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Abstract. We found constructive conditions of solvability and the scheme for constructing solu-
tions of the nonlinear autonomous boundary-value problem in the case of multiple solutions of
the equation for generating constants. The convergent iterative scheme was constructed for find-
ing approximations to solutions of the nonlinear autonomous boundary-value problem for the
system of ordinary differential equations in the case of multiple solutions of the equation for
generating constants. We found the approximations to solutions of the periodic boundary-value
problem for autonomous equation of Duffing type as an example of applying the constructed
iterative scheme. We applied residuals in the original equation for controlling the accuracy of the
found approximations to solutions of the periodic boundary-value problem for the autonomous
equation of Duffing type.
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1. INTRODUCTION

Traditionally, the study of periodic and Noether boundary-value problems in crit-
ical cases was associated with the assumption that the differential equation, as well
as the boundary condition, are known and fixed [1, 3, 17]. As a rule, the study of
periodic problems in the case of parametric resonance was limited to the study of
stability issues [18, 20]. Studies of linear autonomous boundary-value problems lead
to the study of boundary-value problems in the case of parametric resonance, since
the replacement of the independent variable [1,3,17] used in the critical case defines
a non-autonomous boundary-value problem with an additional unknown. The aims
of this article is to use the results, obtained in the study of nonlinear boundary-value
problems in the case of parametric resonance, to solve linear autonomous boundary-
value problems. We investigate the problem of finding the solutions [1, 3, 17]

z(t,ε) : z(·,ε) ∈ C1[a,b(ε)], z(t, ·) ∈ C[0,ε0], b(ε) ∈ C[0,ε0]
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of autonomous system of ordinary differential equations

dz(t,ε)/dt = Az(t,ε)+ f + εZ(z(t,ε),ε), (1.1)

satisfying the boundary condition

ℓz(·,ε) = α+ εJ(z(·,ε),ε), α ∈ Rm. (1.2)

We will seek the solutions of boundary-value problem (1.1), (1.2) in a small neigh-
borhood of a solution

z0(t) ∈ C1[a,b0], b0 = b(0)

of the generating Noether (m ̸= n) boundary-value problem

dz0/dt = Az0 + f , f ∈ Rn, ℓz0(·) = α. (1.3)

Here, A is an (n× n) constant matrix, Z(z,ε) is a nonlinear function which is twice
continuously differentiable with respect to the unknown z(t,ε) and continuously dif-
ferentiable with respect to a small parameter ε in a small neighborhood of a solution
of the generating problem and on the segment [0,ε0]; ℓz(·,ε) and J(z(·,ε),ε) are, re-
spectively, a linear and nonlinear vector functionals ℓz(·,ε), J(z(·,ε),ε) :C[a,b(ε)]→
Rm. Moreover, the second functional is twice continuously differentiable with respect
to the unknown z(t,ε) and continuously differentiable with respect to the small para-
meter ε in a small neighborhood of a solution of the generating problem and on the
segment [0,ε0]. The problem posed continues the study of a nonlinear autonomous
boundary-value problem for a system of ordinary differential equations, including in
the case of parametric resonance [1, 3, 6, 17, 18, 20]. In the critical case, (PQ∗ ̸= 0)
provided

PQ∗
d
{α− ℓK[ f ](·)}= 0 (1.4)

the generating problem (1.3) possesses a family of solutions [3]

z0(t,cr) = Xr(t)cr +G[ f ;α](t), Xr(t) = X(t)PQr , cr ∈ Rr.

Here, Q := ℓX(·) is an (m×n) matrix, rank Q := n1, n−n1 = r, PQ∗ – (m×m) is an
matrix-orthoprojector

PQ∗ : Rm → N(Q∗),

X(t) is the normal (X(a) = In) fundamental matrix of the homogeneous part of dif-
ferential system (1.3); PQr is the (n× r) matrix formed by r linearly independent
columns of the (n×n) matrix-orthoprojector PQ : Rn → N(Q);

G[ f ;α](t) = X(t)Q+{α− ℓK[ f ](·)}+K[ f ](t)

is the generalized Green operator of the boundary-value problem (1.3), Q+ is the
Moore–Penrose pseudoinverse matrix [3],

K[ f ](t) = X(t)
∫ t

a
X−1(s) f ds
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is the Green operator of the Cauchy problem for differential system (1.3), In is the
identity (n× n) matrix; PQ∗

d
is the matrix formed by d linearly independent rows of

the matrix-orthoprojector PQ∗ .
Suppose that the equation for generating constants for a nonlinear autonomous

boundary-value problem for a system of ordinary differential equations (1.1), (1.2)
has multiple roots [1,3,17]. In this case, the study for an autonomous boundary-value
problem for the system of ordinary differential equations (1.1), (1.2) with respect to
scheme [1, 3] is not possible. Along with the autonomous boundary-value problem
for the system of ordinary differential equations (1.1), (1.2) we consider the problem
of finding solutions [1, 3, 17]

z(t,ε) : z(·,ε) ∈ C1[a,b(ε)], z(t, ·) ∈ C[0,ε0], b(ε), h(ε) ∈ C[0,ε0]

of an autonomous system of ordinary differential equations in the case of parametric
resonance [6, 18]

dz(t,ε)/dt = Az(t,ε)+ f + εZ(z(t,ε),h(ε),ε), (1.5)

satisfying the boundary condition

ℓz(·,ε) = α+ εJ(z(·,ε),h(ε),ε), α ∈ Rm. (1.6)

We will seek the solutions of boundary-value problem (1.5), (1.6) in a small neigh-
borhood of a solution

z0(t) ∈ C1[a,b0], b0 = b(0), h0 = h(0) ∈ Rq

of the generating Noether (m ̸= n) boundary-value problem

dz0(t)/dt = Az0(t)+ f , f ∈ Rn, ℓz0(·) = α. (1.7)

Here, B(z(t,ε)) is an nonlinear (n× q) matrix which is twice continuously differen-
tiable with respect to the unknown z(t,ε) in a small neighborhood of the generating
solution

Z(z(t,ε),h(ε),ε) := Z(z(t,ε),ε)+B(z(t,ε))h(ε),

is a nonlinear function which is twice continuously differentiable with respect to
the unknowns z(t,ε) and h(ε) in a small neighborhood of the generating solution
and continuously differentiable with respect to the small parameter ε on the segment
[0,ε0]; ℓz(·,ε) and J(z(·,ε),h(ε),ε) are, respectively, a linear and nonlinear vector
functionals ℓz(·,ε), J(z(·,ε),h(ε),ε) : C[a,b(ε)] → Rm. Moreover, the second func-
tional is twice continuously differentiable with respect to the unknown z(t,ε) in a
small neighborhood of a solution of the generating problem (1.7) and continuously
differentiable with respect to the small parameter ε in a small neighborhood of a solu-
tion of the generating problem and on the segment [0,ε0]. Note that the solutions of
the generating problem (1.7) and problem (1.3), as well as the problems themselves,
coincide. In the critical case, the problem (1.5), (1.6) differs significantly from sim-
ilar non-autonomous boundary-value problems; unlike the latter, the right end b(ε)
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in the interval [a,b(ε)], on which we are looking for a solution to the problem (1.5),
(1.6), unknown and to be determined in the process of constructing a solution.

The change of independent variables [1]

t = a+(τ−a)(1+ εβ(ε)), b(ε) = b∗+ ε(b∗−a)β(ε), β(ε) ∈ C[0,ε0], β(0) = β
∗,

in problem (1.5), (1.6) we obtain the problem of finding a solution

z(·,ε) ∈ C1[a,b0], z(τ, ·) ∈ C[0,ε0], β(ε), h(ε) ∈ C[0,ε0]

to a system of differential equations

dz(τ,ε)/dτ = Az(τ,ε)+ f + εZ(z(τ,ε),h(ε),ε)

+ εβ(ε)[Az(τ,ε)+ εZ(z(τ,ε),h(ε),ε)],

that satisfy the boundary condition

ℓz(·,ε) = α+ εJ(z(·,ε),h(ε),ε)+ εβ(ε)[α+ εJ(z(·,ε),h(ε),ε)].
Next, we change the variable

z(τ,ε) = z0(τ,cr)+ x(τ,ε), h(ε) = h0 +µ(ε), β(ε) = β0 +η(ε),

and arrive at the problem of finding a solution

x(·,ε) ∈ C1[a,b0], x(τ, ·) ∈ C[0,ε0], µ(ε), η(ε) ∈ C[0,ε0]

to a system of differential equations

dx(τ,ε)/dτ = Ax(τ,ε)+ εY (z0(τ,cr)+ x(τ,ε),h0 +µ(ε),β0 +η(ε),ε), (1.8)

that satisfy the boundary condition

ℓx(·,ε) = εH(z0(·,cr)+ x(·,ε),h0 +µ(ε),β0 +η(ε),ε). (1.9)

Here,

Y (z0(τ,cr)+ x(τ,ε),h0 +µ(ε),β0 +η(ε),ε)

:= (1+ εβ(ε))×Z(z0(τ,cr)+ x(τ,ε),h0 +µ(ε),ε)+β(ε)A(z0(τ,cr)+ x(τ,ε)),

H(z0(·,cr)+ x(·,ε),h0 +µ(ε),β0 +η(ε),ε)

:= (1+ εβ(ε))× J(z0(·,cr)+ x(·,ε),h0 +µ(ε),ε)+αβ(ε) : C[a,b0]→ Rm.

In the critical case, (PQ∗ ̸= 0) provided that (1.4) the boundary-value problem (1.8),
(1.9) solvable under the condition

PQ∗
d
{H(z0(·,cr)+ x(·,ε),h0 +µ(ε),η(ε),ε)

− ℓK[Y (z0(τ,cr)+ x(τ,ε),h0 +µ(ε),β0 +η(ε),ε)](·)}= 0. (1.10)

We denote vectors

č0 :=

 cr
β0
h0

 ∈ Rr+q+1, č∗0 :=

 c∗r
β∗

0
h∗0

 ∈ Rr+q+1, č(ε) :=

 cr(ε)
µ(ε)
η(ε)

 ∈ Rr+q+1.
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Since the nonlinear function Y (z,β(ε),h(ε),τ,ε) and the nonlinear vector functional
H(z(·,ε),h(ε),β(ε),ε) are continuous with respect to z, β and h in a small neighbor-
hood of the generating problem (1.7), in a small neighborhood of the initial value
h0 of the function h(ε) and the initial value β0 of the function β(ε), we arrive at the
following equation

F (č0) := PQ∗
d

{
αβ0 + J(z0(·,cr),h0,0)

− ℓK
[
β0 Az0(s,cr)+Z(z0(s,cr),h0,s,0)

]
(·)

}
= 0.

Thus, the necessary conditions of the existence of a solution to the nonlinear autonom-
ous boundary-value problem (1.5), (1.6) in the case of parametric resonance is de-
termined by the following lemma. This lemma is a generalization of the correspond-
ing statements from [1, 3] on the case of parametric resonance and from [6] on the
case of an autonomous boundary-value problem (1.5), (1.6).

Lemma 1. Suppose that the boundary-value problem (1.5), (1.6) corresponds
to the critical case (PQ∗ ̸= 0) and the solvability condition of generating Noether
(m ̸= n) problem (1.7) is satisfied condition (1.4). Also, suppose that in a small
neighborhood of the generating solution

z0(t,c∗r ) ∈ C1[a,b∗0], b∗0 = b(0), h∗0 = h(0) ∈ Rq

the weakly nonlinear boundary-value problem (1.5), (1.6) has a solution

z(t,ε) : z(·,ε) ∈ C1[a,b(ε)], z(t, ·) ∈ C[0,ε0], b(ε), h(ε) ∈ C[0,ε0].

Moreover, in a sufficiently small neighborhood of the vector h∗0 there exists an eigen-
function h(ε) ∈ C[0,ε0]. Then the equality

F (č∗0) = 0. (1.11)

is satisfied.

By analogy with weakly nonlinear boundary-value problems in the critical case
[1, 3] and periodic boundary-value problems [20], we say that equation (1.11) is an
equation for generating constants of the boundary-value problem (1.5), (1.6) in the
case of parametric resonance. Assume that equation (1.11) has real root. We fix one
of the solutions č0 ∈ Rr+q+1 of equation (1.11) and arrive at the problem of finding
the solutions

x(·,ε) ∈ C1[a,b0], x(τ, ·) ∈ C[0,ε0], µ(ε), η(ε) ∈ C[0,ε0]

of the problem (1.8), (1.9) in the neighborhood of the generating solution

z0(t,c∗r ) = Xr(t)c∗r +G[ f ;α](t), c∗r ∈ Rr,

and finding functions

h(ε) := h∗0 +µ(ε), β(ε) = β
∗
0 +η(ε), µ(ε), η(ε) ∈C[0,ε0]

in the neighborhood of points h∗0 and β∗
0.
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2. ON A REDUCTION OF AN AUTONOMOUS NOETHER BOUNDARY-VALUE
PROBLEM TO A CRITICAL CASE OF THE FIRST ORDER

In the critical case (PQ∗ ̸= 0) under condition (1.4) to construct an operator system
that is used to solve the boundary-value problem (1.8), (1.9), the linearization of the
solvability condition was previously applied (1.10). Wherein, in the case of simplicity
of the roots [3, 12] by the equations of the generating constants (1.11)

PC∗
0(č

∗
0)

PQ∗
d
= 0, C0

(
č∗0

)
= F ′

č(ε)

(
č(ε)

)∣∣∣∣ č(ε) = č∗0

solution were constructed using the method of simple iterations [3, 6]. Note that
the solutions of the boundary-value problem (1.5), (1.6) in the case of parametric
resonance and the problem (1.1), (1.2), in the case of their existence, as well as the
problems themselves, coincide for h(ε) = 0. To find a solution

x(τ,ε) = Xr(τ)cr(ε)+ x(1)(τ,ε), h(ε) = h∗0 +µ(ε),

x(1)(τ,ε) = ε ·G
[
Y (z0(s,c∗r )+ x(s,ε),h∗0 +µ(ε),β∗

0 +η(ε),ε);

H(z0(·,c∗r )+ x(·,ε),h∗0 +µ(ε),β∗
0 +η(ε),ε)

]
(τ)

of the boundary value-problem (1.8), (1.9) the Newton–Kantorovich method can be
used [8, 13].

Lemma 2. Suppose that the following conditions are fulfilled for the equation

F (č(ε)) = 0. (2.1)

1. The nonlinear vector function F (č(ε)) : Rr+q+1 → Rd is twice continuously
differentiable in a neighborhood of zero and has the root č(ε).

2. In a neighborhood of zero, the following inequalities hold:∣∣∣∣∣∣∣∣J+j ∣∣∣∣∣∣∣∣≤ σ1( j),
∣∣∣∣∣∣∣∣d2F (ξ j ; č(ε)− č j(ε))

∣∣∣∣∣∣∣∣≤ σ2( j) · ||č(ε)− č j(ε)||.

3. There is a constant

θ := sup
j∈N

{
σ1( j)σ2( j)

2

}
.

Then, under the conditions

PJ∗j = 0, J j := F ′(č j(ε)) ∈ Rd×(r+q+1), θ · |č(ε)|< 1 (2.2)

or finding a solution č(ε) of the equation (2.1) an iterative scheme can be used

č j+1(ε) = č j(ε)− J+j F (č j(ε)), j = 0, 1, 2, ... . (2.3)
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In this case, the rate of convergence of the sequence {č j(ε)} to the solution č(ε) of the
equation (2.1) will be quadratic. Here, PJ∗j : Rd →N(J∗j ) is an matrix-orthoprojector
J∗k .

Note that the condition (2.2) is equivalent to the requirement of completeness of
the rank of the matrix Jk and is possible only in the case d ≤ p+q+1.

Theorem 1. Suppose that for the generating problem (1.7) corresponds to the
critical case PQ∗ ̸= 0 and the condition of its solvability is satisfied (1.4). We also
assume that the conditions of Lemma 2 are satisfied for the equation (2.1). Then, for
each root c∗r ∈ Rr, h∗0 ∈ Rq of the equation for the generating constants (1.11) in the
neighborhood generating solution z0(ε,c∗r ), and in the neighborhood of the points h∗0
and β∗

0 to find at least one solution

z(·,ε) ∈ C1[a,b(ε)], z(τ, ·) ∈ C[0,ε0], h(ε), β(ε) ∈ C[0,ε0]

of the problem (1.5), (1.6) in the case of parametric resonance, an iterative scheme
can be used

zk+1(τ,ε) = z0(τ,c∗r )+ xk+1(τ,ε), βk+1(ε) = β
∗
0 +ηk+1(ε), hk+1(ε) = h∗0 +µk+1(ε),

xk+1(τ,ε) = Xr(τ)crk+1(ε)+ x(1)k+1(τ,ε), F (čk+1(ε)) = 0, k = 0, 1, 2, ... , (2.4)

x(1)k+1(τ,ε) = ε ·G
[
Y (z0(s,c∗r )+ xk(s,ε),h∗0 +µk(ε),β

∗
0 +ηk(ε),ε);

H(z0(·,c∗r )+ xk(·,ε),h∗0 +µk(ε),β
∗
0 +ηk(ε),ε)

]
(τ).

Returning to the nonlinear autonomous boundary-value problem for the system of
ordinary differential equations (1.1), (1.2), suppose that the equation for generating
constants for an autonomous Noether boundary-value problem for a system of ordin-
ary differential equations (1.1), (1.2) has multiples roots [1,3,17], while equations for
generating constants (1.11) for the boundary-value problem (1.5), (1.6) in the case of
parametric resonance has simple roots:

PC∗
0(č

∗
0)

PQ∗
d
= 0,

among which č∗0 ∈ Rr+q+1, h∗0 = 0. Suppose also that at each step of the iterative
scheme (2.4) among the roots of the equation F (čk(ε)) = 0 is a root for which
µk(ε) = 0. In this case, the iteration scheme (2.4) can be used to find solutions
an autonomous boundary-value problem (1.1), (1.2). Therefore, solutions to the
boundary-value problem (1.5), (1.6) in the case of parametric resonance and the prob-
lem (1.1), (1.2), if they exist, coincide for h(ε) = 0.

Corollary 1. Assume that, to find at least one solution

z(·,ε) ∈ C1[a,b(ε)], z(τ, ·) ∈ C[0,ε0], h(ε), β(ε) ∈ C[0,ε0]
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of the problem (1.5), (1.6) in the case of parametric resonance, an iterative scheme
can be used (2.4). Assume also that, among the roots of the equation for generating
constants (1.11) for the boundary-value problem (1.5), (1.6) in the case of parametric
resonance is the simple root

č∗0 ∈ Rr+q+1, h∗0 = 0.

Suppose also that, at each step of the iterative scheme (2.4) among the roots of the
equation

F (čk(ε)) = 0, k = 0, 1, 2, ...
there is a root for which µk(ε) = 0. The iterative scheme (2.4) can be used to know
the solutions autonomous boundary-value problem (1.1), (1.2) in this case.

If the equation for generating constants for an autonomous boundary-value prob-
lem for a system of ordinary differential equations (1.1), (1.2) has multiple roots
[1, 3, 17], for this equation for generating constants (1.11) for the boundary-value
problem (1.5), (1.6) in the case of parametric resonance has simple roots, among
which č∗0 ∈Rr+q+1, h∗0 = 0. The conditions of the proved corollary are also satisfied,
similarly [1, 3, 9, 15], then we will say that an autonomous Noether boundary-value
problem (1.1), (1.2) is reduced to a critical case of the first order.

3. AUTONOMOUS PERIODIC PROBLEM FOR THE DUFFING EQUATION

The conditions of the proven corollary are satisfied in the case of an autonomous
periodic problem for the Duffing equation [17]

y′′+ y = εy3. (3.1)

The generating periodic problem for the Duffing equation (3.1) is solvable and, with
an appropriate fixation of the origin of the independent variable, has a general solu-
tion

z0(t,cr) = Xr(t)cr, Xr(t) =
[

cos t
−sin t

]
, cr ∈ R1.

Equation for generating amplitudes in the case of an autonomous periodic problem
for the Duffing equation (3.1)

πcr

4

(
3c2

r −8β0
0

)
=

(
0
0

)
,

obviously has only multiple roots:

B0 =
πc∗r
2

(
3c∗r −4
0 0

)
, β

∗ =
3c∗r
8

.

Along with the autonomous periodic problem for the equation (3.1) consider the
problem of finding periodic solutions to the equation Duffing-type with parametric
perturbation

y′′+ y = εy3 + εh(ε)(y′+ y′3). (3.2)
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Note that, in contrast to the article [6] the Duffing-type equation (3.2) with parametric
perturbation is autonomous. The equation (3.2) is reduced to the form (1.5) for

z(t,ε) =
[

z(a)(t,ε)
z(b)(t,ε)

]
, A =

[
0 1

−1 0

]
,

Z(z(t,ε),h(ε), t,ε) =

 0

h(ε)z(b)(t,ε)+h(ε)
(

z(b)(t,ε)
)3

+

(
z(a)(t,ε)

)3

 .

The generating periodic problem for a Duffing-type equation (3.2) with parametric
perturbation is also solvable with a corresponding fixation of the origin of the inde-
pendent variable and has a general solution [17]

z0(t,cr) = Xr(t)cr, Xr(t) =
[

cos t
−sin t

]
, cr ∈ R1.

The equation for generating constants (1.11), in the case of a periodic problem for an
equation of Duffing-type (3.2) with parametric perturbation

πcr(3c2
r −8β0) = 0, πcr h0(3c2

r +4) = 0,

has a simple root [1, 3, 6, 12]

c∗r =
1
10

, β
∗
0 =

3
800

, h∗0 = 0, C0

(
č∗0

)
=

π

4000

[
0 −800 0

403 0 403

]
.

At the first step of the iterative scheme (2.4) due to the completeness of the rank
of the matrix J0 the condition (2.2) is satisfied. Assuming that ε := 0,1. The first
approximation to the solution of the periodic problem for the equation (3.2)

y1(τ,ε) = cr1(ε)cosτ+ y(1)1 (τ,ε), h1(ε) = h∗0 +µ1(ε)

define functions
y(1)1 (τ,ε) =

ε

32 000

(
cosτ− cos3τ

)
,

as well as

cr1(ε)≈− 8413
25 079 771 422

, β1(ε)≈
7 140 587

1 903 038 646
, h1(ε) = µ1(ε) = 0.

At the second step of the iterative scheme (2.4) due to the completeness of the rank
of the matrix J1 the condition (2.2) is also satisfied, wherein

y2(τ,ε) = cr2(ε)cosτ+ y(1)2 (τ,ε), h2(ε) = h∗0 +µ2(ε);

here

y(1)2 (τ,ε)≈ 155 839 cosτ

49 833 136 807
− 1 12138 cos3τ

35 857 607 281
+

67 cos5τ

685 548 603 382

− cos7τ

654 850 200 560 485
− cos9τ

104 778 954 869 870 365 088
,
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as well as

cr2(ε)≈− 34 312
102 284 783 173

, β2(ε)≈
31 802 653

8 475 728 456
, h2(ε) = µ2(ε) = 0.

At the third step of the iterative scheme (2.4) due to the completeness of the rank of
the matrix J2 the condition (2.2) is also satisfied, wherein

y3(τ,ε) = cr3(ε)cosτ+ y(1)3 (τ,ε), h3(ε) = h∗0 +µ3(ε);

here

y(1)3 (τ,ε)≈ 149 943 cosτ

47 947 755 026
− 106 169 cos3τ

33 948 940 663
+

447 cos5τ

4 570 493 090 387

+
cos7τ

327 064 274 993 900
+

cos9τ

12 308 773 007 388 528 938
,

as well as

cr3(ε)≈− 39 176
116 784 468 121

, β3(ε)≈
1 318 533

351 402 371
, h3(ε) = µ3(ε) = 0.

The found zero-order and first three approximations to the periodic solution of the
Duffing-type equation (3.2) with parametric perturbation and the function h(ε) are
characterized by the discrepancies

∆k(ε) =

∣∣∣∣∣∣∣∣y′′k (t,ε)+ yk(t,ε)− εy3
k(t,ε)

− εhk(ε)y′k(t,ε)− εhk(ε)y′3k(t,ε)
∣∣∣∣∣∣∣∣
C[0;2π(1+εβk(ε))]

, k = 0, 1, 2, 3.

In particular, for ε = 0,1 we get

∆0(0,1)≈ 0,0000 25, ∆1(0,1)≈ 1,99 328×10−8,

∆2(0,1)≈ 1,72 064×10−12, ∆3(0,1)≈ 1,03 067×10−16.

The found zero-order and first three approximations to the periodic solution of the
Duffing equation (3.1) characterize the discrepancies

δk(ε) =

∣∣∣∣∣∣∣∣y′′k (t,ε)+ yk(t,ε)− εy3
k(t,ε)

∣∣∣∣∣∣∣∣
C[0;2π(1+εβk(ε))]

, k = 0, 1, 2, 3.

In particular, for ε = 0,1 we get

δ0(0,1)≈ 0,000 025 061, δ1(0,1)≈ 1,99 328×10−8,

δ2(0,1)≈ 1,72 065×10−12, δ3(0,1)≈ 1,249×10−16.

We now compare the obtained zero-order and first three approximations to the peri-
odic solution of the Duffing-type equation (3.1) with the corresponding zero-order

y0p(τ,c∗r ) =
cosτ

10
, β

∗
0 =

3
800

, h∗0 = 0,
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and first three approximations obtained by the Poincare method used to find the peri-
odic solution of the same Duffing-type equation (3.1)

y1p(τ,ε) = y0(τ,c∗r )+ εw1(τ), β1p(ε) =
3

800
+

57ε

2 560 000
,

y2p(τ,ε) = y0(τ,c∗r )+ εw1(τ)+ ε
2 w2(τ), β2p(ε) =

3
800

+
57ε

2 560 000
+

63ε2

409 600 000
,

y3p(τ,ε) = y0(τ,c∗r )+ εw1(τ)+ ε
2 w2(τ)+ ε

3 w3(τ),

β3p(ε) =
3

800
+

57ε

2 560 000
+

63ε2

409 600 000
+

6 069ε3

5 242 880 000 000
;

here

w1(τ) =
1

32 000

(
cosτ− cos3τ

)
,

w2(τ) =
1

102 400 000

(
23cosτ−24cos3τ+ cos5τ

)
,

w3(τ) =
1

327 680 000 000

(
547cosτ−594cos3τ+48cos5τ− cos7τ

)
.

Note that the zero-order and first three approximations obtained by the Poincare
method for the periodic solution of the Duffing-type equation (3.1) are characterized
by the discrepancies

δkp(ε) =

∣∣∣∣∣∣∣∣y′′kp(t,ε)+ ykp(t,ε)− εy3
kp(t,ε)

∣∣∣∣∣∣∣∣
C[0;2π(1+εβkp(ε))]

, k = 0, 1, 2, 3.

In particular, for ε = 0,1 we get

δ0p(0,1)≈ 0,000 025 061, δ1p(0,1)≈ 2,01 363×10−8,

δ2p(0,1)≈ 1,63 890×10−11, δ3p(0,1)≈ 1,45 439×10−14.

Thus, the zero-order and first three approximations obtained according to the iterative
scheme (2.4) aimed at finding the periodic solution of the Duffing-type equation (3.1)
are much more exact than the first three approximations given by the Poincare method
for the periodic solution of the same Duffing-type equation.

By analogy [2,5,7], the proposed scheme of investigation of the nonlinear autonom-
ous boundary-value problems in the case of parametric resonance can be generalized
to the matrix boundary-value problems.

The proposed scheme for studying nonlinear autonomous boundary-value prob-
lems in the case of parametric resonance can be used in electronics [18], geodesy
[16], plasma theory [19], nonlinear optics, mechanics [4] and machine-tool industry
[14], along with finding solutions, it is necessary to calculate the eigenfunction of
the corresponding differential equation, and similarly [10, 11] can be transferred to
nonlinear Noether boundary-value problems unsolved with respect to the derivative.
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