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Abstract. In this paper, we prove the stability of Hadamard homomorphisms and Hadamard
derivations in Banach algebras. This is applied to investigate Hadamard isomorphisms between
Banach algebras.
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1. INTRODUCTION

In 1941, D. H. Hyers [3] gave the first partial solution to Ulam’s question for
the case of approximate additive mappings under the assumption that G and G′ are
Banach spaces. In 1978, Th. M. Rassias [14] generalized the theorem of Hyers [3]
by considering the stability problem with unbounded Cauchy differences. In 1991,
Z. Gajda [1], following the same approach as that by Th. M. Rassias [14] gave an
affirmative solution to this question for p > 1. It was shown by Z. Gajda [1] as
well as by Th. M¿ Rassias and P. Šemrl [15], that one cannot prove a Rassias-type
theorem when p = 1. P. Gǎvruta [2] obtained the generalized result of the Rassias
theorem which allows the Cauchy difference to be controlled by a general unbounded
function.

The stability problems for several functional equations or inequalities have been
extensively investigated by a number of authors and there are many interesting results
concerning this problem (see [4,5,7]. The method provided by D. H. Hyers [3] which
produces the additive function will be called a direct method. This method is the most
important and useful tool to study the stability of different functional equations.

During the last two decades, a number of articles and research monographs have
been published on various generalizations and applications of the Hyers-Ulam stabil-
ity to a number of functional equations and mappings, for example, Cauchy-Jensen
mappings, k-additive mappings, invariant means, multiplicative mappings, bounded
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nth differences, convex functions, generalized orthogonality mappings, Euler-Lag-
range functional equations, differential equations, and Navier-Stokes equations (see
[9, 16–20]).

The theory of stability is a significant branch of the qualitative theory of differential
equations and dynamical systems. During the recent decades many interesting results
have been studied on some types differential equations (see [10, 11, 21]).

The stability problems of several functional equations have been extensively in-
vestigated by a number of authors and there are many interesting results, contain-
ing ternary homomorphisms and ternary derivations, concerning this problem (see
[8, 13]).

Let (A, ||.||) be a normed linear space over real or complex number field. For
X = (x1,x2) ∈ A2, we define

||(x1,x2)||∞ := max{||x1||, ||x2||}.

Let A and B be complex vector spaces. A mapping f : A×A −→ B×B is 2-additive
if

f (x1 + x2,y1 + y2) =
2

∑
i, j=1

f (xi,y j)

for all x1,y1,x2,y2 ∈ A, and a mapping f : A × A → B × B is called a C-2-linear
mapping if f is C-linear for each variable.

Lemma 1. [12] Let A and B be real or complex normed linear spaces. Then the
mapping f : A×A −→ B×B is 2-additive if and only if

f (x1 + x2,y1 − y2)+ f (x1 − x2,y1 + y2) = 2 f (x1,y1)−2 f (x2,y2) (1.1)

for all x1,x2,y1,y2 ∈ A.

2. STABILITY OF HADAMARD HOMOMORPISMS AND HADAMARD
ISOMORPHISMS IN COMPLEX BANACH ALGEBRAS

Let A and B be complex Banach algebras. Throughout this section, A×A (resp.
B × B) will be complex Banach algebra with norm || · ||∞ and unital (e,e) (resp.
(e′,e′)).

Definition 1. Let A be a complex Banach algebra. For X = (x1,y1),Y = (x2,y2) ∈
A2, the inner Hadamard product (entry-wise product) of X and Y is defined by

X . HY = (x1,y1).H(x2,y2) := (x1x2,y1y2).

Definition 2. Let A and B be two complex Banach algebras. A C-2-linear mapping
ϕ : A×A → B×B is called a Hadamard homomorphism if it satisfies

ϕ(X .HY ) = ϕ(X).Hϕ(Y )

for all X = (x1,y1),Y = (x2,y2) ∈ A2.



HADAMARD DERIVATIONS ON BANACH ALGEBRAS 131

Example 1. Let ϕ :R2 →R2 be defined by ϕ(x,y)= (xy,xy). Then ϕ is a Hadamard
homomorphism.

Example 2. Let Mmn be the set of all m×n real matrices, and ϕ : Mmn → Mmn be
defined by ϕ(X ,Y ) = (X .HY,0) for X = [xi j],Y = [yi j] ∈ Mmn, where the Hadamard
product (entry-wise product) of X and Y is defined by

X .HY = Z = [zi j], where zi j = xi jyi j for all 1 ≤ i ≤ m,1 ≤ j ≤ n.

Then ϕ is a Hadamard homomorphism.

Lemma 2. [12] Let A and B be complex Banach algebras and f : A×A → B×B
be a 2-additive mapping such that f (µx,νy) = µν f (x,y) for all µ,ν ∈ T1 := {ξ ∈ C :
|ξ|= 1} and all x,y ∈ A. Then f is 2-linear over C.

Proof. Let λ,β ∈ C be nonzero numbers and M,N be two integers such that M >

4|λ| and N > 4|β|. Then | λ

M | < 1
4 < 1− 2

3 and | β

N | <
1
4 < 1− 2

3 . By [6] Theorem 1,
there exist µ1,µ2,µ3,ν1,ν2,ν3 ∈ T1 such that 3 λ

M = µ1 +µ2 +µ3 and 3 β

N = ν1 +ν2 +

ν3. Since f is 2-additive, f (x,y) = f (3 · 1
3 x,3 · 1

3 y) = 9 f (1
3 x, 1

3 y) for all x,y ∈ A. Thus
f (1

3 x, 1
3 y) = 1

9 f (x,y). So

f (λx,βy) = f
(

M
3
·3 λ

M
x,

N
3
·3 β

N
y
)
= MN f

(
1
3
·3 λ

M
x,

1
3
·3 β

N
y
)

=
MN

9
f
(

3
λ

M
x,3

β

N
y
)
=

MN
9

f (µ1x+µ2x+µ3x,ν1y+ν2y+ν3y)

=
MN

9
(µ1 +µ2 +µ3)(ν1 +ν2 +ν3) f (x,y) =

MN
9

·3 λ

M
·3 β

N
f (x,y)

= λβ f (x,y)

for all x,y ∈ A. Therefore the mapping f : A×A → B×B is 2-linear over C. □

Lemma 3. Let A and B be complex Banach algebras and f : A×A → B×B be a
mapping such that

f (µ(x1 + x2),ν(y1 − y2))+ f (µ(x1 − x2),ν(y1 + y2)) = 2µν f (x1,y1)−2µν f (x2,y2)

for all µ,ν ∈ T1 and all x,y ∈ A, then f is 2-linear over C.

Proof. By the use of Lemma 1 with µ = ν = 1 and Lemma 2 with x2 = y2 = 0, the
mapping f is 2-linear over C. □

Theorem 1. Let A and B be complex Banach algebras. Let p+q< 2,r+s< 2 and
η be positive real numbers. Suppose that f : A×A → B×B is a mapping satisfying
f (0,0) = 0 and the inequality

|| f (λ(x1 + x2),µ(y1 − y2))+ f (λ(x1 − x2),µ(y1 + y2))−2λµ f (x1,y1) (2.1)

+2λµ f (x2,y2)||∞ ≤ η{||x1||p||x2||q + ||y1||r||y2||s}
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for all λ,µ ∈ T1 and x1,y1,x2,y2 ∈ A. If the mapping f : A×A → B×B satisfies

|| f (X .HY )− f (X).H f (Y )||∞ ≤ η||x1||p||x2||q||y1||r||y2||s (2.2)

for all X = (x1,y1),Y = (x2,y2) ∈ A2, then there exists a unique Hadamard homo-
morphism ϕ : A×A → B×B such that

||ϕ(x,y)− f (x,y)||∞ ≤ 3η

(
||x||p+q

4−2p+q +
||y||r+s

4−2r+s

)
(2.3)

for all x,y ∈ A.

Proof. Letting λ = µ = 1, x1 = x2 and y2 =−y1 in (2.1), we have

|| f (2x1,2y1)−2 f (x1,y1)+2 f (x1,−y1)||∞ ≤ η(||x1||p+q + ||y1||r+s). (2.4)

for all x1,y1 ∈ A. Setting λ = µ = 1, x1 = y1 = 0 in (2.1), we get

f (x2,−y2)+ f (−x2,y2)+2 f (x2,y2) = 0

for all x2,y2 ∈ A. Replacing x2 by x1 and y2 by y1 in the above inequality, we obtain

f (x1,−y1)+ f (−x1,y1)+2 f (x1,y1) = 0 (2.5)

for all x1,y1 ∈ A. Putting λ = µ = 1, x2 =−x1 and y1 = y2 in (2.1), we obtain

|| f (2x1,2y1)−2 f (x1,y1)+2 f (−x1,y1)||∞ ≤ η(||x1||p+q + ||y1||r+s) (2.6)

for all x1,y1 ∈ A. By (2.4) and (2.5), we get

|| f (2x1,2y1)−4 f (x1,y1)+ f (x1,−y1)− f (−x1,y1)||∞ ≤ 2η(||x1||p+q + ||y1||r+s),

for all x1,y1 ∈ A. By (2.4) and (2.6), we get

|| f (x1,−y1)− f (−x1,y1)||∞ ≤ η(||x1||p+q + ||y1||r+s)

for all x1,y1 ∈ A. By the above two inequalities, we have

|| f (2x1,2y1)−4 f (x1,y1)||∞ ≤ 3η(||x1||p+q + ||y1||r+s) (2.7)

for all x1,y1 ∈ A. Replacing x1 by 2nx1 and y1 by 2ny1 and dividing 4n+1 in (2.7), we
obtain that ∣∣∣∣∣∣∣∣ 1

4n+1 f (2n+1x1,2n+1y1)−
1
4n f (2nx1,2ny1)

∣∣∣∣∣∣∣∣
∞

≤ 3η

4n+1

(
2n(p+q)||x1||p+q +2n(r+s)||y1||r+s

)
for all x1,y1 ∈ A and all n = 0,1,2, · · · . For given integers k,m(0 ≤ k ≤ m), we get∣∣∣∣∣∣∣∣ 1

4m f (2mx1,2my1)−
1
4k f (2kx1,2ky1)

∣∣∣∣∣∣∣∣
∞

(2.8)

≤
m−1

∑
n=k

3η

4n+1

(
2n(p+q)||x1||p+q +2n(r+s)||y1||r+s

)
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for all x1,y1 ∈ A. By the use of (2.8), the sequence
{ 1

4n f (2nx1,2ny1)
}

is a Cauchy
sequence for all x1,y1 ∈ A. Since B×B is complete, the sequence

{ 1
4n f (2nx1,2ny1)

}
converges for all x1,y1 ∈ A. Define ϕ : A×A −→ B×B by

ϕ(x1,y1) := lim
n→∞

1
4n f (2nx1,2ny1)

for all x1,y1 ∈ A, we have

||ϕ(x1 + x2,y1 − y2)+ϕ(x1 − x2,y1 + y2)−2ϕ(x1,y1)+2ϕ(x2,y2)||∞

= lim
n→∞

∣∣∣∣∣∣ 1
4n f (2n(x1 + x2),2n(y1 + y2))+

1
4n f (2n(x1 − x2),2n(y1 + y2))

− 2
4n f (2nx1,2ny1)+

2
4n f (2nx2,2ny2)

∣∣∣∣∣∣
∞

≤ lim
n→∞

η

4n [2
n(p+q)||x1||p||x2||q +2n(r+s)||y1||r||y2||s]

≤ lim
n→∞

2ζn

4n η[||x1||p||x2||q + ||y1||r||y2||s]

where ζ = max{p+ q,r + s}, x1,x2,y1,y2 ∈ A and n = 0,1,2, . . .. As n → ∞, by
Lemma 3, the mapping ϕ : A × A → B × B is 2-linear. Setting k = 0 and taking
m → ∞ in (2.8), one can obtain the inequality (2.3). Let X = (x1,y1),Y = (x2,y2).
From (2.2) we have

||ϕ(X .HY )−ϕ(X).Hϕ(Y )||∞

= lim
n→∞

1
16n || f (2

nx1.2nx2,2ny1.2ny2)− f (2nx1,2ny1).H f (2nx2,2ny2)||

≤ lim
n→∞

2n(p+q+r+s)

16n ||x1||p||x2||q||y1||r||y2||s = 0,

for all x1,y1,x2,y2 ∈ A, since p+q+ r+ s < 4. Thus

ϕ(X .HY ) = ϕ(X).Hϕ(Y ).

Now, let ψ : A×A → B×B be another 2-additive mapping satisfying (2.3). Then we
have

||ϕ(x,y)−ψ(x,y)||∞ =
1
4n ||ϕ(2

nx,2ny)−ψ(2nx,2ny)||∞

≤ 1
4n

(
||ϕ(2nx,2ny)− f (2nx,2ny)||∞

+ || f (2nx,2ny)−ψ(2nx,2ny)||∞
)

≤ 3η

4n

(
2n(p+q)||x||p+q

4−2p+q +
2n(r+s)||y||r+s

4−2r+s

)
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≤ 3η×2nζ

4n(4−2ζ)
(||x||p+q + ||y||r+s),

where ζ = max{p+q,r+ s}. This tends to zero as n → ∞ for all x,y ∈ A. So we can
conclude that ϕ(x,y) = ψ(x,y) for all x,y ∈ A. This proves the uniqueness of ϕ. □

Theorem 2. Let A and B be complex Banach algebras. Let p+q< 2,r+s< 2 and
η be positive real numbers. Let f : A×A → B×B be a bijective mapping satisfying
(2.1) such that

f (X .HY ) = f (X).H f (Y ) (2.9)

for all X ,Y ∈ A2. If f (αx,βy) is continuous in α,β ∈C for each fixed X = (x,y) ∈ A2

and 1
4n f (2ne,2ne) = (e′,e′), then the mapping f : A × A → B × B is a Hadamard

isomorphism.

Proof. Since f (X .HY ) = f (X).H f (Y ) for all X ,Y ∈ A2, the mapping f : A×A →
B×B satisfies (2.1). By Theorem 1, there exists a Hadamard homomorphism ϕ :
A2 −→ B2 satisfying (2.3). The mapping ϕ : A2 −→ B2 is defined by

ϕ(x,y) = lim
n→∞

1
4n f (2nx,2ny)

for all x,y ∈ A.
It follows from (2.9) that

ϕ(x,y) = ϕ((e,e).H(x,y)) = lim
n→∞

1
4n f (2nex,2ney)

= lim
n→∞

1
4n f ((2ne,2ne).H(x,y)) = lim

n→∞

1
4n ( f (2ne,2ne).H f (x,y))

=

(
lim
n→∞

1
4n f (2ne,2ne)

)
.H f (x,y) = (e′,e′).H f (x,y) = f (x,y)

for all x,y ∈ A. So the bijective mapping f : A×A → B×B is a Hadamard isomorph-
ism. □

3. STABILITY OF HADAMARD DERIVATIONS ON COMPLEX BANACH ALGEBRAS

In this section, we prove the stability of Hadamard derivations on complex Banach
algebras associated with the 2-additive functional equation.

Definition 3. Let A be a complex Banach algebra. A C-2-linear mapping D :
A×A −→ A×A is a Hadamard derivation if D satisfies

D(X .HY ) = D(X).HY 2 +X2.HD(Y )

for all X ,Y ∈ A2.
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Theorem 3. Let A be a complex Banach algebra. Let p+ q < 2,r+ s < 2 and η

be positive real numbers. Let f : A×A → A×A be a mapping satisfying (2.1) such
that

|| f (X .HY )− f (X).HY 2 −X2.H f (Y )||∞ ≤ η||x1||p||x2||q||y1||r||y2||s (3.1)

for all x1,y1,x2,y2 ∈ A. Then there exists a unique Hadamard derivation ϕ : A×A →
A×A such that

||D(x,y)− f (x,y)|| ≤ 3η

(
||x||p+q

4−2p+q +
||y||r+s

4−2r+s

)
. (3.2)

Proof. By (2.8), the sequence
{ 1

4n f (2nx1,2ny1)
}

is a Cauchy sequence for all
x1,y1 ∈ A. Since A is complete, the sequence

{ 1
4n f (2nx1,2ny1)

}
converges. So one

can define the mapping D : A×A −→ A×A by

D(x,y) = lim
n→∞

1
4n f (2nx1,2ny1)

for all x1,y1 ∈ A. By the same reasoning as in the proof of Theorem 1, we get the fact
that D is 2-bilinear.

It follows from (3.1) that

||D(X .HY )−D(X).HY 2 −X2.HD(Y )||∞

= lim
n→∞

∣∣∣∣∣∣ 1
4n f (2nx1x2,2ny1y2)−

1
4n f (2nx1,2ny1).H(x2,y2)

2

− 1
4n (x1,y1)

2.H f (2nx2,2ny2)
∣∣∣∣∣∣

∞

= lim
n→∞

1
24n

∣∣∣∣∣∣ f (2nx1.2nx2,2ny1.2ny2)− f (2nx1,2ny1).H(2nx2,2ny2)
2

− (2nx1,2ny1)
2.H f (2nx2,2ny2)

∣∣∣∣∣∣
∞

≤ lim
n→∞

2n(p+q+r+s)

24n ||x1||p||x2||q||y1||r||y2||s = 0

for all x1,y1,x2,y2 ∈ A. So

D(X .HY ) = D(X).HY 2 +X2.HD(Y )

for all x1,y1,x2,y2 ∈ A. Now, let Ψ be another mapping satisfying (3.2). Then we
have

||D(x,y)−ψ(x,y)||∞ = lim
n→∞

1
4n ||D(2nx,2ny)−ψ(2nx,2ny)||∞

≤ lim
n→∞

1
4n

(
||D(2nx,2ny)− f (2nx,2ny)||∞ + || f (2nx,2ny)−ψ(2nx,2ny)||∞

)
≤ lim

n→∞

3η

4n

(2n(p+q)||x||p+q

4−2p+q +
2n(r+s)||y||r+s

4−2r+s

)
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≤ lim
n→∞

3η×2nζ

4n(4−2ζ)
(||x||p+q + ||y||r+s).

By the same argument as in the proof of Theorem 1, the mapping D : A×A −→ A×A
is a unique Hadamard derivation satisfying (3.2). □

4. CONCLUSION

In this work, we have proved the Hyers-Ulam stability of Hadamard homomorph-
isms and Hadamard derivations in Banach algebras associated to the bi-additive func-
tional equation (1.1). This has been applied to investigate Hadamard isomorphisms
between Banach algebras.
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