

Now, we can present the main result by the the following theorem.

Theorem 1. Let Ω ⊂RN be unit ball which is smooth and strictly starshaped with
respect to 0 and N ≥ 3. Then the problem (1.6) has no solutions in H1

0 (Ω).

Proof. We prove the theorem by contradiction. Assume the problem (1.6) has a
solution u in H1

0 (Ω). This mean that x ·∇u > 0 in Ω. Now we multiply the equation
in (1.6) by x ·∇u.

−
∫

Ω

∆ux ·∇udx =
2−N

2

∫
Ω

|x|2 |∇u|2 dx. (2.1)

Notice that the left hand side by the Green’s formula is

−
∫

Ω

∆ux ·∇udx =
∫

Ω

∇u · (x ·∇u)dx−
∫

∂Ω

∂u
∂ν

∇u · xdσ. (2.2)
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Since

∂

∂x j
(∇u · x) = ∂

∂x j

(
N

∑
i=1

∂u
∂xi

xi

)
=

N

∑
i=1

(
∂2u

∂xi∂x j
xi +

∂u
∂xi

δi j

)

=
N

∑
i=1

∂2u
∂xi∂x j

xi +
∂u
∂x j

.

This means that

∇u ·∇(x ·∇u) =
1
2

∇(|∇u|2) · x+ |∇u|2

=
1
4

∇(|∇u|2) ·∇
(
|x|2
)
+ |∇u|2.

By the Green’s formula we get∫
Ω

∇u ·∇(x ·∇u)dx

=
∫

Ω

1
4

∇(|∇u|2) ·∇
(
|x|2
)

dx+
∫

Ω

|∇u|2 dx

=
1
4

∫
Ω

|∇u|2 ∂

∂ν

(
|x|2
)

dσ− N
2

∫
Ω

|∇u|2 dx+
∫

Ω

|∇u|2 dx

=
2−N

2

∫
Ω

|∇u|2 dx+
1
2

∫
∂Ω

|∇u|2ν(x) · xdσ.

Thus by (2.2) we get

−
∫

Ω

∆ux ·∇udx

=
2−N

2

∫
Ω

|∇u|2 dx+
1
2

∫
∂Ω

|∇u|2ν(x) · xdσ−
∫

∂Ω

∂u
∂ν

∇u(x) · xdσ

=
2−N

2

∫
Ω

|∇u|2 dx− 1
2

∫
∂Ω

(
∂u
∂ν

)2

ν(x) · xdσ.

(2.3)

Now considering (2.3) and (2.1) we have

2−N
2

∫
Ω

|∇u|2 dx− 1
2

∫
∂Ω

(
∂u
∂ν

)2

ν(x) · xdσ =
2−N

2

∫
Ω

|x|2 |∇u|2 dx

or
2−N

2

∫
Ω

(1−|x|2)|∇u|2 dx =
1
2

∫
∂Ω

(
∂u
∂ν

)2

ν(x) · xdσ.

Since x ∈ Ω which is the unit ball, thus the left hand side of the above equation is
negative for N ≥ 3 and the right hand side is positive (Since Ω is strictly starshaped
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with respect to 0, we have ν(x) · x > 0 everywhere on ∂Ω). This means that

1
2

∫
∂Ω

(
∂u
∂ν

)2

ν(x) · xdσ = 0

which implies that

2−N
2

∫
Ω

x ·∇udx =−
∫

Ω

∆udx =−
∫

∂Ω

∂u
∂v

dσ = 0.

Since x ·∇u is positive in Ω, this is impossible. □

Remark 3. If Ω is a unit ball in RN which is strictly convex, Theorem 1 remains
true. Because every strictly convex set is strictly starshaped set.

3. SOME QUESTIONS

Here, we present some questions as follow.

Question 1. Is it possible to prove that the equation{
∆u+ 1

2 x ·∇u+ 1
p−1 u+up = 0 in Ω,

u = 0 on ∂Ω,
(3.1)

has no solution, where Ω ⊂ RN is a strictly starshaped with respect to 0?

Question 2. Is it possible to prove that the equation{
∆u+a(x) ·∇u+V (x)u+up = 0 in Ω,
u = 0 on ∂Ω,

(3.2)

has no solution, where Ω ⊂ RN is a strictly starshaped with respect to 0, a(x) is a
smooth vector field and V (x) is a smooth potential?

Question 3. Is it possible to prove that the equation{
∆u+a(x) ·∇u+V (x)u+up(x) = 0 in Ω,
u = 0 on ∂Ω,

(3.3)

has no solution, where Ω ⊂ RN is a strictly starshaped with respect to 0, a(x) is a
smooth vector field, V (x) is a smooth potential and p(x) is a variable exponent?

Question 4. Is it possible to prove that the equation ∆u+ 2−N
2 x ·∇v = 0 in Ω,

∆v+ 2−N
2 x ·∇u = 0 in Ω,

u = v = 0 on ∂Ω,
(3.4)

has no solution, where Ω ⊂ RN is a strictly starshaped with respect to 0?
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The Heisenberg group Hn = (R2n+1,◦ ) is the space R2n+1 with the noncommut-
ative law of product

(x,y,z)◦ (x′,y′,z′) = (x+ x′,y+ y′,z+ z′+2(⟨y,x′⟩−⟨x,y′⟩)),

where x1,x2,y1,y2 ∈Rn, z1,z2 ∈R and ⟨ , ⟩ denotes the standard inner product in Rn.
This operation endows Hn with the structure of a Lie group. The Lie algebra of Hn is
generated by the left-invariant vector fields

Z =
∂

∂z
, Xi =

∂

∂xi
+2yi

∂

∂z
, Yi =

∂

∂yi
−2xi

∂

∂z
, i = 1,2,3, · · · ,n.

These generators satisfy the noncommutative formula

[Xi,Yj] =−4δi jZ, [Xi,X j] = [Yi,Yj] = [Xi,Z] = [Yi,Z] = 0.

The Heisenberg gradient and the Kohn-Laplacian (the Heisenberg Laplacian) op-
erator on Hn are given by

∇Hn = (X1,X2, · · · ,Xn,Y1,Y2, · · · ,Yn),

and

∆Hn =
n

∑
i=1

X2
i +Y 2

i ,

respectively (see [7] for more details).

Question 5. The quasilinear PME with a source term in the Heisenberg group Hn

is
ut −∆Hn(|u|m−1u) = |u|p−1u in R2n+1 × (0,T ), (3.5)

where the parameters are taken as m > 0 and p > 1.
Does the equation (3.5) has a self-similar solution in the Heisenberg group Hn?
In the case m = 1, i.e. the equation

ut −∆Hnu = |u|p−1u in R2n+1 × (0,T ), (3.6)

may be regarded as a Haraxu-Weissler equatuion in the Heisenberg group setting.
The existence of self-similar solutions of the parabolic equation (3.6) can be studied.
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