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Abstract. By employing Green’s function, we obtain new Lyapunov and Hartman-type inequal-
ities for higher-order discrete fractional boundary value problems. Reported results essentially
generalize some theorems existing in the literature. As an application, we discuss the corres-
ponding eigenvalue problems.
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1. INTRODUCTION

Lyapunov inequality was first introduced by the Russian Mathematician Liapoun-
off [13] who has demonstrated significant effect in the qualitative theory of differ-
ential equations such as oscillation and Sturmian theory, asymptotic theory, discon-
jugacy, boundary value problems, eigenvalue problems and numerous other applica-
tions. Due to its importance, Lyapunov inequality has been improved and generalized
in many forms, see for instance [2–4, 8, 9, 16–20]. For the sake of convenience, we
recall the following some versions of Lyapunov inequality.

Consider the Hill equation

z′′(ρ)+ω(ρ)z(ρ) = 0, ρ1 < ρ < ρ2, (1.1)

where ω(ρ) ∈ L1[ρ1,ρ2] is a real-valued function. Let z be a non-trivial solution
of (1.1) satisfying the boundary conditions:

z(ρ1) = z(ρ2) = 0,

where ρ1,ρ2 ∈R (ρ1 < ρ2). If ρ1 and ρ2 are consecutive zeros of z, then the inequality∫
ρ2

ρ1

|ω(ρ)|dρ >
4

ρ2−ρ1
(1.2)
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holds. In 1951, Wintner [21] (and then many authors) showed that the function
“|ω(ρ)|” in (1.2) can be replaced by the function “ω+(ρ)” so that (1.2) turns out
to be the inequality ∫

ρ2

ρ1

ω
+(ρ)dρ >

4
ρ2−ρ1

, (1.3)

where ω+(ρ) = max{ω(ρ),0} and the constant “4” in the right-hand-side of inequal-
ities (1.2) and (1.3) is the best possible largest number (see [10]). Since then,
inequality (1.3) has been known as Lyapunov inequality in the literature.

In 1964, Hartman [10] obtained the inequality∫
ρ2

ρ1

(ρ2−ρ)(ρ−ρ1)ω
+(ρ)dρ > ρ2−ρ1

which is known as Hartman inequality in the literature and it is the best Lyapunov-
type inequality for being stronger than both inequalities (1.2) and (1.3).

Although Lyapunov-type inequalities have been obtained by some authors [12,14,
15] for continuous fractional boundary value problems, there are few relevant results,
see for example the paper by Ferreira [5] for the right-focal discrete boundary value
problem of the form{

∆vz(ρ)+q(ρ+ v−1)z(ρ+ v−1) = 0, ρ ∈ Nb+1
0 ,

z(v−2) = 0 = ∆z(v+b),
(1.4)

and the inequality
b+1

∑
s=0
|q(s+ v−1)|> 1

Γ(v−1)(b+2)

is obtained. However the estimation for the corresponding Green’s function of Prb.
(1.4) obtained in [5] is not true. The corrected result is published as an addendum
version by the same author [6].

For the sake of improving and generalizing existing results, we derive new Lya-
punov and Hartman-type inequalities for higher-order discrete fractional BVP of the
form  ∆v

v−n0
z(ρ)+q(ρ)z(ρ+ v−1) = 0, ρ ∈ Nb+m0

0 ,

∆iz(v−n0) = 0, i ∈ Nn0−2
0 ,

∆
µ
v−n0

z(b+m0 + v−µ) = 0,
(1.5)

where q(ρ) is real-valued function defined on Nb+m0
0 , b,n0,m0 ∈ N, n0−1 < v≤ n0,

m0−1 < µ≤ m0 and

• 1≤ µ < v when v≥ 2;
• µ = 1 when 1 < v < 2.
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2. PRELIMINARIES

In this section we assemble some basic definitions on delta fractional calculus.
The terms and statements of this section are adopted for the remarkable monograph
[7].

The functions that we consider in this paper is defined on a set

Nc = {c,c+1,c+2, ...}, c ∈ R

or a set
Nd

c = {c,c+1,c+2, ...,d}, c,d ∈ R.
It is well known that the forward difference operator ∆ is defined by

∆w(ρ) = w(ρ+1)−w(ρ).

Further, the operator ∆n is recursively defined by

∆
nw(ρ) = ∆(∆n−1w(ρ)), n = 1,2, . . .

and ∆0 denotes the identity operator, that is, ∆0w(ρ) = w(ρ).

Definition 1. The (generalized) falling function is defined by

ρ
r :=

Γ(ρ+1)
Γ(ρ− r+1)

,

where Γ(∗) is the Gamma function. Note that the definition is valid if and only if the
right-hand side of this equation is well-defined.

Definition 1 can be extended by prevalent convention that ρr = 0 when ρ− r+ 1
and ρ+1 are not non-positive integers.

Definition 2. The v-th fractional Taylor monomial based at s is defined by

hv(ρ,s) :=
(ρ− s)v

Γ(v+1)
(2.1)

whenever the right-hand side is well-defined.

Now, we can define v-th fractional sum.

Definition 3. Assume w : Nc → R and v > 0. Then the v-th fractional sum of w
(based at c) is defined by

∆
−v
c w(ρ) :=

ρ−v

∑
τ=c

hv−1(ρ,σ(τ))w(τ), ρ ∈ Nc+v,

where the function h∗ is defined in (2.1) and σ is forward jump operator defined by
σ(ρ) = ρ+1.

Next we define the fractional difference in terms of the fractional sum.
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Definition 4. Assume w : Nc→ R and v > 0. Take a positive integer n0 such that
n0−1 < v≤ n0. Then as known, v-th fractional difference is defined by

∆
v
cw(ρ) := ∆

n0∆
−(n0−v)
c w(ρ), ρ ∈ Nc+n0−v.

Note that

∆
v
cw(ρ) := ∆

n0∆
−(n0−v)
c w(ρ) = ∆

n0∆
0
cw(ρ) = ∆

n0w(ρ) (ρ ∈ Nc)

for any v = n0 ∈ N0.

Lemma 1. Assume w : Nc→ R, k ∈ N0 and v,µ > 0 and n0−1 < µ≤ n0. Then

∆
−v
c ∆

kw(ρ) = ∆
k−v
c w(ρ)−

k−1

∑
j=0

hv−k+ j(ρ,c)∆ jw(c)

for ρ ∈ Nc+v, and

∆
−v
c+n0−µ∆

µ
cw(ρ) = ∆

µ−v
c w(ρ)−

n0−1

∑
j=0

hv−n0+ j(ρ−n0 +µ,c)∆ j−(n0−µ)
c w(c+n0−µ)

for ρ ∈ Nc+n0−µ+v, where the function h∗ is defined in (2.1).

3. MAIN RESULTS

Before proceeding, we present some lemmas that will be used to prove our main
results. Next, we obtain Lyapunov and Hartman-type inequalities for Prb. (1.5). Fi-
nally, an example is given.

To prove the main results, we will employ the following lemmas.

Lemma 2. If g is defined on Nb+m0
0 , then the solution of the BVP −∆v

v−n0
y(ρ) = g(ρ), ρ ∈ Nb+m0

0 ,

∆iy(v−n0) = 0, i ∈ Nn0−2
0 ,

∆
µ
v−n0

y(b+m0 + v−µ) = 0
(3.1)

can be represented by

y(ρ) =
b+m0

∑
s=0

ψ(ρ,s)g(s), ρ ∈ Nb+m0+v
v−n0

, (3.2)

where

ψ(ρ,s) :=
1

Γ(v)

 u1(ρ,s), 0≤ ρ− v+1≤ s≤ b+m0,
u2(ρ,s), 0≤ s≤ ρ− v≤ b+m0,
0, v−n0 ≤ ρ≤ v−2, 0≤ s≤ b+m0

(3.3)

is the Green function for Prb. (3.1) with

u1(ρ,s) =
[b+m0 + v−µ−σ(s)]v−µ−1

(b+m0 + v−µ)v−µ−1 ρ
v−1
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and

u2(ρ,s) =
[b+m0 + v−µ−σ(s)]v−µ−1

(b+m0 + v−µ)v−µ−1 ρ
v−1− [ρ−σ(s)]v−1 .

The proof of Lemma 2 can be found in [11]. It is also shown in [11] that

min
ρ∈Nb+m0+v

v−1

ψ(ρ,s)> 0

and
max

ρ∈Nb+m0+v
v−n0

ψ(ρ,s) = ψ(b+m0 + v,s) (3.4)

for s ∈ Nb+m0
0 .

Lemma 3. The inequality

ψ(ρ,s)≤ 1
Γ(v)

f1(s) f2(s); (ρ,s) ∈ Nb+m0+v
v−n0

×Nb+m0
0 (3.5)

holds, where ψ(ρ,s) is the Green function of Prb. (3.1), and the functions f1(s) and
f2(s) are defined by

f1(s) := [b+m0 + v−µ−σ(s)]v−µ−1 (3.6)

and
f2(s) := (b+m0 + v)µ− [b+m0 + v−σ(s)]µ (3.7)

for s ∈ Nb+m0
0 , respectively.

Proof. Let ψ(ρ,s) be the Green’s function of Prb. (3.1). Then equations (3.3) and
(3.4) yield that

ψ(ρ,s)≤ ψ(b+m0 + v,s)

=
1

Γ(v)

{
[b+m0 + v−µ−σ(s)]v−µ−1

(b+m0 + v−µ)v−µ−1 × (b+m0 + v)v−1

− [b+m0 + v−µ−σ(s)]v−1
}

(3.8)

for (ρ,s) ∈ Nb+m0+v
v−1 ×Nb+m0

0 .
If we multiply both sides of (3.8) by Γ(v), then it turns out to be

Γ(v)ψ(ρ,s)≤ [b+m0 + v−µ−σ(s)]v−µ−1

(b+m0 + v−µ)v−µ−1

× (b+m0 + v)v−1− [b+m0 + v−σ(s)]v−1

= [b+m0 + v−µ−σ(s)]v−µ−1× Γ(b+m0 + v+1)
Γ(b+m0 + v−µ+1)

− [b+m0 + v−σ(s)]v−1
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= [b+m0 + v−µ−σ(s)]v−µ−1× (b+m0 + v)µ− [b+m0 + v−σ(s)]v−1

=
Γ(b+m0 + v−µ− s)

Γ(b+m0− s+1)
× (b+m0 + v)µ− Γ(b+m0 + v− s)

Γ(b+m0− s+1)

=
Γ(b+m0 + v−µ− s)

Γ(b+m0− s+1)
×
[
(b+m0 + v)µ− Γ(b+m0 + v− s)

Γ(b+m0 + v−µ− s)

]
= [b+m0 + v−µ−σ(s)]v−µ−1×

{
(b+m0 + v)µ− [b+m0 + v−σ(s)]µ

}
= f1(s) f2(s)

which implies the desired inequality (3.5). �

The following is our first main result.

Theorem 1 (Hartman-type inequality). Let z be a non-trivial solution of Prb. (1.5).
If z(ρ+ v−1) 6= 0 for ρ ∈ Nb+m0

0 , then the inequality
b+m0

∑
s=0

f1(s) f2(s)|q(s)| ≥ Γ(v) (3.9)

holds, where the functions f1(s) and f2(s) are defined in (3.6) and (3.7), respectively.

Proof. Let z be a non-trivial solution of Prb. (1.5) such that z(ρ+ v− 1) 6= 0 for
ρ ∈ Nb+m0

0 . Then the solution z(ρ) can be explained as

z(ρ) =
b+m0

∑
s=0

ψ(ρ,s)q(s)z(s+ v−1) (3.10)

by (3.2) in Lemma 2, where ψ(ρ,s) is the Green function of Prb. (3.1).
Let |z(c)| = max

ρ∈Nb+m0+v
v−n0

|z(ρ)|. Then, taking into account Eq. (3.10) together

with inequality (3.5), it turns out the inequality

|z(c)|=

∣∣∣∣∣b+m0

∑
s=0

ψ(c,s)q(s)z(s+ v−1)

∣∣∣∣∣
≤

b+m0

∑
s=0
|ψ(c,s)||q(s)||z(s+ v−1)|

≤ |z(c)|
b+m0

∑
s=0
|ψ(c,s)||q(s)|

≤ |z(c)|
Γ(v)

b+m0

∑
s=0

f1(s) f2(s)|q(s)| (3.11)

for c ∈ Nb+m0+v
v−n0

, where the functions f1(s) and f2(s) are defined in (3.6) and (3.7),
respectively. If we multiply the both sides of inequality (3.11) by Γ(v)/|z(c)| > 0,
then we obtain the desired inequality (3.9). This completes the proof. �
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Corollary 1 (Lyapunov-type inequality). Let z be a non-trivial solution of Prb.
(1.5). If z(ρ+ v−1) 6= 0 for ρ ∈ Nb+m0

0 , then the inequality

b+m0

∑
s=0
|q(s)| ≥ 1

M0
Γ(v−µ)

[
(b+m0 + v)b+m0+1

(b+m0 + v−µ)b+m0+1 −1
]−1

(3.12)

holds, where

M0 = max
{

Γ(v−µ),
Γ(b+m0 + v−µ)

Γ(b+m0 +1)

}
. (3.13)

Proof. Let z be a non-trivial solution of Prb. (1.5) such that z(ρ+ v− 1) 6= 0 for
ρ ∈ Nb+m0

0 . Then by Theorem 2, we have the Hartman-type inequality (3.9) for
Prb. (1.5).

Now, we will find the maximum value of the functions f1(s) and f2(s) on [0,b+
m0], where the functions f1(s) and f2(s) are defined in (3.6) and (3.7), respectively.
For that purpose, applying the difference operator to them, we find

∆ f1(s) =−(v−µ−1) [b+m0 + v−µ−1−σ(s)]v−µ−2

=−(v−µ−1)× Γ(b+m0 + v−µ− s−1)
Γ(b+m0− s+1)

(3.14)

and

∆ f2(s) = µ× [b+m0 + v−1−σ(s)]µ−1

= µ× Γ(b+m0 + v− s−1)
Γ(b+m0 + v−µ− s)

. (3.15)

Thus, considering Eq. (3.14), we find that if v− µ < 1, then the function f1(s) is
increasing and if v− µ > 1, then it is decreasing on [0,b+m0], that is, if v− µ < 1,
then

f1(s)≤ f (b+m0) = (v−µ−1)v−µ−1 = Γ(v−µ), (3.16)

and that if v−µ > 1, then

f1(s)≤ f (0) = (b+m0 + v−µ−1)v−µ−1 =
Γ(b+m0 + v−µ)

Γ(b+m0 +1)
. (3.17)

on [0,b+m0]. From inequalities (3.16) and (3.17), we deduce that

f1(s)≤max
{

Γ(v−µ),
Γ(b+m0 + v−µ)

Γ(b+m0 +1)

}
= M0. (3.18)

Similarly, noticing Eq. (3.15), we see that the function f2(s) is increasing on [0,b+
m0] and hence we have

f2(s)≤ g(b+m0)

= (b+m0 + v)µ− (v−1)µ
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=
Γ(b+m0 + v+1)

Γ(b+m0 + v−µ+1)
− Γ(v)

Γ(v−µ)

=
(b+m0 + v)×·· ·× v×Γ(v)

(b+m0 + v−µ)×·· ·× (v−µ)×Γ(v−µ)
− Γ(v)

Γ(v−µ)

=
Γ(v)

Γ(v−µ)

[
(b+m0 + v)b+m0+1

(b+m0 + v−µ)b+m0+1 −1
]
. (3.19)

Now, using inequalities (3.18) and (3.19), inequality (3.9) turns out to be

Γ(v)≤ M0Γ(v)
Γ(v−µ)

×
[

(b+m0 + v)b+m0+1

(b+m0 + v−µ)b+m0+1 −1
]
×

b+m0

∑
s=0
|q(s)|.

Dividing both sides of the inequality above by Γ(v)> 0, we get the desired Lyapunov-
type inequality (3.12) which completes the proof of Corollary 1. �

Corollary 2. Let v = n0 ∈N2 and µ = 1. If z is a non-trivial solution of Prb. (1.5)
and z(ρ+n0−1) 6= 0 for ρ ∈ Nb+1

0 , then the inequality

b+1

∑
s=0
|q(s)| ≥ (n0−1)!

(b+2)(b+n0−1)n0−2 =
Γ(b+2)

b+2
× (n0−1)!

Γ(b+n0)

=
(n0−1)!

b+2
×

n0−1

∏
p=2

(p+b)−1

holds.

We remark that a lower bound for the eigenvalues of an eigenvalue problem can be
obtained via Lyapunov-type inequality for the same problem. In this sense, we have
the following example as an application of the Lyapunov-type inequality.

Example 1. Consider the eigenvalue problem ∆v
v−n0

z(ρ)+λz(ρ+ v−1) = 0, ρ ∈ {0, . . . ,b+m0},
∆iz(v−n0) = 0, i ∈ {0, . . . ,n0−2},
∆

µ
v−n0

z(b+m0 + v−µ) = 0
(3.20)

and let z be a non-trivial solution of Prb. (3.20). If z(ρ+v−1) 6= 0 for ρ∈ {0, . . . ,b+
m0}, then the eigenvalues λ of Prb. (3.20) satisfy the inequality

|λ| ≥ Γ(v−µ)
M0(b+m0)

×
[

(b+m0 + v)b+m0+1

(b+m0 + v−µ)b+m0+1 −1
]−1

=
Γ(v−µ)

M0(b+m0)
×
[

Γ(b+m0 + v+1)×Γ(v−µ)
Γ(b+m0 + v−µ+1)×Γ(v)

−1
]−1

,

where the constant M0 is defined in (3.13).
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3.1. Concluding Remarks

We conclude this paper by clarifying some highlights. Lyapunov-type inequalit-
ies have so many applications as we explained in the beginning of the paper. For
example, with the help of these inequalities, an idea can be obtained about the exist-
ence or non-existence of the real zeros of Mittag-Leffler functions well-known in the
study of these inequalities. A lower bound can be found for eigenvalues of eigenvalue
problems generated by the corresponding boundary value problems. Furthermore, by
using them, stability criteria for some certain systems and equations can be acquired.
We refer the reader to the monograph by Agarwal et al. [1] which includes much
more information on these issues.

In the light of these information, the inequalities obtained in this paper are valuable
since they can be applied on many fields. These inequalities presents a lower bound
for eigenvalues of eigenvalue problem which is obtained from the higher-order dis-
crete fractional boundary value problem as seen in the Example 1. As an application
of our study, bounds for eigenvalues of special cases of our problem can be con-
sidered. Also, so-called inequalities can be used to obtain an interval in which the
Mittag-Leffler function in question has no real zeros. Moreover, the inequalities can
help to establish conditions that guarantee the stability of some related systems and
equations.

Such applications and more are left to the researchers. It will be of interest to
study on these application. On the other hand, considering that the idea of studying
the Hartman-type inequalities for higher-order discrete boundary value problems is
new, we think that these inequalities are promising for applications and we hope that
the area of discrete fractional equations will be developed with their use.
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