

Miskolc Mathematical Notes Vol. 24 (2023), No. 1, pp. 129–137

HADAMARD HOMOMORPHISMS AND HADAMARD DERIVATIONS ON BANACH ALGEBRAS

MEHDI DEHGHANIAN, YAMIN SAYYARI, AND CHOONKIL PARK

Received 26 September, 2021

Abstract. In this paper, we prove the stability of Hadamard homomorphisms and Hadamard derivations in Banach algebras. This is applied to investigate Hadamard isomorphisms between Banach algebras.

2010 Mathematics Subject Classification: 47B47; 17B40; 39B72; 39B62; 39B52

Keywords: 2-additive functional equation, Hadamard homomorphism, Hadamard derivation, 2-linear mapping

1. INTRODUCTION

In 1941, D. H. Hyers [3] gave the first partial solution to Ulam's question for the case of approximate additive mappings under the assumption that G and G' are Banach spaces. In 1978, Th. M. Rassias [14] generalized the theorem of Hyers [3] by considering the stability problem with unbounded Cauchy differences. In 1991, Z. Gajda [1], following the same approach as that by Th. M. Rassias [14] gave an affirmative solution to this question for p > 1. It was shown by Z. Gajda [1] as well as by Th. M_i Rassias and P. Šemrl [15], that one cannot prove a Rassias-type theorem when p = 1. P. Găvruta [2] obtained the generalized result of the Rassias theorem which allows the Cauchy difference to be controlled by a general unbounded function.

The stability problems for several functional equations or inequalities have been extensively investigated by a number of authors and there are many interesting results concerning this problem (see [4,5,7]. The method provided by D. H. Hyers [3] which produces the additive function will be called a direct method. This method is the most important and useful tool to study the stability of different functional equations.

During the last two decades, a number of articles and research monographs have been published on various generalizations and applications of the Hyers-Ulam stability to a number of functional equations and mappings, for example, Cauchy-Jensen mappings, *k*-additive mappings, invariant means, multiplicative mappings, bounded

© 2023 Miskolc University Press

*n*th differences, convex functions, generalized orthogonality mappings, Euler-Lagrange functional equations, differential equations, and Navier-Stokes equations (see [9, 16-20]).

The theory of stability is a significant branch of the qualitative theory of differential equations and dynamical systems. During the recent decades many interesting results have been studied on some types differential equations (see [10, 11, 21]).

The stability problems of several functional equations have been extensively investigated by a number of authors and there are many interesting results, containing ternary homomorphisms and ternary derivations, concerning this problem (see [8,13]).

Let (A, ||.||) be a normed linear space over real or complex number field. For $X = (x_1, x_2) \in A^2$, we define

$$||(x_1,x_2)||_{\infty} := \max\{||x_1||,||x_2||\}.$$

Let A and B be complex vector spaces. A mapping $f : A \times A \longrightarrow B \times B$ is 2-additive if

$$f(x_1 + x_2, y_1 + y_2) = \sum_{i,j=1}^{2} f(x_i, y_j)$$

for all $x_1, y_1, x_2, y_2 \in A$, and a mapping $f : A \times A \to B \times B$ is called a \mathbb{C} -2-linear mapping if f is \mathbb{C} -linear for each variable.

Lemma 1. [12] Let A and B be real or complex normed linear spaces. Then the mapping $f : A \times A \longrightarrow B \times B$ is 2-additive if and only if

$$f(x_1 + x_2, y_1 - y_2) + f(x_1 - x_2, y_1 + y_2) = 2f(x_1, y_1) - 2f(x_2, y_2)$$
(1.1)

for all $x_1, x_2, y_1, y_2 \in A$.

2. STABILITY OF HADAMARD HOMOMORPISMS AND HADAMARD ISOMORPHISMS IN COMPLEX BANACH ALGEBRAS

Let A and B be complex Banach algebras. Throughout this section, $A \times A$ (resp. $B \times B$) will be complex Banach algebra with norm $|| \cdot ||_{\infty}$ and unital (e, e) (resp. (e', e')).

Definition 1. Let *A* be a complex Banach algebra. For $X = (x_1, y_1), Y = (x_2, y_2) \in A^2$, the *inner Hadamard product* (entry-wise product) of *X* and *Y* is defined by

$$X \cdot _{H}Y = (x_{1}, y_{1}) \cdot _{H}(x_{2}, y_{2}) := (x_{1}x_{2}, y_{1}y_{2}).$$

Definition 2. Let *A* and *B* be two complex Banach algebras. A \mathbb{C} -2-linear mapping $\varphi : A \times A \to B \times B$ is called a *Hadamard homomorphism* if it satisfies

$$\varphi(X_{\bullet H}Y) = \varphi(X)_{\bullet H}\varphi(Y)$$

for all $X = (x_1, y_1), Y = (x_2, y_2) \in A^2$.

Example 1. Let $\varphi : \mathbb{R}^2 \to \mathbb{R}^2$ be defined by $\varphi(x, y) = (xy, xy)$. Then φ is a Hadamard homomorphism.

Example 2. Let M_{mn} be the set of all $m \times n$ real matrices, and $\varphi : \mathbf{M_{mn}} \to \mathbf{M_{mn}}$ be defined by $\varphi(X, Y) = (X_{\cdot H}Y, 0)$ for $X = [x_{ij}], Y = [y_{ij}] \in M_{mn}$, where the Hadamard product (entry-wise product) of X and Y is defined by

 $X_{\cdot H}Y = Z = [z_{ij}], \text{ where } z_{ij} = x_{ij}y_{ij} \text{ for all } 1 \le i \le m, 1 \le j \le n.$

Then φ is a Hadamard homomorphism.

Lemma 2. [12] Let A and B be complex Banach algebras and $f : A \times A \to B \times B$ be a 2-additive mapping such that $f(\mu x, \nu y) = \mu \nu f(x, y)$ for all $\mu, \nu \in \mathbb{T}^1 := \{\xi \in \mathbb{C} : |\xi| = 1\}$ and all $x, y \in A$. Then f is 2-linear over \mathbb{C} .

Proof. Let $\lambda, \beta \in \mathbb{C}$ be nonzero numbers and M, N be two integers such that $M > 4|\lambda|$ and $N > 4|\beta|$. Then $|\frac{\lambda}{M}| < \frac{1}{4} < 1 - \frac{2}{3}$ and $|\frac{\beta}{N}| < \frac{1}{4} < 1 - \frac{2}{3}$. By [6] Theorem 1, there exist $\mu_1, \mu_2, \mu_3, \nu_1, \nu_2, \nu_3 \in \mathbb{T}^1$ such that $3\frac{\lambda}{M} = \mu_1 + \mu_2 + \mu_3$ and $3\frac{\beta}{N} = \nu_1 + \nu_2 + \nu_3$. Since f is 2-additive, $f(x, y) = f(3 \cdot \frac{1}{3}x, 3 \cdot \frac{1}{3}y) = 9f(\frac{1}{3}x, \frac{1}{3}y)$ for all $x, y \in A$. Thus $f(\frac{1}{3}x, \frac{1}{3}y) = \frac{1}{9}f(x, y)$. So

$$f(\lambda x, \beta y) = f\left(\frac{M}{3} \cdot 3\frac{\lambda}{M}x, \frac{N}{3} \cdot 3\frac{\beta}{N}y\right) = MNf\left(\frac{1}{3} \cdot 3\frac{\lambda}{M}x, \frac{1}{3} \cdot 3\frac{\beta}{N}y\right)$$
$$= \frac{MN}{9}f\left(3\frac{\lambda}{M}x, 3\frac{\beta}{N}y\right) = \frac{MN}{9}f(\mu_1 x + \mu_2 x + \mu_3 x, \nu_1 y + \nu_2 y + \nu_3 y)$$
$$= \frac{MN}{9}(\mu_1 + \mu_2 + \mu_3)(\nu_1 + \nu_2 + \nu_3)f(x, y) = \frac{MN}{9} \cdot 3\frac{\lambda}{M} \cdot 3\frac{\beta}{N}f(x, y)$$
$$= \lambda\beta f(x, y)$$

for all $x, y \in A$. Therefore the mapping $f : A \times A \to B \times B$ is 2-linear over \mathbb{C} .

Lemma 3. Let A and B be complex Banach algebras and $f : A \times A \rightarrow B \times B$ be a mapping such that

 $f(\mu(x_1+x_2), \mathbf{v}(y_1-y_2)) + f(\mu(x_1-x_2), \mathbf{v}(y_1+y_2)) = 2\mu \mathbf{v} f(x_1, y_1) - 2\mu \mathbf{v} f(x_2, y_2)$ for all $\mu, \mathbf{v} \in \mathbb{T}^1$ and all $x, y \in A$, then f is 2-linear over \mathbb{C} .

Proof. By the use of Lemma 1 with $\mu = \nu = 1$ and Lemma 2 with $x_2 = y_2 = 0$, the mapping *f* is 2-linear over \mathbb{C} .

Theorem 1. Let A and B be complex Banach algebras. Let p+q < 2, r+s < 2 and η be positive real numbers. Suppose that $f : A \times A \rightarrow B \times B$ is a mapping satisfying f(0,0) = 0 and the inequality

$$||f(\lambda(x_1+x_2),\mu(y_1-y_2)) + f(\lambda(x_1-x_2),\mu(y_1+y_2)) - 2\lambda\mu f(x_1,y_1)$$

$$+ 2\lambda\mu f(x_2,y_2)||_{\infty} \le \eta\{||x_1||^p ||x_2||^q + ||y_1||^r ||y_2||^s\}$$
(2.1)

for all $\lambda, \mu \in \mathbb{T}^1$ and $x_1, y_1, x_2, y_2 \in A$. If the mapping $f : A \times A \to B \times B$ satisfies $||f(X_{\cdot H}Y) - f(X)_{\cdot H}f(Y)||_{\infty} \leq \eta ||x_1||^p ||x_2||^q ||y_1||^r ||y_2||^s$ (2.2)

for all $X = (x_1, y_1), Y = (x_2, y_2) \in A^2$, then there exists a unique Hadamard homomorphism $\varphi : A \times A \to B \times B$ such that

$$||\varphi(x,y) - f(x,y)||_{\infty} \le 3\eta \left(\frac{||x||^{p+q}}{4 - 2^{p+q}} + \frac{||y||^{r+s}}{4 - 2^{r+s}}\right)$$
(2.3)

for all $x, y \in A$.

Proof. Letting $\lambda = \mu = 1$, $x_1 = x_2$ and $y_2 = -y_1$ in (2.1), we have

$$||f(2x_1, 2y_1) - 2f(x_1, y_1) + 2f(x_1, -y_1)||_{\infty} \le \eta(||x_1||^{p+q} + ||y_1||^{r+s}).$$
(2.4)

for all $x_1, y_1 \in A$. Setting $\lambda = \mu = 1, x_1 = y_1 = 0$ in (2.1), we get

$$f(x_2, -y_2) + f(-x_2, y_2) + 2f(x_2, y_2) = 0$$

for all $x_2, y_2 \in A$. Replacing x_2 by x_1 and y_2 by y_1 in the above inequality, we obtain

$$f(x_1, -y_1) + f(-x_1, y_1) + 2f(x_1, y_1) = 0$$
(2.5)

for all $x_1, y_1 \in A$. Putting $\lambda = \mu = 1, x_2 = -x_1$ and $y_1 = y_2$ in (2.1), we obtain $||f(2x_1, 2y_1) - 2f(x_1, y_1) + 2f(-x_1, y_1)||_{\infty} \le \eta(||x_1||^{p+q} + ||y_1||^{r+s})$ (2.6)

for all $x_1, y_1 \in A$. By (2.4) and (2.5), we get

$$||f(2x_1, 2y_1) - 4f(x_1, y_1) + f(x_1, -y_1) - f(-x_1, y_1)||_{\infty} \le 2\eta(||x_1||^{p+q} + ||y_1||^{r+s}),$$

for all $x_1, y_1 \in A$. By (2.4) and (2.6), we get

$$||f(x_1, -y_1) - f(-x_1, y_1)||_{\infty} \le \eta(||x_1||^{p+q} + ||y_1||^{r+s})$$

for all $x_1, y_1 \in A$. By the above two inequalities, we have

$$||f(2x_1, 2y_1) - 4f(x_1, y_1)||_{\infty} \le 3\eta(||x_1||^{p+q} + ||y_1||^{r+s})$$
(2.7)

for all $x_1, y_1 \in A$. Replacing x_1 by $2^n x_1$ and y_1 by $2^n y_1$ and dividing 4^{n+1} in (2.7), we obtain that

$$\left\| \frac{1}{4^{n+1}} f(2^{n+1}x_1, 2^{n+1}y_1) - \frac{1}{4^n} f(2^n x_1, 2^n y_1) \right\|_{\infty}$$

$$\leq \frac{3\eta}{4^{n+1}} \left(2^{n(p+q)} ||x_1||^{p+q} + 2^{n(r+s)} ||y_1||^{r+s} \right)$$

for all $x_1, y_1 \in A$ and all $n = 0, 1, 2, \cdots$. For given integers $k, m(0 \le k \le m)$, we get

$$\left\| \frac{1}{4^{m}} f(2^{m} x_{1}, 2^{m} y_{1}) - \frac{1}{4^{k}} f(2^{k} x_{1}, 2^{k} y_{1}) \right\|_{\infty}$$

$$\leq \sum_{n=k}^{m-1} \frac{3\eta}{4^{n+1}} \left(2^{n(p+q)} ||x_{1}||^{p+q} + 2^{n(r+s)} ||y_{1}||^{r+s} \right)$$
(2.8)

for all $x_1, y_1 \in A$. By the use of (2.8), the sequence $\left\{\frac{1}{4^n}f(2^nx_1, 2^ny_1)\right\}$ is a Cauchy sequence for all $x_1, y_1 \in A$. Since $B \times B$ is complete, the sequence $\left\{\frac{1}{4^n}f(2^nx_1, 2^ny_1)\right\}$ converges for all $x_1, y_1 \in A$. Define $\varphi : A \times A \longrightarrow B \times B$ by

$$\varphi(x_1, y_1) := \lim_{n \to \infty} \frac{1}{4^n} f(2^n x_1, 2^n y_1)$$

for all $x_1, y_1 \in A$, we have

$$\begin{split} ||\varphi(x_1+x_2,y_1-y_2) + \varphi(x_1-x_2,y_1+y_2) - 2\varphi(x_1,y_1) + 2\varphi(x_2,y_2)||_{\infty} \\ &= \lim_{n \to \infty} \left| \left| \frac{1}{4^n} f(2^n(x_1+x_2),2^n(y_1+y_2)) + \frac{1}{4^n} f(2^n(x_1-x_2),2^n(y_1+y_2)) \right. \\ &\left. - \frac{2}{4^n} f(2^nx_1,2^ny_1) + \frac{2}{4^n} f(2^nx_2,2^ny_2) \right| \right|_{\infty} \\ &\leq \lim_{n \to \infty} \frac{\eta}{4^n} [2^{n(p+q)} ||x_1||^p ||x_2||^q + 2^{n(r+s)} ||y_1||^r ||y_2||^s] \\ &\leq \lim_{n \to \infty} \frac{2^{\zeta n}}{4^n} \eta[||x_1||^p ||x_2||^q + ||y_1||^r ||y_2||^s] \end{split}$$

where $\zeta = \max\{p+q, r+s\}$, $x_1, x_2, y_1, y_2 \in A$ and n = 0, 1, 2, ... As $n \to \infty$, by Lemma 3, the mapping $\varphi : A \times A \to B \times B$ is 2-linear. Setting k = 0 and taking $m \to \infty$ in (2.8), one can obtain the inequality (2.3). Let $X = (x_1, y_1), Y = (x_2, y_2)$. From (2.2) we have

$$\begin{split} ||\varphi(X_{\cdot H}Y) - \varphi(X)_{\cdot H}\varphi(Y)||_{\infty} \\ &= \lim_{n \to \infty} \frac{1}{16^n} ||f(2^n x_1 \cdot 2^n x_2, 2^n y_1 \cdot 2^n y_2) - f(2^n x_1, 2^n y_1)_{\cdot H}f(2^n x_2, 2^n y_2)|| \\ &\leq \lim_{n \to \infty} \frac{2^{n(p+q+r+s)}}{16^n} ||x_1||^p ||x_2||^q ||y_1||^r ||y_2||^s = 0, \end{split}$$

for all $x_1, y_1, x_2, y_2 \in A$, since p + q + r + s < 4. Thus

$$\varphi(X_{\cdot H}Y) = \varphi(X)_{\cdot H}\varphi(Y).$$

Now, let $\psi : A \times A \to B \times B$ be another 2-additive mapping satisfying (2.3). Then we have

$$\begin{aligned} ||\varphi(x,y) - \psi(x,y)||_{\infty} &= \frac{1}{4^{n}} ||\varphi(2^{n}x,2^{n}y) - \psi(2^{n}x,2^{n}y)||_{\infty} \\ &\leq \frac{1}{4^{n}} (||\varphi(2^{n}x,2^{n}y) - f(2^{n}x,2^{n}y)||_{\infty} \\ &+ ||f(2^{n}x,2^{n}y) - \psi(2^{n}x,2^{n}y)||_{\infty}) \\ &\leq \frac{3\eta}{4^{n}} \left(\frac{2^{n(p+q)}||x||^{p+q}}{4-2^{p+q}} + \frac{2^{n(r+s)}||y||^{r+s}}{4-2^{r+s}} \right) \end{aligned}$$

$$\leq \frac{3\eta \times 2^{n\zeta}}{4^n(4-2\zeta)}(||x||^{p+q}+||y||^{r+s}),$$

where $\zeta = \max\{p+q, r+s\}$. This tends to zero as $n \to \infty$ for all $x, y \in A$. So we can conclude that $\varphi(x, y) = \psi(x, y)$ for all $x, y \in A$. This proves the uniqueness of φ . \Box

Theorem 2. Let A and B be complex Banach algebras. Let p+q < 2, r+s < 2 and η be positive real numbers. Let $f : A \times A \rightarrow B \times B$ be a bijective mapping satisfying (2.1) such that

$$f(X_{\cdot H}Y) = f(X)_{\cdot H}f(Y) \tag{2.9}$$

for all $X, Y \in A^2$. If $f(\alpha x, \beta y)$ is continuous in $\alpha, \beta \in \mathbb{C}$ for each fixed $X = (x, y) \in A^2$ and $\frac{1}{4^n}f(2^ne, 2^ne) = (e', e')$, then the mapping $f : A \times A \to B \times B$ is a Hadamard isomorphism.

Proof. Since $f(X_{\cdot H}Y) = f(X)_{\cdot H}f(Y)$ for all $X, Y \in A^2$, the mapping $f : A \times A \rightarrow B \times B$ satisfies (2.1). By Theorem 1, there exists a Hadamard homomorphism $\varphi : A^2 \longrightarrow B^2$ satisfying (2.3). The mapping $\varphi : A^2 \longrightarrow B^2$ is defined by

$$\varphi(x,y) = \lim_{n \to \infty} \frac{1}{4^n} f(2^n x, 2^n y)$$

for all $x, y \in A$.

It follows from (2.9) that

$$\begin{aligned} \varphi(x,y) &= \varphi((e,e) \cdot_H(x,y)) = \lim_{n \to \infty} \frac{1}{4^n} f(2^n ex, 2^n ey) \\ &= \lim_{n \to \infty} \frac{1}{4^n} f((2^n e, 2^n e) \cdot_H(x,y)) = \lim_{n \to \infty} \frac{1}{4^n} (f(2^n e, 2^n e) \cdot_H f(x,y)) \\ &= \left(\lim_{n \to \infty} \frac{1}{4^n} f(2^n e, 2^n e)\right) \cdot_H f(x,y) = (e', e') \cdot_H f(x,y) = f(x,y) \end{aligned}$$

for all $x, y \in A$. So the bijective mapping $f : A \times A \rightarrow B \times B$ is a Hadamard isomorphism.

3. STABILITY OF HADAMARD DERIVATIONS ON COMPLEX BANACH ALGEBRAS

In this section, we prove the stability of Hadamard derivations on complex Banach algebras associated with the 2-additive functional equation.

Definition 3. Let A be a complex Banach algebra. A \mathbb{C} -2-linear mapping D : $A \times A \longrightarrow A \times A$ is a *Hadamard derivation* if D satisfies

$$D(X \cdot HY) = D(X) \cdot HY^2 + X^2 \cdot HD(Y)$$

for all $X, Y \in A^2$.

Theorem 3. Let A be a complex Banach algebra. Let p + q < 2, r + s < 2 and η be positive real numbers. Let $f : A \times A \to A \times A$ be a mapping satisfying (2.1) such that

$$||f(X_{\cdot H}Y) - f(X)_{\cdot H}Y^2 - X^2_{\cdot H}f(Y)||_{\infty} \le \eta ||x_1||^p ||x_2||^q ||y_1||^r ||y_2||^s$$
(3.1)

for all $x_1, y_1, x_2, y_2 \in A$. Then there exists a unique Hadamard derivation $\varphi : A \times A \rightarrow A \times A$ such that

$$||D(x,y) - f(x,y)|| \le 3\eta \left(\frac{||x||^{p+q}}{4 - 2^{p+q}} + \frac{||y||^{r+s}}{4 - 2^{r+s}}\right).$$
(3.2)

Proof. By (2.8), the sequence $\left\{\frac{1}{4^n}f(2^nx_1,2^ny_1)\right\}$ is a Cauchy sequence for all $x_1, y_1 \in A$. Since A is complete, the sequence $\left\{\frac{1}{4^n}f(2^nx_1,2^ny_1)\right\}$ converges. So one can define the mapping $D: A \times A \longrightarrow A \times A$ by

$$D(x,y) = \lim_{n \to \infty} \frac{1}{4^n} f(2^n x_1, 2^n y_1)$$

for all $x_1, y_1 \in A$. By the same reasoning as in the proof of Theorem 1, we get the fact that *D* is 2-bilinear.

It follows from (3.1) that

$$\begin{split} ||D(X \cdot_H Y) - D(X) \cdot_H Y^2 - X^2 \cdot_H D(Y)||_{\infty} \\ &= \lim_{n \to \infty} \left| \left| \frac{1}{4^n} f(2^n x_1 x_2, 2^n y_1 y_2) - \frac{1}{4^n} f(2^n x_1, 2^n y_1) \cdot_H (x_2, y_2)^2 \right. \\ &- \frac{1}{4^n} (x_1, y_1)^2 \cdot_H f(2^n x_2, 2^n y_2) \right| \right|_{\infty} \\ &= \lim_{n \to \infty} \frac{1}{2^{4n}} \left| \left| f(2^n x_1 \cdot 2^n x_2, 2^n y_1 \cdot 2^n y_2) - f(2^n x_1, 2^n y_1) \cdot_H (2^n x_2, 2^n y_2)^2 \right. \\ &- (2^n x_1, 2^n y_1)^2 \cdot_H f(2^n x_2, 2^n y_2) \right| \right|_{\infty} \\ &\leq \lim_{n \to \infty} \frac{2^{n(p+q+r+s)}}{2^{4n}} ||x_1||^p ||x_2||^q ||y_1||^r ||y_2||^s = 0 \end{split}$$

for all $x_1, y_1, x_2, y_2 \in A$. So

$$D(X \cdot_H Y) = D(X) \cdot_H Y^2 + X^2 \cdot_H D(Y)$$

for all $x_1, y_1, x_2, y_2 \in A$. Now, let Ψ be another mapping satisfying (3.2). Then we have

$$\begin{split} ||D(x,y) - \psi(x,y)||_{\infty} &= \lim_{n \to \infty} \frac{1}{4^n} ||D(2^n x, 2^n y) - \psi(2^n x, 2^n y)||_{\infty} \\ &\leq \lim_{n \to \infty} \frac{1}{4^n} \left(||D(2^n x, 2^n y) - f(2^n x, 2^n y)||_{\infty} + ||f(2^n x, 2^n y) - \psi(2^n x, 2^n y)||_{\infty} \right) \\ &\leq \lim_{n \to \infty} \frac{3\eta}{4^n} \left(\frac{2^{n(p+q)} ||x||^{p+q}}{4 - 2^{p+q}} + \frac{2^{n(r+s)} ||y||^{r+s}}{4 - 2^{r+s}} \right) \end{split}$$

$$\leq \lim_{n\to\infty} \frac{3\eta\times 2^{n\zeta}}{4^n(4-2^{\zeta})}(||x||^{p+q}+||y||^{r+s}).$$

By the same argument as in the proof of Theorem 1, the mapping $D: A \times A \longrightarrow A \times A$ is a unique Hadamard derivation satisfying (3.2).

4. CONCLUSION

In this work, we have proved the Hyers-Ulam stability of Hadamard homomorphisms and Hadamard derivations in Banach algebras associated to the bi-additive functional equation (1.1). This has been applied to investigate Hadamard isomorphisms between Banach algebras.

REFERENCES

- [1] Z. Gajda, "On stability of additive mappings," *Int. J. Math. Math. Sci.*, vol. 14, no. 3, pp. 431–434, 1991.
- [2] P. Găvruta, "A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings," J. Math. Anal. Appl., vol. 184, no. 3, pp. 431–433, 1994.
- [3] D. H. Hyers, "On the stability of the linear functional equation," Proc. Nat. Acad. Sci. U.S.A., vol. 27, no. 4, pp. 222–224, 1941, doi: 10.1073/pnas.27.4.222.
- [4] D. H. Hyers, G. Isac, and T. M. Rassias, *Stability of Functional Equations in Several Variables*. Boston: Birkhäuser, 1998.
- [5] G. Isac and T. M. Rassias, "On the Hyers-Ulam stability of ψ-additive mappings," J. Approx. Theory, vol. 72, no. 2, pp. 131–137, 1993.
- [6] R. V. Kadison and G. K. Pedersen, "Means and convex combinations of unitary operators," *Math. Scand.*, vol. 57, no. 2, pp. 249–266, 1985.
- [7] Y. Lee, S. Jung, and M. T. Rassias, "Uniqueness theorems on functional inequalities concerning cubic-quadratic-additive equation," *J. Math. Inequal.*, vol. 12, no. 1, pp. 43–61, 2018, doi: 10.7153/jmi-2018-12-04.
- [8] A. Najati and A. Ranjbari, "On homomorphisms between C*-ternary algebras," J. Math. Inequal., vol. 1, no. 3, pp. 387–407, 2007.
- [9] A. Najati and A. Ranjbari, "Stability of homomorphisms for 3D Cauchy-Jensen type functional equation on C*-ternary algebras," J. Math. Anal. Appl., vol. 341, no. 1, pp. 62–79, 2008, doi: 10.1016/j.jmaa.2007.09.025.
- [10] D. P. Nguyen, V. C. H. Luu, E. Karapinar, J. Singh, H. D. Binh, and H. Nguyen, "Fractional order continuity of a time semi-linear fractional diffusion-wave system," *Alexandria Eng. J.*, vol. 59, no. 6, pp. 4959–4968, 2020, doi: 10.1016/j.aej.2020.08.054.
- [11] D. P. Nguyen, L. Nguyen, and D. L. Le, "Modified quasi boundary value method for inverse source biparabolic," *Adv. Theory Nonlinear Anal. Appl.*, vol. 4, no. 3, pp. 132–142, 2020, doi: 10.31197/atnaa.752335.
- [12] W. Park and J. Bae, "Stability of a bi-additive functional equation in Banach modules over a C*-algebra," Discrete Dyn. Nat. Soc., vol. 2012, no. 835893, pp. 1–12, 2012, doi: 10.1155/2012/835893.
- [13] M. Ramdoss, D. Pachaiyappan, and H. Dutta, "Euler-Lagrange radical functional equations with solution and stability," *Miskolc Math. Notes*, vol. 21, no. 1, pp. 351–365, 2020, doi: 10.18514/MMN.2020.3064.
- [14] T. M. Rassias, "On the stability of the linear mapping in Banach spaces," Proc. Am. Math. Soc., vol. 72, no. 2, pp. 297–300, 1978.

- [15] T. M. Rassias and P. Šemrl, "On the behaviour of mappings which do not satisfy Hyers-Ulam stability," *Proc. Am. Math. Soc.*, vol. 114, no. 4, pp. 989–993, 1992.
- [16] B. V. Senthil Kumar, K. Al-Shaqsi, and S. Sabarinathan, "Approximate multiplicative inverse quadratic mappings," *Adv. Math.: Sci. J.*, vol. 10, no. 1, pp. 199–209, 2021, doi: 10.37418/amsj.10.1.20.
- [17] B. V. Senthil Kumar, K. Al-Shaqsi, and S. Sabarinathan, "Dislocated quasi-metric stability of a multiplicative inverse functional equation," *J. Math. Comput. Sci.*, vol. 24, no. 2, pp. 140–146, 2022.
- [18] B. V. Senthil Kumar and H. Dutta, "Non-Archimedean stability of a generalized reciprocalquadratic functional equation in several variables by direct and fixed point methods," *Filomat*, vol. 32, no. 9, pp. 3199–3209, 2018.
- [19] B. V. Senthil Kumar and H. Dutta, "Approximation of multiplicative inverse undecic and duodecic functional equations," *Math. Methods Appl. Sci.*, vol. 42, no. 4, pp. 1073–1081, 2019, doi: 10.1002/mma.5413.
- [20] B. V. Senthil Kumar and H. Dutta, "Fuzzy stability of a rational functional equation and its relevance to system design," *Int. J. General Syst.*, vol. 48, no. 2, pp. 157–169, 2019, doi: 10.1080/03081079.2018.1523904.
- [21] G. G. Svetlin and Z. Khaled, "New results on IBVP for class of nonlinear parabolic equations," *Adv. Theory Nonlinear Anal. Appl.*, vol. 2, no. 4, pp. 202–216, 2018, doi: 10.31197/atnaa.417824.

Authors' addresses

Mehdi Dehghanian

Department of Mathematics, Sirjan University of Technology, Sirjan, Iran *E-mail address:* mdehghanian@sirjantech.ac.ir

Yamin Sayyari

Department of Mathematics, Sirjan University of Technology, Sirjan, Iran *E-mail address:* y.sayyari@sirjantech.ac.ir

Choonkil Park

(Corresponding author) Research Institute for Natural Sciences, Hanyang University, 04763 Seoul, Korea

E-mail address: baak@hanyang.ac.kr