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Abstract. This paper is a continuation of a recent work on a new norm, christened the (o, B)-
norm, on the space of bounded linear operators on a Hilbert space. We obtain some upper bounds
for the said norm of n X n operator matrices. As an application of the present study, we estimate
bounds for the numerical radius and the usual operator norm of n X n operator matrices, which
generalize the existing ones.
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1. INTRODUCTION

The purpose of the present article is to study the bounds for the newly introduced
[15] (o, B)-norm of n x n operator matrices, from which we obtain bounds for the
numerical radius of n X n operator matrices. Let us first introduce the following nota-
tions and terminologies to be used throughout the article.

Let #H;, #; be two complex Hilbert spaces with usual inner product (.,.) and let
B(#H;,H;) denote the space of all bounded linear operators from #; to #;. If H; =
H; = H then we write B(H,H )= B(H).For T € B(#H), we write Re(T) and Im(T)

for the real part of 7' and the imaginary part of T, respectively, i.e., Re(T) = T+TT*

and Im(T) = TE—lT* Let T* denote the adjoint of 7' and let | T'| be the positive operator

(T*T)%. Let 6(T') denote the spectrum of 7. The spectral radius of 7', denoted by
r(T), is defined by r(T) = sup{|A| : A € 6(T)}. The numerical range of T, denoted
by W(T), is defined as W(T) = {(Tx,x) : x € #H,||x|| = 1}. The usual operator norm
and the numerical radius of 7', denoted by || T'|| and w(T'), respectively, are defined as
IT|| = sup{||Tx| : x € H,||x|| = 1} and w(T) = sup{|c| : c € W(T)}. Let My denote
the usual operator norm attainment set of 7', i.e., Mr = {x € H : ||Tx|| = ||T|,||x|| =

1},
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It is well-known that the numerical radius defines a norm on B(# ) and is equival-
ent to the usual operator norm, satisfying that for T € B(H),

1
ST <w(r) <7l

The study of the numerical range of an operator and the associated numerical radius
inequalities are an important area of research in operator theory and it has attracted
many mathematicians [1, 3,5-7, 12] over the years. Recently, some generalizations
for the concept of numerical radius have been introduced in [2,4, 14, 16, 18]. One of
these generalizations is the A-numerical radius of an operator 7 € B(H) defined by
wa(T) = sup{|[(ATx,x)| : x € H,(Ax,x) = 1}, see, e.g., [, 10, 17]. Here, A is a pos-
itive bounded linear operator on #. With an aim to develop better upper and lower
bounds for the numerical radius, a new norm named as the (o, )-norm, was intro-
duced on B(H) in [15]. For T € B(H), the (, B)-norm of 7', denoted by ||T'[|o,, is
defined as:

17llop = sup{¢a1<rx,x>|2+wxrz AN 1},

where o, 3 are real positive constants with (o, ) # (0,0). We note thatifoo =1, =0
then ||T||o,p = w(T), and if o = 0,8 = 1 then ||T||qp = ||T||. Also, if we consider
a—p= . S .

dw*(T), (see [9]). In this article, we consider o+ 3 = 1, i.e., p = 1 — o and explore
the a-norm of 7 X n operator matrices, where the o-norm of 7 is defined as:

17l =sup {\JoTxox) 2 (1 =o€ 24, = 1.

We compute the exact value of the oi-norm of 2 X 2 operator matrices in B(H & H)

of the form < 8 )é ), where X € B(H). We obtain some upper bounds for the

a-norm of n X n operator matrices, which generalize the existing numerical radius
inequalities and the usual operator norm inequalities of n X n operator matrices. As
an application of our results, we estimate new upper bounds for the numerical radius
and the usual operator norm of n X n operator matrices.

2. MAIN RESULTS

We begin this section with the following proposition, the proof of which follows
from the weakly unitarily invariant property of the o-norm, i.e., for T € B(H),
|lU*TU||o = ||T||o for every unitary operator U € B(H) (see [15, Prop. 2.6]).

Proposition 1. Let A,B € B(H). Then the following results hold:

@ (2 5)l, H( o),

for every 8 € R.
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Next, we estimate upper and lower bounds for the oi-norm of 2 x 2 operator matrices

in B(H @ H) of the form ( )é 2 ), where X,Y € B(H). Let us first note the fol-
lowing inequality for X € B(#H),
o (X, x)) 2 + (1 — o) || Xx]|> < [|X |2 )lx||* for all x € # with |jx|| < 1.

Theorem 1. Let X,Y € B(H ). Then the following inequalities hold:

@ max{ila il < (5 ))

o

< max { \/X1-+ 0200 ¥ o)
< V2max { Xl ¥ o

@ (5 5] = Vs (X rIEy -
@iy (5 v )| <1 vl
X 0

Proof. (i) Let T = 0y > Let x € H with Hx]zlandletiz(é)é

H @ H. Clearly, ||X|| = 1. Therefore, we have,

Vol (X, x) 2+ (1 = )| |Xe]2 = \ ot (TE D P+ (1~ 0) [T < [ 7]
Taking supremum over all unit vector in #, we get,
1X[low < 117 l|or
Similarly, it can be proved that
Y]l < (I a-
Combining the above two inequalities, we get the first inequality in (i). Let us now
prove the second inequality in (i). Let z = ( i ) € H @ H with ||z|| =1, ie.,
l|lx]|? 4 [|y||* = 1. Then we have,
al(Tz,2)]* + (1 - )| Tz
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= o[ (Xx,x) + (Yy, ) [+ (1 — o) (| Xx]> + | ¥ y]*)

< o (|(Xx, %)+ [ (Yy, ) ))* + (1= o) (|1 Xx]|> + [ y]|)

< o (Xx,x) >+ (1 — o) [ Xx]|> + & Yy, y)[*+ (1 — o) [ Yy ||
+a (|(Xx,x) >+ Yy, ) )

< Xl + 1Y 151y
+ o (W (X) x> +w? (V) [[y]I*) (since [lx]] < 1, [lyl < 1)

= (IX115 + 0w (X)) [lxll> + ([[Y[|5, + aw? (¥)) |1y ]I

< max {[|X || + ow?(X), [ [|5, + aw? (V) } .

Therefore, taking supremum over all unit vectors in H @ #H, we get the second in-
equality in (). The remaining inequality in (i) follows from the inequalities ow?(X) <
X |2 and aw?(Y) < ||Y||%. This completes the proof of (i).

(ii) From

of{T2,2) 2+ (1= 0) [ 722 < o1 (X, )|+ [ (Y y ) ) + (1 = 00) ([1Xx]2+ [ ¥y]P).
we get
of(T2,2) 2+ (1 - )| T2
< o (Xx,2) [+ (1= o) [ X[ + et (Y, y) [P+ (1 = )| Yy
+20f(Xx,x)| [(Yy,y)]
< | (Xoe, )2 (1= o) [ X[+ 0t (Yy, ) [ + (1 = o) [Y
+ 20w (X)w(Y ) lx[?[Iy]>
< X NGl + Y IE 12
+ 2o (X)w(Y)|Ix|[[lyll (since [[x[| <1, [[y[] < 1)
< max { [ X5 Y|} +oaw(X)w(Y).
Taking supremum over all unit vectors in H @ H, we get the inequality in (ii).
(iif) The inequality in (iii) follows from the triangle inequality of the o-norm, and
by using the inequality in (ii). O
In the following theorem, we obtain the exact value of the oi-norm of 2 x 2 operator

matrices in B(H @ H ) of the form < 8 }é >, where X € B(H).

Theorem 2. Let X € B(H). Then

H(o X> s IXl i ax>s
0 0 VI—o|X| if a<i

o
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0
[ly]|> = 1. Then (T'z,z) = (Xy,x) and ||Tz| = ||Xy||. Now we have,
IT11% = HSWPI(OW(TZ’ZHZJF (1—a)||Tz]?)
2=
= sup (@ {Xyx) P+ (1 —a)|[Xy[)
[lxl>+y[=1
< sup (XUl A (1= e XLy )1%)
[lxl>+y[>=1

= sup ||X|?*sin®0(0icos’0+ (1 —av)).
6<(0,3]

Proof. Let T = ( 8 X > Letz = < ; ) € HoH with |z|| = 1, ie., ||x]|>+

First we consider the case o > % Then

1
sup ||X||*sin®0(ocos?0+ (1 —a)) = —|| X%
6c(0.5] 4o

Therefore, ||T[|Z < & |1X||>. We claim that there exists a sequence {z,} in H & H
with ||z, || = 1 such that

. 1
lim (0T 2, 20) | + (1 — )| T2 |?) = @IIXIIZ-

n—yoo

Clearly, there exists a sequence {y, } in H with ||y,|| = 1 such that lim,_,« ||Xy,| =

X
1 Yn 1
IIX||. Let z, = TN < e >, where k = 4/ 55— || X||. Then

1
: 2 _ 2_ L2
Jim @[Tz, 2n)|” + (1 = )| Tzl|” = ;X%

Therefore, ||T||o = ﬁ\\XH if o> 1.

Next we consider the case o0 < % Then

sup ||X||*sin?0(ocos’0+ (1 —a)) = (1 — o)X
0<(0,3

Therefore, ||T]|2 < (1 —a)||X||>. Proceeding as before, we can show that there ex-
ists a sequence {z,},]|za|| = 1 such that lim, e (t|(T2,,2,)|* + (1 — &) || Tz,|*) =
(1 —a)|X||?. Therefore, ||T|lo = /(1 — )| X if x < L O

5
N 0 X 0 0
Remark 1. It follows from Proposition 1 (b) that ( 0 0 ) o« H ( X0 )

<§ 8) fH(g 2) =Xl

o
Our next goal is to obtain upper bounds for the a-norm of n X n operator matrices
in B(®!_,#;). We require the following lemmas for our purpose.

o

Also, it follows from Theorem 1 that




658 P. BHUNIA, A. BHANIJA, D. SAIN, AND KALLOL PAUL

Lemma 1. ([//, p. 44]) Let T = (t;;) € M,,(C) with t;; > 0 for all i, j. Then
W(T) = 7 (Re(T)) = |[Re(T).
Lemma 2. ([/3]) Let T € B(H) be self-adjoint and let x € H. Then
(T, 0] < (1T},
Lemma 3. ([/3]) Let T € B(H) with T > 0 and let x € H with ||x|| = 1. Then
(Tx,x)P <(TPx,x) forallp>1.
Lemmad4. ([/5, Th. 2.1]) Let T € B(#). Then the following inequalities hold:
W(T) < Tl < VA= 300 w(T),

1
max {3 /T PPl <7 < 7))
Now we are in a position to prove the following inequality.
Theorem 3. Let H,%h,...,H, be Hilbert spaces. Let T = (T;;) be an n x n
operator matrix, where T;j € B(H;, H;). Then
171l < 1/ IlUR + (1 - )P

w(T;;) ifi=j
where R = (rij)uxn, Tij = it i
Yo T {é(”ﬂj”‘i‘ﬂ}iu) ifis ]

and S = (Sij)nxn sij = ||Tij -

Proof. Letx= (x1,x2,...,X,) € &7, H; with ||x|| = 1 and let £ = (||x1 ||, [|x2]], ..., || xn]])-
Clearly, % is a unit vector in C". Now,
n
‘(TX,XH— Z <Tl]xj7xl < Z ‘ l]xJ‘)le
i,]:l 7] 1
n
< ll-xhxl |+ Z j-xj7-xl
:1 i,j=1; 176]

S

n

<Y w@llal®+ X 1Tl il

i,j=Li#]

- I

= Y fillxlllll = (T%,%) = (Re(T)%, %) +i(Im(T)%,5),
j=1
- oy~ T;;) ifi=j
where T = (£;;), tjj = w(Ti) 1 l ]
1Tl i .
Clearly, (Im(T)#%,%) = 0. So by using Lemma 2 and Lemma 3, we get
[(Tx,x)| < (Re(T)%,%) < (|Re(T)|%,%)
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= |(Tx,x)* < (|Re(T)|%,%)* < (|Re(T)*%,%) = (|RI*%,5).

Also,
n
||T)c||2 = |(Tx,Tx)| Z (Tijxj, Trixi)
i,j,k=1
n

< Z |<Tijj7Tktxl Z Tleijj,x,|

i,j,k=1 Jk=1
Y 2

< Y ITallll Tl il = (IS1°%, %).

i,jk=1
Therefore,

o (T, )P+ (1= o) [ Tx]* < o |RIPE, %) + (1 — ) (|7, %)
— (IR + (1 - )|S]2) %) < [|olRI+ (1 - w)]sP]].
Taking supremum over all unit vectors in &, #;, we get the desired inequality. [

As a consequence of Theorem 3, the following numerical radius inequality and the
usual operator norm inequality can be proved quite easily.

Corollary 1. Let #,,%b,...,H, be Hilbert spaces. Let T = (T;;) be an n x n
operator matrix, where T;; € B(H;, ;). Then

(i) w(T) < min \/IIOC!R|2+(1—06)!S\2|| <w(T),

0<o<l1
VIURE + (1 - a)[SP]| < S]]

(@) [|IT]] < min

0<o<l max{ Ve = }

w(Ty) ifi=j
Tl if i)

where T = (£)nxns 1 = { and R, S are same as described in The-

orem 3.

We would like to note that the inequalities in [1, Th. 1] and [12, Th. 1.1] follow
from (i) and (ii) of Corollary 1, respectively.

In our next result, we obtain an upper bound for the o-norm of n X n operator
matrices in terms of non-negative continuous functions on [0,0). First we need the
following lemma.

Lemma 5. ([/3, Th. 5]) Let T € B(H) and let f and g be two non-negative
continuous funcnons on [0,00) such that f(t)g(t) =t, ¥V t €[0,00). Then

(Tx, )| < IFATDxllle(ITyll, ¥V x,y € H.
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Theorem 4. Let T = (T;;) be an n x n operator matrix, where T;j € B(H). Let
f and g be two non-negative continuous functions on [0,0) such that f(t)g(t) =
Vit>0. Then

17l < \/lllRE+ (1~ S,

L *
where R= (rij)uxn, 1ij = 3 (IIfz(lTijl)llzIIgZ(IT,-,-I)H2 +2ATDI 82T )and
S = (sij)nxn sij = | T3j]].
Proof. Letx= (x1,x2,...,x,) € &I H with ||x|| = 1 and let £ = (||x1 ||, [|x2]], .., [[xn]])-
Clearly, % is a unit vector in C”*. Using Lemma 5, we get that

n

Z ljx]7xl

ij=1

n

Z ljxjvxl

‘(TX,XH =

n

< Z AT D g (T il = Y 2T, (&2 (1T5 D)

i,j=1 i,j=1
- 2 Lo 2 gy 4 e

< Y WA2ATDIENATEDIZ il bl =Y a1l el
ij=1 i,j=1

= (T%,%) = (Re(T)%,%) +i(Im(T)%,%),

~ -~y o~ 1 1

where T' = (i), fi; = ||/ (1T D12 182 (1T D112
Proceeding similarly as in the proof of Theorem 3, we get
|(Tx,x)” < (|RI*%,%) and | Tx]|* < (|S]°%,%).
Therefore,
o (Tx.2)[ + (1 — )T < [|odRP + (1~ )52

Taking supremum over all unit vectors in & #, we get the desired inequality. [J

The following numerical radius inequality is an easy consequence of Theorem 4 .

Corollary 2. Let T = (T;;) be an n x n operator matrix, where T;; € B(H). Let f
and g be non-negative continuous functions on [0,o0) such that f(t)g(t) =t,Vt > 0.
Then

7)< mi \/ RI2+(1— 2| < w(T
w(T) < min \/[llRP -+ (1= ISP < w(T),

where T = (£;;)nxn, £ = Hf2(|T,]|)H%||g2(|le\)H% and R, S are same as described in
Theorem 4.

We would like to note that the inequality in [7, Th. 3.1] follows from Corollary 2.
In our next theorem, we obtain an upper bound for the a-norm of n X n operator
matrices.
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Theorem 5. Let T = (T;;) be an n x n operator matrix, where T;j € B(H). Let
f and g be two non-negative continuous functions on [0,0) such that f(t)g(t) =
Vt>0.Ifp>1, then

17115 < /ol REP + (1 — s,

where R = () nxn;
1/2(Tl) + g2(1 7)) ifi=j

e {(wmmﬂuwa TDIE+IPATDIEISLATII) ifi )
and S = (Sij)nxn) Sij = ||sz||

(ST SIS

Proof. Letx=(x1,x2,...,x,) € & H with ||x|| = L and let £ = (||x1 ], [|x2]], ..., [|Xn]|)-
Clearly, X is a unit vector in C". Using Lemma 5, we get that

n
Z ljxj)-xl

i,j=1

n

Z ljxj7xl

[(Tx,x)| =

n

< ¥ AT DT 6l = Y (T2 (8215 ), xi) 2

i,j=1 ij=1
ﬂ] 2
ZE (F(Tal)xi, ) + (& (1T )i xi))
1=
C 2 L, 9 % 1
+ Y (PATDxgx) 2 (& (1T )xixi) 2
=Tt
<8 2 2 *
=Z§<(f (IT) + & (1T 1)) xi5 x:)
i=1
n f . |
+ Y (AT Dxg,x) 2 (& (1T )xixi) 2
i, j=1i#j
ST 2| 2
SZQHf (ITal) + (T D] 11|
i=1
< 1 ey L
+ Y I2ATDIEIE AT DI il 1
i, j=1i#j

:éiﬁwmmW4ﬁﬁﬁ#&@mﬂ+Wwﬂﬂw
i,j=

where T = (tij)nxns

£ = %}|f2(]Ti,-])l+g2(|T,.;‘\)Hl ifi=j
VAT 2T i i .
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Clearly, (Im(T)%,%) = 0, and so using Lemma 2 and Lemma 3, we get that
|(Tx,x)| < (Re(T)%, %) = [(Tx,x)| < (|Re(T)|%,%)
= [(Tx, ) < (|Re(T)|%,2)* = [(Tx,x)|* < (|Re(T)[*’5,%)
= [(Tx,x) P < (R[5, 5).

Now proceeding similarly as in the proof of Theorem 3 and using Lemma 3, we
obtain

ITx|[” < (IS]*%,8)7 < (|S|*%,%).
By convexity of 7, p > 1, it follows that
(@f(Toe, )2+ (1 = )| Te]|?)” < (o (T, ) [P + (1 = 00) | Tx]|*7)
(o(|RIP%,%) + (1 — o) (|| %,%))
((OCIR\z”Jr( a)|S*7) %,%)
< [JodRPP + (1 =)l

IN

Therefore, taking supremum over all unit vectors in &7 #, we get the desired in-
equality. g

We simply state the following result and omit its proof, as it can be completed
using similar arguments as given in the proof of Theorem 5.

Theorem 6. Let T = (T;;) be an n x n operator matrix, where T;j € B(H). Let
f and g be two non-negative continuous functions on [0,e) such that f(t)g(t) =
Vit>0. Then

171l < 1/ IlURE + (1~ t)[SP.

where R = (j)nxn,

_{alAamh+ | s
UV IRATD I N 2ATDI (TN ) i
and S = (Sij)nxn, Sij = ||7;j||

[STE SIS

The following numerical radius inequality follows easily from Theorem 6 by using
Lemma 4.

Corollary 3. Let T = (T;;) be an n x n operator matrix, where T;; € B(#H). Let
f and g be two non-negative continuous functions on [0,0) such that f(t)g(t) =t,
Vt>0. Then

T) < \/ RI2+(1— 2
w(T) < min \/olRP+(1—0)[SP]

where R,S are same as described in Theorem 6.
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Remark 2. In particular, if we consider o = 1 in Corollary 3 then using Lemma 1,
we get

where T = (£)nxns 17 =

w(T) < min \/HOt\R\z + (1= )P <w(T),

szz\Tu\ +&°(|T; H ifi=j

Note that the existing
LT DI 18 i,-!)\\z if iz .

inequality in [7, Th. 3.3] follows from Corollary 3.
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