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Abstract. In this paper, we prove the existence of infinitely many solutions for a fractional
p&q-Laplacian system involving Hardy-Sobolev exponents and obtain new conclusion under
different conditions. The methods used here are based on variational methods and Ljusternik-
Schnirelmann theory.
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1. INTRODUCTION

In this paper, we study the following fractional p&q-Laplacian system involving
Hardy-Sobolev exponents:

(−△)s
pu+(−△)s

qu = λ|u|r−2u+ 2α

α+β

|u|α−2u|v|β
|x|θ in Ω,

(−△)s
pv+(−△)s

qv = µ|v|r−2v+ 2β

α+β

|u|α|v|β−2v
|x|θ in Ω,

u = v = 0 on RN\Ω,

(1.1)

where Ω ⊆RN is a bounded domain containing the origin, p ∈ (1,∞), s ∈ (0,1), 1 <

r < q< p, 0≤ θ< sp<N, α+β= p∗s,θ and λ,µ> 0 are two parameters, p∗s,θ =
(N−θ)p
N−ps

is the fractional Hardy-Sobolev exponent, the fractional p-Laplacian operator (−△)s
p

is the nonlocal operator defined on smooth functions by

(−△)s
pu(x) = 2 lim

ε↘0+

∫
Bc

ε(x)

|u(x)−u(y)|p−2(u(x)−u(y))
|x− y|N+sp dy, x ∈ RN .

This definition is consistent, up to normalization depending on N and s. We would
like to point out that, in the last decades, problems involving fractional p-Laplacian
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are widely studied. We refer the readers to [2, 5, 6, 10, 13, 18–24] and references
therein.

Then system (1.1) reduces to the critical fractional p-Laplacian equation with
Hardy-Sobolev exponents(−△)s

pu = λ|u|r−2u+ |u|p
∗
s,θ−2

u
|x|θ in Ω,

u = 0 on ∂Ω.
(1.2)

Ning, Wang and Zhang proved the existence, multiplicity and bifurcation results for
the above problem in [15]. When θ = 0, in [11], Khiddi proved that problem (1.2)
has infinitely many solutions with negative energy by using Ljusternik-Schnirelmann
theory. When r = p, Ghoussoub and Yuan obtained multiple solutions in [8]. In [16],
Perera and Zou proved that this problem has a nontrivial solution where s = 1, r = p,
λ > λ1 is not an eigenvalue and λ1 is the first eigenvalue of the eigenvalue problem.

However, only a few articles have studied the p&q-Laplacian system, the results
for the case can be seen in [4, 9, 12, 14], for example,{

(−△)s
pu+(−△)s

qu = λ|u|r−2u+ 2α

α+β
|u|α−2u|v|β in Ω,

u = v = 0 on RN\Ω.
(1.3)

Obviously, system (1.3) is equivalent to θ = 0 of system (1.1), Chen and Gui proved
the existence of infinitely many solutions of problem (1.3) in [4]. Moreover, in [3],
Chen and Deng proved that problem (1.3) has at least two positive solutions when
p = q.

Yet even fewer authors study systems involving Hardy-potential and critical non-
linearities. Motivated by the above works, this paper discusses the fractional p&q-
Laplacian system with Hardy-Sobolev exponents, by some techniques to establish
new estimates to overcome difficulties. We prove the existence of infinitely many
solutions by using Ljusternik-Schnirelmann theory. This result extend some results
in the literature for the fractional p&q-Laplacian problem.

Before stating our main result, we introduce some notations. Let

[u]s,p =
(∫

R2N

|u(x)−u(y)|p

|x− y|N+sp dxdy
) 1

p

be the Galiardo seminorm of a measurable function u : RN → R, and let

W s,p(RN) = {u ∈ Lp(RN) : [u]s,p < ∞}
be the fractional Sobolev space endowed with the norm

∥u∥s,p = (|u|pp +[u]ps,p)
1
p ,

where | · |p is the norm in Lp(RN). We define

X s
p(Ω) = {u ∈W s,p(RN) : u = 0 a.e. in RN\Ω}
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equivalently renormed by setting ∥ ·∥s,p = [·]s,p, which is a uniformly convex Banach
space. We work in the closed linear subspaces Wp = X s

p(Ω)× X s
p(Ω) and Wq =

X s
q(Ω)×X s

q(Ω), which are reflexive Banach spaces endowed with the norms

∥(u,v)∥p = (∥u∥p
s,p +∥v∥p

s,p)
1
p and ∥(u,v)∥q = (∥u∥q

s,q +∥v∥q
s,q)

1
q . (1.4)

Set E =Wp ∩Wq endowed the norm ∥(u,v)∥= ∥(u,v)∥p +∥(u,v)∥q. Defining

Ap,s(u,φ) =
∫
R2N

|u(x)−u(y)|p−2(u(x)−u(y))(φ(x)−φ(y))
|x− y|N+sp dxdy. (1.5)

We say that (u,v) ∈ E is a weak solutions of problem (1.1), if ∀(φ,ψ) ∈ E, the fol-
lowing holds

Ap,s(u,φ)+Aq,s(u,φ)+Ap,s(v,ψ)+Aq,s(v,ψ) = λ

∫
Ω

|u|r−2uφdx

+µ
∫

Ω

|v|r−2vψdx+
2α

p∗s,θ

∫
Ω

|u|α−2u|v|βφ

|x|θ
dx+

2β

p∗s,θ

∫
Ω

|u|α|v|β−2vψ

|x|θ
dx.

The corresponding energy functional of system (1.1) is defined dy

Jλ,µ(u,v) =
1
p
∥(u,v)∥p

p +
1
q
∥(u,v)∥q

q

− 1
r

(
λ

∫
Ω

|u|rdx+µ
∫

Ω

|v|rdx
)
− 2

p∗s,θ

∫
Ω

|u|α|v|β

|x|θ
dx, (1.6)

for (u,v) ∈ E, it is easy to know that Jλ,µ is even, Jλ,µ ∈C1(E,R) and

⟨J′
λ,µ(u,v),(u,v)⟩= ∥(u,v)∥p

p +∥(u,v)∥q
q

−
(

λ

∫
Ω

|u|rdx+µ
∫

Ω

|v|rdx
)
−2

∫
Ω

|u|α|v|β

|x|θ
dx. (1.7)

Our result can be stated as follows.

Theorem 1. There exists Λ∗ > 0 such that for each 0 < λ
p

p−r + µ
p

p−r < Λ∗, the
system (1.1) has infinitely many solutions with negative energy.

Remark 1. The system in [4] is a special case of system (1.1). In [12], when θ = 0,
s = 1, Li and Yang proved that problem (1.3) has at least cat(Ω)+1 distinct positive
solutions by Lusternik-Schnirelmann category under condition (A):

(A) : N > p, 1 < r < q <
N(p−1)

N −1
< p < p∗ =

N p
N − p

.

The paper is organized as follows. In Section 2, we show that the (PS)c condition
holds for the related energy functional in certain critical levels. In Section 3, we prove
Theorem 1.
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2. THE (PS)c CONDITION FOR Jλ,µ

In this section, we show that the Palais-Smale condition, (PS)c holds for the related
energy functional in certain critical levels.

Definition 1. Let c ∈ R, E is a Banach space and Jλ,µ ∈ C1(E,R). We say that
{(uk,vk)} is a (PS)c sequence for Jλ,µ in E if Jλ,µ(uk,vk) = c+o(1) and J′

λ,µ(uk,vk) =

o(1) strongly in E∗ (the dual space of the Sobolev space E) as k → ∞. We say that
Jλ,µ satisfies the (PS)c condition if any (PS)c sequence {(uk,vk)} for Jλ,µ in E has a
convergent subsequence.

Let

Ss,θ = inf
u∈X s

p(Ω)\{0}

∥u∥p
s,p

(
∫

Ω

|u|p
∗
s,θ

|x|θ )
p

p∗s,θ

,

which is positive by the fractional Hardy-Sobolev constant of X s
p ↪→ Lp∗s,θ(RN) and

independent of Ω. In order to simplify calculation, set

Vθ(Ω) =
∫

Ω

|x|
rθ

p∗s,θ−r dx.

We need the following Lemmas.

Lemma 1. If {(uk,vk)}⊂E is a (PS)c sequence for Jλ,µ, then {(uk,vk)} is bounded
in E.

Proof. Let {(uk,vk)} ⊂ E is a (PS)c sequence for Jλ,µ satisfying

Jλ,µ(uk,vk) = c+o(1) and J′
λ,µ(uk,vk) = o(1) in E∗.

From (1.6) and (1.7), we obtain

Jλ,µ(uk,vk)−
1

p∗s,θ
⟨J′

λ,µ(uk,vk),(uk,vk)⟩= (
1
p
− 1

p∗s,θ
)∥(uk,vk)∥p

p

+(
1
q
− 1

p∗s,θ
)∥(uk,vk)∥q

q

− (
1
r
− 1

p∗s,θ
)
∫

Ω

(λ|uk|r +µ|vk|r)dx. (2.1)

From the definition of Ss,θ, Hölder and Sobolev inequalities, we conclude that∫
Ω

(λ|uk|r +µ|vk|r)dx ≤ λVθ(Ω)

p∗s,θ−r

p∗s,θ

(∫
Ω

|uk|p
∗
s,θ

|x|θ
dx

) r
p∗s,θ

+µVθ(Ω)

p∗s,θ−r

p∗s,θ

(∫
Ω

|vk|p
∗
s,θ

|x|θ
dx

) r
p∗s,θ
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≤Vθ(Ω)

p∗s,θ−r

p∗s,θ S
− r

p
s,θ (λ∥uk∥r

p +µ∥vk∥r
p)

≤Vθ(Ω)

p∗s,θ−r

p∗s,θ S
− r

p
s,θ (λ

p
p−r +µ

p
p−r )

p−r
p ∥(uk,vk)∥r

p

≤Vθ(Ω)

p∗s,θ−r

p∗s,θ S
− r

p
s,θ (λ

p
p−r +µ

p
p−r )

p−r
p ∥(uk,vk)∥r. (2.2)

From (2.1) and (2.2), we deduce that

C(1+∥(uk,vk)∥+∥(uk,vk)∥r)≥ (
1
p
− 1

p∗s,θ
)∥(uk,vk)∥p

p +(
1
q
− 1

p∗s,θ
)∥(uk,vk)∥q

q.

(2.3)
We suppose the contrary, we may assume that ∥(uk,vk)∥ → ∞ as k → ∞, we need to
consider the following three cases:

Case 1: If ∥(uk,vk)∥p → ∞ and ∥(uk,vk)∥q → ∞. For k large enough, we obtain
∥(uk,vk)∥p ≥ 1 and ∥(uk,vk)∥p

p ≥ ∥(uk,vk)∥q
q. Indeed, using the inequality (a+b)q ≤

Cq(aq +bq) and (2.3), we deduce that

C(1+∥(uk,vk)∥+∥(uk,vk)∥r)≥ min{1
p
− 1

p∗s,θ
,
1
q
− 1

p∗s,θ
}(∥(uk,vk)∥q

p +∥(uk,vk)∥q
q)

≥ (
1
p
− 1

p∗s,θ
)C−1

q (∥(uk,vk)∥p +∥(uk,vk)∥q)
q

= (
1
p
− 1

p∗s,θ
)C−1

q ∥(uk,vk)∥q,

both sides are divided by ∥(uk,vk)∥r, we have

C(
1

∥(uk,vk)∥r +
1

∥(uk,vk)∥r−1 +1)≥ (
1
p
− 1

p∗s,θ
)C−1

q ∥(uk,vk)∥q−r,

we get C ≥ ∞, as k → ∞, this is impossible.

Case 2: If ∥(uk,vk)∥p is bounded and ∥(uk,vk)∥q → ∞. By (2.1) and (2.2), we obtain

C(1+∥(uk,vk)∥p +∥(uk,vk)∥q +∥(uk,vk)∥r
p)≥ (

1
q
− 1

p∗s,θ
)∥(uk,vk)∥q

q,

both sides are divided by ∥(uk,vk)∥q
q, we conclude that

C(
1

∥(uk,vk)∥q
q
+

∥(uk,vk)∥p

∥(uk,vk)∥q
q
+

1

∥(uk,vk)∥q−1
q

+
∥(uk,vk)∥r

p

∥(uk,vk)∥q
q
)≥ 1

q
− 1

p∗s,θ
,

we get 0 ≥ 1
q −

1
p∗s,θ

> 0, as k → ∞, this is a contradiction.

Case 3: If ∥(uk,vk)∥p → ∞ and ∥(uk,vk)∥q is bounded. Similar to Case 2.
From Cases 1-3, we can conclude that {(uk,vk)} is bounded in E. □
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Lemma 2. If {(uk,vk)} is a (PS)c sequence for Jλ,µ with (uk,vk) ⇀ (u,v) in E,
then J′

λ,µ(u,v) = 0, and there exists a positive constant C0 such that

Jλ,µ(u,v)≥−C0(λ
p

p−r +µ
p

p−r ).

Proof. If {(uk,vk)} is a (PS)c sequence for Jλ,µ with (uk,vk)⇀ (u,v) in E, then

J′
λ,µ(uk,vk) = o(1) strongly in E∗ as k → ∞.

Let (φ,ψ) ∈ E, we have

⟨J′
λ,µ(uk,vk)− J′

λ,µ(u,v),(φ,ψ)⟩= Ap,s(uk,φ)−Ap,s(u,φ)+Aq,s(uk,φ)−Aq,s(u,φ)

+Ap,s(vk,ψ)−Ap,s(v,ψ)+Aq,s(vk,ψ)−Aq,s(v,ψ)

−λ

∫
Ω

(|uk|r−2uk −|u|r−2u)φdx

−µ
∫

Ω

(|vk|r−2vk −|v|r−2v)ψdx

− 2α

p∗s,θ

∫
Ω

(
|uk|α−2uk|vk|β

|x|θ
− |u|α−2u|v|β

|x|θ

)
φdx

− 2β

p∗s,θ

∫
Ω

(
|uk|α|vk|β−2vk

|x|θ
− |u|α|v|β−2v

|x|θ

)
ψdx,

where Ap,s is defined in (1.5). Since {(uk,vk)} is bounded in E, up to subsequence,
this implies the following:

uk ⇀ u in X s
p(Ω),

uk → u a.e. in Ω,

uk → u in Lr(Ω), 1 ≤ r < p∗s,θ

(2.4)

and
|uk(x)−uk(y)|p−2(uk(x)−uk(y))

|x− y|
N+sp

p′
is bounded in Lp′(RN),

therefore,

|uk(x)−uk(y)|p−2(uk(x)−uk(y))

|x− y|
N+sp

p′
⇀

|u(x)−u(y)|p−2(u(x)−u(y))

|x− y|
N+sp

p′
in Lp′(RN),

where 1
p +

1
p′ = 1, and φ(x)−φ(y)

|x−y|
N+sp

p
∈ Lp(RN), so

Ap,s(uk,φ)→ Ap,s(u,φ), as k → ∞. (2.5)

Similarly, we obtain

Aq,s(uk,φ)→ Aq,s(u,φ), as k → ∞. (2.6)
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Similar to (2.4), we have

vk ⇀ v in X s
p(Ω),

vk → v a.e. in Ω,

vk → v in Lr(Ω), 1 ≤ r < p∗s,θ

(2.7)

and
|vk(x)− vk(y)|p−2(vk(x)− vk(y))

|x− y|
N+sp

p′
is bounded in Lp′(RN),

it follows that
|vk(x)− vk(y)|p−2(vk(x)− vk(y))

|x− y|
N+sp

p′
⇀

|v(x)− v(y)|p−2(v(x)− v(y))

|x− y|
N+sp

p′
in Lp′(RN)

and
ψ(x)−ψ(y)

|x− y|
N+sp

p

∈ Lp(RN),

so
Ap,s(vk,ψ)→ Ap,s(v,ψ), as k → ∞. (2.8)

Similarly, we obtain

Aq,s(vk,ψ)→ Aq,s(v,ψ), as k → ∞. (2.9)

Moreover, by (2.4) and (2.7), we conclude that

|uk|r−2uk ⇀ |u|r−2u, |vk|r−2vk ⇀ |v|r−2v in Lr′(Ω),

|uk|α−2uk|vk|β

|x|θ
⇀

|u|α−2u|v|β

|x|θ
,
|uk|α|vk|β−2vk

|x|θ
⇀

|u|α|v|β−2v
|x|θ

in L
p∗s,θ

p∗s,θ−1 (Ω),

thus, ∫
Ω

(|uk|r−2uk|u|r−2u)φdx → 0,∫
Ω

(|vk|r−2vk|v|r−2v)ψdx → 0, as k → ∞,
(2.10)

and ∫
Ω

(
|uk|α−2uk|vk|β

|x|θ
− |u|α−2u|v|β

|x|θ

)
φdx → 0,

∫
Ω

(
|uk|α|vk|β−2vk

|x|θ
− |u|α|v|β−2v

|x|θ

)
ψdx → 0, as k → ∞.

(2.11)

From (2.5)-(2.6) and (2.8)-(2.11), we deduce that

⟨J′
λ,µ(uk,vk)− J′

λ,µ(u,v),(φ,ψ)⟩ → 0 for all (φ,ψ) ∈ E,
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furthermore, we obtain ⟨J′
λ,µ(u,v),(u,v)⟩= 0, it implies that

2
∫

Ω

|u|α|v|β

|x|θ
dx = ∥(u,v)∥p

p +∥(u,v)∥q
q −

∫
Ω

(λ|u|r +µ|v|r)dx,

therefore,

Jλ,µ(u,v) = (
1
p
− 1

p∗s,θ
)∥(u,v)∥p

p +(
1
q
− 1

p∗s,θ
)∥(u,v)∥q

q

− (
1
r
− 1

p∗s,θ
)
∫

Ω

(λ|u|r +µ|v|r)dx

≥ ps−θ

(N −θ)p
∥(u,v)∥p

p − (
1
r
− 1

p∗s,θ
)
∫

Ω

(λ|u|r +µ|v|r)dx. (2.12)

By Sobolev embedding, Hölder and Young inequalities, we deduce that

λ

∫
Ω

|u|rdx ≤Vθ(Ω)

p∗s,θ−r

p∗s,θ S
− r

p
s,θ λ∥u∥r

p

≤ ps−θ

(N −θ)p

(
1
r
− 1

p∗s,θ

)−1

∥u∥p
p

+
p− r

p

 p
r

ps−θ

(N −θ)p

(
1
r
− 1

p∗s,θ

)−1
− r

p−r

·Vθ(Ω)

p(p∗s,θ−r)

p∗s,θ(p−r) S
− r

p−r
s,θ λ

p
p−r .

Similarly, we have

µ
∫

Ω

|v|rdx ≤ ps−θ

(N −θ)p

(
1
r
− 1

p∗s,θ

)−1

∥v∥p
p

+
p− r

p

 p
r

ps−θ

(N −θ)p

(
1
r
− 1

p∗s,θ

)−1
− r

p−r

·Vθ(Ω)

p(p∗s,θ−r)

p∗s,θ(p−r) S
− r

p−r
s,θ µ

p
p−r ,

so, ∫
Ω

(λ|u|r +µ|v|r)dx ≤ ps−θ

(N −θ)p

(
1
r
− 1

p∗s,θ

)−1

∥(u,v)∥p
p

+
p− r

p

 p
r

ps−θ

(N −θ)p

(
1
r
− 1

p∗s,θ

)−1
− r

p−r

·Vθ(Ω)

p(p∗s,θ−r)

p∗s,θ(p−r) S
− r

p−r
s,θ (λ

p
p−r +µ

p
p−r )
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=
ps−θ

(N −θ)p

(
1
r
− 1

p∗s,θ

)−1

∥(u,v)∥p
p +C̃(λ

p
p−r +µ

p
p−r ),

where C̃ = p−r
p

[
p
r

ps−θ

(N−θ)p

(
1
r −

1
p∗s,θ

)−1
]− r

p−r

Vθ(Ω)

p(p∗s,θ−r)

p∗s,θ(p−r) S
− r

p−r
s,θ . By (2.12), we con-

clude that

Jλ,µ(u,v)≥−

(
1
r
− 1

p∗s,θ

)
C̃(λ

p
p−r +µ

p
p−r ),

it follows that, let C0 =
(

1
r −

1
p∗s,θ

)
C̃, we can get

Jλ,µ(u,v)≥−C0(λ
p

p−r +µ
p

p−r ).

□

Lemma 3. Jλ,µ satisfies the (PS)c condition with

c <
2(ps−θ)

(N −θ)p

(
Sα,β

2

) N−θ

ps−θ

−C0(λ
p

p−r +µ
p

p−r ),

where Sα,β = inf
(u,v)∈E\{(0,0)}

∥(u,v)∥p
p(∫

Ω

|u|α|v|β

|x|θ
dx
) p

p∗s,θ

.

Proof. Let {(uk,vk)} be a (PS)c sequence for Jλ,µ in E, these hold that

c+o(1) =
1
p
∥(uk,vk)∥p

p +
1
q
∥(uk,vk)∥q

q

− 1
r

∫
Ω

(λ|uk|r + |vk |r)dx− 2
p∗s,θ

∫
Ω

|uk|α|vk|β

|x|θ
dx

and

o(1)∥(uk,vk)∥= ∥(uk,vk)∥p
p +∥(uk,vk)∥q

q

−
∫

Ω

(λ|uk|r + |vk |r)dx−2
∫

Ω

|uk|α|vk|β

|x|θ
dx. (2.13)

By Lemma 1, {(uk,vk)} is bounded in E, then up to a subsequence, we have (uk,vk)⇀
(u,v) in E and we deduce from Lemma 2 that J′

λ,µ(u,v) = 0, we will show that
(uk,vk)→ (u,v) in E. Since uk → u, vk → v strongly in Lr(Ω), so∫

Ω

(λ|uk|r + |vk|r)dx →
∫

Ω

(λ|u|r +µ|v|r)dx, as k → ∞.

Applying Brezis-Lieb Lemma [25, Lemma 1.32], it follows that
∥(uk,vk)∥p

p = ∥(uk −u,vk − v)∥p
p +∥(u,v)∥p

p +o(1),

∥(uk,vk)∥q
q = ∥(uk −u,vk − v)∥q

q +∥(u,v)∥q
q +o(1)

(2.14)
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and ∫
Ω

|uk|α|vk|β

|x|θ
dx =

∫
Ω

|uk −u|α|vk − v|β

|x|θ
dx+

∫
Ω

|u|α|v|β

|x|θ
dx+o(1). (2.15)

From (2.14)-(2.15), we conclude that

c− Jλ,µ(u,v)+o(1) =
1
p
∥(uk −u,vk − v)∥p

p +
1
q
∥(uk −u,vk − v)∥p

p

− 2
p∗s,θ

∫
Ω

|uk −u|α|vk − v|β

|x|θ
dx. (2.16)

By (2.13), we obtain

∥(uk −u,vk − v)∥p
p +∥(uk −u,vk − v)∥q

q = 2
∫

Ω

|uk −u|α|vk − v|β

|x|θ
dx+o(1). (2.17)

Therefore, we may assume that
∥(uk −u,vk − v)∥p

p → d,

∥(uk −u,vk − v)∥q
q → l,

2
∫

Ω

|uk −u|α|vk − v|β

|x|θ
dx → m, as k → ∞.

Moreover, d, l ≥ 0 and d + l = m. If d = 0, then (uk,vk)→ (u,v), the proof is done.

Suppose that d > 0, by the definition of Sα,β, we have d ≤ m ≤ 2S
−

p∗s,θ
p

α,β d
p∗s,θ

p , or,

d ≥ 2
(

Sα,β

2

) N−θ

ps−θ

.

From (2.16), we deduce that

c =
d
p
+

l
q
− m

p∗s,θ
+ Jλ,µ(u,v)

= (
1
p
− 1

p∗s,θ
)d +(

1
q
− 1

p∗s,θ
)l + Jλ,µ(u,v)

≥ 2(ps−θ)

(N −θ)p

(
Sα,β

2

) N−θ

ps−θ

−C0(λ
p

p−r +µ
p

p−r ),

this is a contradiction with the definition of c. □

3. THE PROOF OF OUR MAIN THEOREM

Given the function Jλ,µ defined by (1.6) and (2.2), we obtain that

Jλ,µ(u,v)≥
1
p
∥(u,v)∥p

p −
2

p∗s,θ

∫
Ω

|u|α|v|β

|x|θ
dx− 1

r

∫
Ω

(λ|u|rdx+µ|v|r)dx
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≥ 1
p
∥(u,v)∥p

p −
2

p∗s,θ
S
−

p∗s,θ
p

α,β ∥(u,v)∥
p∗s,θ
p

− 1
r

Cθ,Ω(λ
p

p−r +µ
p

p−r )
p−r

p ∥(u,v)∥r
p

= c1∥(u,v)∥p
p − c2∥(u,v)∥

p∗s,θ
p − c3(λ

p
p−r +µ

p
p−r )

p−r
p ∥(u,v)∥r

p,

where c1 =
1
p , c2 =

2
p∗s,θ

S
−

p∗s,θ
p

α,β , c3 =
1
r Cθ,Ω with Cθ,Ω = Vθ(Ω)

p∗s,θ−r

p∗s,θ S
− r

p
s,θ . If we define

for t ≥ 0, h(t) : = c1t p − c2t p∗s,θ − c3(λ
p

p−r +µ
p

p−r )
p−r

p tr, then

Jλ,µ(u,v)≥ h(∥(u,v)∥p). (3.1)

It is easy to see that there exists Λ∗ such that for any 0 < λ
p

p−r + µ
p

p−r < Λ∗, we
have:

(1) h has exactly two distinct positive zero points denoted by R0 and R1;
(2) h attains nonnegative maximum at R and it verifies R0 < R < R1;

(3) 2(ps−θ)
(N−θ)p

(
Sα,β

2

) N−θ

ps−θ −C0(λ
p

p−r +µ
p

p−r )≥ 0, where C0 is given in Lemma 2.

From the structure of h(t), we see that there are constants 0 < R0 < R1, such that
h(R0) = h(R1) = 0 and

h(t)≤ 0 if t ≤ R0,

h(t)> 0 if R0 < t < R1,

h(t)< 0 if t > R1.

We now introduce the following truncation of the functional Jλ,µ. Taking the nonin-
creasing function τ : R+ → [0,1] and C∞(R+) such that τ(t) = 1 if t ≤ R0; τ(t) = 0 if
t ≥ R1. Let ϕ(u,v) = τ(∥(u,v)∥p), consider the truncated functional

Iλ,µ(u,v) =
1
p
∥(u,v)∥p

p +
1
q
∥(u,v)∥q

q −
1
r

∫
Ω

(λ|u|rdx+µ|v|r)dx

− 2
p∗s,θ

ϕ(u,v)
∫

Ω

|u|α|v|β

|x|θ
dx. (3.2)

Similarly to (3.1), we have

Iλ,µ(u,v)≥ h̃(∥(u,v)∥p), (3.3)

where h̃(t) : = c1t p − c2t p∗s,θτ(t)− c3(λ
p

p−r +µ
p

p−r )
p−r

p tr.
By the definition of h(t) and 0 ≤ τ(t) ≤ 1 for t ≥ 0, we obtain h̃(t) ≥ h(t) if

t ≥ 0. It follows from τ(t) = 1 if 0 ≤ t ≤ R0 that h̃(t) = h(t) if 0 ≤ t ≤ R0. From
h(R0) = h(R1) = 0 and h(t)> 0 if R0 < t <R1, we deduce that h̃(t)≥ 0 if R0 < t ≤R1.
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Moreover, h̃(t) = tr(c1t p−r − c3(λ
p

p−r +µ
p

p−r )
p−r

p ) is strictly increasing if t > R1, then
h̃(t)> 0 if t > R1. Consequently

h̃(t)≥ 0 for t ≥ R0. (3.4)

Lemma 4. We have the following results:
(1) Iλ,µ ∈C1(E,R).
(2) If Iλ,µ(u,v) ≤ 0, then ∥(u,v)∥p ≤ R0. Moreover, Iλ,µ(ũ, ṽ) = Jλ,µ(ũ, ṽ) for all

(ũ, ṽ) in a small enough neighborhood of (u,v).
(3) There exists Λ∗ > 0 such that if 0 < λ

p
p−r + µ

p
p−r < Λ∗, then Iλ,µ satisfies a

local (PS)c condition for c < 0.

Proof. Since ϕ ∈ C∞ and ϕ(u,v) = 1 for (u,v) near (0,0), Iλ,µ ∈ C1(E,R) and
assertion (1) holds.

By taking Iλ,µ(u,v)≤ 0, we can deduce from (3.3) that

h̃(∥(u,v)∥p)≤ 0

and by (3.4), we have
∥(u,v)∥p ≤ R0

implying (2).
For the proof of (3), let {(uk,vk)}⊂ E be a (PS)c sequence of Iλ,µ with c < 0. Then

we may assume that Iλ,µ(uk,vk) < 0, I′
λ,µ(uk,vk) → 0. By (2), there exists Λ∗ > 0

such that 0 < λ
p

p−r + µ
p

p−r < Λ∗, ∥(uk,vk)∥p ≤ R0, so Iλ,µ(uk,vk) = Jλ,µ(uk,vk) and
I′
λ,µ(uk,vk) = J′

λ,µ(uk,vk). By Lemma 3, Jλ,µ satisfies the (PS)c condition for c < 0,
thus Iλ,µ satisfies the (PS)c condition for c < 0, this completes the proof. □

It is possible to prove the existence of level sets of Iλ,µ with arbitrarily large genus.
Now, we use the idea in [7] to construct negative critical value of Iλ,µ via genus, more
precisely:

Lemma 5. ∀ k ∈ N, ∃ ε = ε(k)> 0 such that

γ({(u,v) ∈ E : Iλ,µ ≤−ε(k)})≥ k.

Proof. Let k ∈N. We consider Ek be a k-dimensional subspaces of E. Let (u,v) ∈
Ek with norm ∥(u,v)∥p = 1. For 0 < ρ < R0, we have

Jλ,µ(ρu,ρv) = Iλ,µ(ρu,ρv)

=
1
p

ρ
p +

ρq

q
∥(u,v)∥q

q −
ρr

r

∫
Ω

(λ|u|r +µ|v|r)dx

− 2ρ
p∗s,θ

p∗s,θ
ϕ(u,v)

∫
Ω

|u|α|v|β

|x|θ
dx.
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Since Ek is a space of finite dimension, all the norms in Ek are equivalent. If we
define

αk : = sup{∥(u,v)∥q
q : (u,v) ∈ Ek,∥(u,v)∥p = 1}< ∞

and
βk : = inf{

∫
Ω

|u|rdx : (u,v) ∈ Ek,∥(u,v)∥p = 1}> 0.

Then we have

Iλ,µ(ρu,ρv)≤ 1
p

ρ
p +

ρq

q
αk −βkmin{λ,µ}ρr

r
.

Then, there exist ε(k)> 0 and 0 < ρ < R0 such that Iλ,µ(ρu,ρv)≤−ε(k) for (u,v) ∈
Ek with ∥(u,v)∥p = 1. Let Sρ = {(u,v) ∈ E : ∥(u,v)∥p = ρ}, so

Sρ ∩Ek ⊂ {(u,v) ∈ E : Iλ,µ(u,v)≤−ε(k)},

therefore, by the property of genus in [17] and the fact γ(Sρ ∩Ek) = k, it implies that

γ({(u,v) ∈ E : Iλ,µ(u,v)≤−ε(k)})≥ γ(Sρ ∩Ek) = k.

□

Now, we prove our main result.

Proof of Theorem 1. For k ∈ N, set

Γk = {A ⊂ E\{(0,0)} : A is closed,A =−A,γ(A)≥ k},

where γ(A) is the genus of A. Let us set

ck = inf
A∈Γk

sup
(u,v)∈A

Iλ,µ(u,v),

and
Kc = {(u,v) ∈ E : Iλ,µ(u,v) = c, I′

λ,µ(u,v) = 0}.

Suppose 0 < λ
p

p−r +µ
p

p−r < Λ∗, where Λ∗ is the constant given by Lemma 4. In fact,
if we denote I−ε

λ,µ = {(u,v) ∈ E : Iλ,µ(u,v) ≤ −ε}, by Lemma 5, there exists ε(k) > 0

such that γ(I−ε(k)
λ,µ ) ≥ k for k ∈ N. Because Iλ,µ is continuous and even, I−ε(k)

λ,µ ∈ Γk,
then ck ≤ −ε(k) < 0 for all k ∈ N. But Iλ,µ is bounded from below, hence ck > −∞

for all k ∈ N.
Let us assume that c = ck = ck+1 = · · · = ck+l . Note that c < 0, therefore, Iλ,µ

satisfies the (PS)c condition, and it is easy to see that Kc is a compact set.
If γ(Kc)≤ l, then there is a closed and symmetric set U with Kc ⊂U and γ(U)≤ l

by the continuity property of genus [17]. By [1, Lemma 1.3], there is an odd homeo-
morphism η : E → E such that η(Ic+δ

λ,µ −U)⊂ Ic−δ

λ,µ for some δ > 0. By definition,

c = ck = ck+l = inf
A∈Γk+l

sup
(u,v)∈A

Iλ,µ(u,v),
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there exists A ∈ Γk+l such that sup
(u,v)∈A

Iλ,µ(u,v)< c+δ, i.e. A ⊂ Ic+δ

λ,µ and η(A−U)⊂

η(Ic+δ

λ,µ −U)⊂ Ic−δ

λ,µ , that is

sup
(u,v)∈η(A−U)

Iλ,µ(u,v)≤ c−δ. (3.5)

But γ(A−U)≥ γ(A)− γ(U)≥ k, and γ(η(A−U)) = γ(A−U)≥ k, then η(A−U) ∈
Γk. This is a contradiction. In fact, η(A−U) ∈ Γk implies that

sup
(u,v)∈η(A−U)

Iλ,µ(u,v)≥ ck = c,

which contradicts to (3.5). So we have proved that γ(Kc)≥ l +1.
We are now ready to show that Iλ,µ has infinitely many critical points. Note ck is

nondecreasing and strictly negative. We distinguish two cases:

Case 1: Suppose that there are 1 < k1 < · · ·< ki < · · · , satisfying

ck1 < · · ·< cki < · · · ,
then γ(Kc)≥ 1, and we see that {cki} is a sequence of distinct critical values of Iλ,µ.

Case 2: We assume in this case that, for some positive integer k0, there is l ≥ 1 such
that c= ck0 = ck0+1 = · · ·= ck0+l , then γ(Kck0

)≥ l+1, which shows that Kck0
contains

infinitely many distinct elements.
Since Jλ,µ(u,v) = Iλ,µ(u,v) if Iλ,µ(u,v) < 0, we see that there are infinitely many

critical points of Jλ,µ(u,v), that is to say, there are negative energy solutions to prob-
lem (1.1). This completes the proof of Theorem 1. □
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