MULTIPLE SOLUTIONS FOR A FRACTIONAL P&Q-LAPLACIAN SYSTEM INVOLVING HARDY-SOBOLEV EXPOSANTS

TIANTIAN ZHENG, CHUNYAN ZHANG, AND JIHUI ZHANG

Received 23 September, 2021

Abstract. In this paper, we prove the existence of infinitely many solutions for a fractional p&q-Laplacian system involving Hardy-Sobolev exponents and obtain new conclusion under different conditions. The methods used here are based on variational methods and Ljusternik-Schnirelmann theory.

2010 Mathematics Subject Classification: 35A15; 47J30

Keywords: Hardy-Sobolev exponents, fractional p&q-Laplacian, Ljusternik-Schnirelmann theory, infinitely many solutions, weak solutions

1. INTRODUCTION

In this paper, we study the following fractional p&q-Laplacian system involving Hardy-Sobolev exponents:

\[
\begin{align*}
\begin{cases}
(-\Delta)_p^s u + (-\Delta)_q^s u &= \lambda |u|^{r-2} u + \frac{2\alpha}{\alpha + \beta} \frac{|u|^{\alpha-2} u}{|x|^\theta} \
(-\Delta)_p^s v + (-\Delta)_q^s v &= \mu |v|^{r-2} v + \frac{2\beta}{\alpha + \beta} \frac{|u|^{\alpha} |v|^{\beta-2} v}{|x|^\theta}
\end{cases}
\end{align*}
\]

in \(\Omega\),

\[u = v = 0\]
on \(\mathbb{R}^N \setminus \Omega\),

(1.1)

where \(\Omega \subseteq \mathbb{R}^N\) is a bounded domain containing the origin, \(p \in (1, \infty), s \in (0, 1), 1 < r < q < p, 0 \leq \theta < sp < N, \alpha + \beta = p^*_s,\) and \(\lambda, \mu > 0\) are two parameters, \(p^*_s = \frac{(N-\theta)p}{N-ps}\) is the fractional Hardy-Sobolev exponent, the fractional p-Laplacian operator \((-\Delta)_p^s\) is the nonlocal operator defined on smooth functions by

\[
(-\Delta)_p^s u(x) = 2 \lim_{\varepsilon \to 0^+} \int_{B(x) \setminus \bar{B}(x)} \frac{|u(x) - u(y)|^{p-2}(u(x) - u(y))}{|x-y|^{N+sp}} dy, \quad x \in \mathbb{R}^N.
\]

This definition is consistent, up to normalization depending on \(N\) and \(s\). We would like to point out that, in the last decades, problems involving fractional p-Laplacian
are widely studied. We refer the readers to \[2, 5, 6, 10, 13, 18–24\] and references therein.

Then system (1.1) reduces to the critical fractional \(p \)-Laplacian equation with Hardy-Sobolev exponents

\[
\begin{aligned}
(-\triangle)_p u &= \lambda |u|^{r-2} u + \frac{|u|_s^{p_s-2} u}{|x|^s} \\
u &= 0
\end{aligned}
\tag{1.2}
\]

in \(\Omega \),
on \(\partial \Omega \).

Ning, Wang and Zhang proved the existence, multiplicity and bifurcation results for the above problem in \[15\]. When \(\theta = 0 \), in \[11\], Khiddi proved that problem (1.2) has infinitely many solutions with negative energy by using Ljusternik-Schnirelmann theory. When \(r = p \), Ghoussoub and Yuan obtained multiple solutions in \[8\]. In \[16\], Perera and Zou proved that this problem has a nontrivial solution where \(s = 1 \), \(r = p \), \(\lambda > \lambda_1 \) is not an eigenvalue and \(\lambda_1 \) is the first eigenvalue of the eigenvalue problem.

However, only a few articles have studied the \(p&q \)-Laplacian system, the results for the case can be seen in \[4, 9, 12, 14\], for example,

\[
\begin{aligned}
(-\triangle)_p u + (-\triangle)_q u &= \lambda |u|^{r-2} u + \frac{2\alpha}{\alpha + \beta} |u|^{\alpha-2} u |v|^{\beta} \\
u = v &= 0
\end{aligned}
\tag{1.3}
\]

in \(\Omega \), on \(\mathbb{R}^N \setminus \Omega \).

Obviously, system (1.3) is equivalent to \(\theta = 0 \) of system (1.1), Chen and Gui proved the existence of infinitely many solutions of problem (1.3) in \[4\]. Moreover, in \[3\], Chen and Deng proved that problem (1.3) has at least two positive solutions when \(p = q \).

Yet even fewer authors study systems involving Hardy-potential and critical non-linearities. Motivated by the above works, this paper discusses the fractional \(p&q \)-Laplacian system with Hardy-Sobolev exponents, by some techniques to establish new estimates to overcome difficulties. We prove the existence of infinitely many solutions by using Ljusternik-Schnirelmann theory. This result extend some results in the literature for the fractional \(p&q \)-Laplacian problem.

Before stating our main result, we introduce some notations. Let

\[
[u]_{s,p} = \left(\int_{\mathbb{R}^N} \frac{|u(x) - u(y)|^p}{|x-y|^{N+sp}} \, dx \, dy \right)^{\frac{1}{p}}
\]

be the Gagliardo seminorm of a measurable function \(u : \mathbb{R}^N \to \mathbb{R} \), and let

\[
W^{s,p}(\mathbb{R}^N) = \{ u \in L^p(\mathbb{R}^N) : [u]_{s,p} < \infty \}
\]

be the fractional Sobolev space endowed with the norm

\[
\|u\|_{s,p} = (\|u\|_p^p + [u]_{s,p}^p)^{\frac{1}{p}}
\]

where \(\| \cdot \|_p \) is the norm in \(L^p(\mathbb{R}^N) \). We define

\[
X_{s,p}^r(\Omega) = \{ u \in W^{s,p}(\mathbb{R}^N) : u = 0 \text{ a.e. in } \mathbb{R}^N \setminus \Omega \}
\]
equivalently renormed by setting $\| \cdot \|_{s, p} = [\cdot]_{s, p}$, which is a uniformly convex Banach space. We work in the closed linear subspaces $W_p = X_p^s(\Omega) \times X_q^s(\Omega)$ and $W_q = X_q^s(\Omega) \times X_p^s(\Omega)$, which are reflexive Banach spaces endowed with the norms

$$
\|(u, v)\|_p = (\|u\|_{s, p}^p + \|v\|_{s, p}^p)^{\frac{1}{p}}\text{ and } \|(u, v)\|_q = (\|u\|_{s, q}^q + \|v\|_{s, q}^q)^{\frac{1}{q}}.
$$

(1.4)

Set $E = W_p \cap W_q$ endowed the norm $\|(u, v)\|_E = \|(u, v)\|_p + \|(u, v)\|_q$. Defining

$$
\mathcal{A}_{p, q}(u, \phi) = \int_{\mathbb{R}^{2N}} \frac{|u(x) - u(y)|^{p-2}(u(x) - u(y))(\phi(x) - \phi(y))}{|x - y|^{N+sp}} \, dx dy.
$$

(1.5)

We say that $(u, v) \in E$ is a weak solutions of problem (1.1), if $\forall (\phi, \psi) \in E$, the following holds

$$
\mathcal{A}_{p, q}(u, \phi) + \mathcal{A}_{q, s}(u, \phi) + \mathcal{A}_{r, s}(v, \psi) + \mathcal{A}_{s, q}(v, \psi) = \lambda \int_\Omega |u|^{-2} u \phi \, dx +
+ \mu \int_\Omega |v|^{-2} v \psi \, dx + \frac{2\alpha}{p_{s, \theta}} \int_\Omega \frac{|u|^{\alpha-2} u |v|^{\beta} \phi}{|x|^\theta} \, dx + \frac{2\beta}{q_{s, \theta}} \int_\Omega \frac{|u|^{\alpha} |v|^{\beta-2} v \psi}{|x|^\theta} \, dx.
$$

The corresponding energy functional of system (1.1) is defined by

$$
J_{p, q}(u, v) = \frac{1}{p} \|(u, v)\|_p^p + \frac{1}{q} \|(u, v)\|_q^q - \frac{1}{r} \left(\lambda \int_\Omega |u|^r \, dx + \mu \int_\Omega |v|^r \, dx \right) - \frac{2}{p_{s, \theta}} \int_\Omega \frac{|u|^{\alpha} |v|^{\beta}}{|x|^\theta} \, dx,
$$

(1.6)

for $(u, v) \in E$, it is easy to know that $J_{p, q}$ is even, $J_{p, q} \in C^1(E, \mathbb{R})$ and

$$
\langle J_{p, q}'(u, v), (u, v) \rangle = \|(u, v)\|_p^p + \|(u, v)\|_q^q - \left(\lambda \int_\Omega |u|^r \, dx + \mu \int_\Omega |v|^r \, dx \right) - 2 \int_\Omega \frac{|u|^{\alpha} |v|^{\beta}}{|x|^\theta} \, dx.
$$

(1.7)

Our result can be stated as follows.

Theorem 1. There exists $\Lambda_0 > 0$ such that for each $0 < \lambda^{\frac{1}{2p}} + \mu^{\frac{1}{2q}} < \Lambda_0$, the system (1.1) has infinitely many solutions with negative energy.

Remark 1. The system in [4] is a special case of system (1.1). In [12], when $\theta = 0$, $s = 1$, Li and Yang proved that problem (1.3) has at least $\text{cat}(\Omega)+1$ distinct positive solutions by Lusternik-Schnirelmann category under condition (A):

$$
(A) : N > p, \quad 1 < r < q < \frac{N(p-1)}{N-1} < p < p^* = \frac{Np}{N-p}.
$$

The paper is organized as follows. In Section 2, we show that the $(PS)_c$ condition holds for the related energy functional in certain critical levels. In Section 3, we prove Theorem 1.
2. The \((PS)_c\) Condition for \(J_{\lambda,\mu}\)

In this section, we show that the Palais-Smale condition, \((PS)_c\) holds for the related energy functional in certain critical levels.

Definition 1. Let \(c \in \mathbb{R}\), \(E\) is a Banach space and \(J_{\lambda,\mu} \in C^1(E,\mathbb{R})\). We say that \(\{(u_k,v_k)\}\) is a \((PS)_c\) sequence for \(J_{\lambda,\mu}\) in \(E\) if \(J_{\lambda,\mu}(u_k,v_k) = c + o(1)\) and \(J'_{\lambda,\mu}(u_k,v_k) = o(1)\) strongly in \(E^*\) (the dual space of the Sobolev space \(E\)) as \(k \to \infty\). We say that \(J_{\lambda,\mu}\) satisfies the \((PS)_c\) condition if any \((PS)_c\) sequence \(\{(u_k,v_k)\}\) for \(J_{\lambda,\mu}\) in \(E\) has a convergent subsequence.

Let

\[
S_{\lambda,\theta} = \inf_{u \in X_{\mu}^r(\Omega) \setminus \{0\}} \frac{\|u\|^{p}_{\frac{p}{s},\theta}}{\int_{\Omega} \frac{|\nabla u|^p}{|x|^s} dx},
\]

which is positive by the fractional Hardy-Sobolev constant of \(X_{\mu}^r \hookrightarrow L^{p_{\mu,\theta}}(\mathbb{R}^N)\) and independent of \(\Omega\). In order to simplify calculation, set

\[
V_\theta(\Omega) = \int_\Omega |x|^\frac{\theta}{s} dx.
\]

We need the following Lemmas.

Lemma 1. If \(\{(u_k,v_k)\} \subset E\) is a \((PS)_c\) sequence for \(J_{\lambda,\mu}\), then \(\{(u_k,v_k)\}\) is bounded in \(E\).

Proof. Let \(\{(u_k,v_k)\} \subset E\) is a \((PS)_c\) sequence for \(J_{\lambda,\mu}\) satisfying

\[
J_{\lambda,\mu}(u_k,v_k) = c + o(1) \text{ and } J'_{\lambda,\mu}(u_k,v_k) = o(1) \text{ in } E^*.
\]

From (1.6) and (1.7), we obtain

\[
J_{\lambda,\mu}(u_k,v_k) - \frac{1}{p_{s,\theta}^*} \langle J'_{\lambda,\mu}(u_k,v_k), (u_k,v_k) \rangle = (\frac{1}{p} - \frac{1}{p_{s,\theta}^*}) \| (u_k,v_k) \|_p^p + \frac{1}{q} \| (u_k,v_k) \|_q^q - (\frac{1}{r} - \frac{1}{p_{s,\theta}^*}) \int_\Omega (\lambda |u_k|^r + \mu |v_k|^r) dx. \tag{2.1}
\]

From the definition of \(S_{r,\theta}\), Hölder and Sobolev inequalities, we conclude that

\[
\int_\Omega (\lambda |u_k|^r + \mu |v_k|^r) dx \leq \lambda V_\theta(\Omega) \frac{p_{s,\theta}^*}{r_{s,\theta}} \left(\int_\Omega \frac{|u_k|^{p_{s,\theta}^*}}{|x|^s} dx \right)^{\frac{r}{r_{s,\theta}}} + \mu V_\theta(\Omega) \frac{p_{s,\theta}^*}{r_{s,\theta}} \left(\int_\Omega \frac{|v_k|^{p_{s,\theta}^*}}{|x|^s} dx \right)^{\frac{r}{r_{s,\theta}}}.
\]
If Case 3: \(\geq \) we get 0

From (2.1) and (2.2), we deduce that
\[
\begin{align*}
\|u_k\|_p + \|v_k\|_p & \leq V_\theta(\Omega) \frac{r}{r-\gamma} \frac{\bar{r}}{\bar{r}-\overline{\gamma}} S^\theta_{\bar{r}, \overline{\gamma}} (\lambda^\theta p^\theta + \mu^\theta q^\theta) \| (u_k, v_k) \|_p^r, \\
\|u_k\|_q + \|v_k\|_q & \leq V_\theta(\Omega) \frac{r}{r-\gamma} \frac{\bar{r}}{\bar{r}-\overline{\gamma}} S^\theta_{\bar{r}, \overline{\gamma}} (\lambda^\theta p_\theta^\theta + \mu^\theta q_\theta^\theta) \| (u_k, v_k) \|_q^r.
\end{align*}
\]
\((2.2) \)

From (2.1) and (2.2), we deduce that
\[
C(1 + \| (u_k, v_k) \|_p + \| (u_k, v_k) \|_q^r) \geq \frac{1}{1} \left(1 - \frac{1}{p^\theta} \right) \| (u_k, v_k) \|_p^q + \frac{\| (u_k, v_k) \|_q^r}{q^\theta}.
\]
\((2.3) \)

We suppose the contrary, we may assume that \(\| (u_k, v_k) \|_p \to \infty \) as \(k \to \infty \), we need to consider the following three cases:

Case 1: If \(\| (u_k, v_k) \|_p \to \infty \) and \(\| (u_k, v_k) \|_q \to \infty \). For \(k \) large enough, we obtain \(\| (u_k, v_k) \|_p \geq 1 \) and \(\| (u_k, v_k) \|_q^r \geq \| (u_k, v_k) \|_q^q \). Indeed, using the inequality \((a+b)^q \leq C_q (a^q + b^q) \) and (2.3), we deduce that
\[
C(1 + \| (u_k, v_k) \|_p + \| (u_k, v_k) \|_q^r) \geq \min \left\{ \frac{1}{p} - \frac{1}{q}, \frac{1}{q^\theta} \right\} \| (u_k, v_k) \|_p^q + \| (u_k, v_k) \|_q^r
\]
\[
\geq \left(\frac{1}{p} - \frac{1}{q^\theta} \right) C_q^{-1} \| (u_k, v_k) \|_p + \| (u_k, v_k) \|_q^q,
\]
both sides are divided by \(\| (u_k, v_k) \|_q^q \), we have
\[
C \left(\frac{1}{\| (u_k, v_k) \|_p^q + \| (u_k, v_k) \|_q^q} \right) + \frac{1}{\| (u_k, v_k) \|_q^q - \| (u_k, v_k) \|_q^q} \geq \left(\frac{1}{p} - \frac{1}{q^\theta} \right) C_q^{-1} \| (u_k, v_k) \|_q^q,
\]
we get \(C \geq \infty \), as \(k \to \infty \), this is impossible.

Case 2: If \(\| (u_k, v_k) \|_p \) is bounded and \(\| (u_k, v_k) \|_q \to \infty \). By (2.1) and (2.2), we obtain
\[
C(1 + \| (u_k, v_k) \|_p + \| (u_k, v_k) \|_q^r) \geq \left(\frac{1}{q} - \frac{1}{p^\theta} \right) \| (u_k, v_k) \|_q^q,
\]
both sides are divided by \(\| (u_k, v_k) \|_q^q \), we conclude that
\[
C \left(\frac{1}{\| (u_k, v_k) \|_p^q} + \frac{1}{\| (u_k, v_k) \|_q^r} \right) + \frac{1}{\| (u_k, v_k) \|_q^q - \| (u_k, v_k) \|_q^q} \geq \left(\frac{1}{q} - \frac{1}{p^\theta} \right) C_q^{-1} \| (u_k, v_k) \|_q^q,
\]
we get \(0 \geq \frac{1}{q} - \frac{1}{p^\theta} > 0 \), as \(k \to \infty \), this is a contradiction.

Case 3: If \(\| (u_k, v_k) \|_p \to \infty \) and \(\| (u_k, v_k) \|_q \) is bounded. Similar to Case 2.

From Cases 1-3, we can conclude that \(\{ (u_k, v_k) \} \) is bounded in \(E \).
Lemma 2. If \(\{ (u_k, v_k) \} \) is a \((PS)_c \) sequence for \(J_{\lambda, \mu} \) with \((u_k, v_k) \rightharpoonup (u, v) \) in \(E \), then \(J'_{\lambda, \mu}(u, v) = 0 \), and there exists a positive constant \(C_0 \) such that

\[
J_{\lambda, \mu}(u, v) \geq -C_0(\lambda^{r-\frac{1}{r}} + \mu^{r-\frac{1}{r}}).
\]

Proof. If \(\{ (u_k, v_k) \} \) is a \((PS)_c \) sequence for \(J_{\lambda, \mu} \) with \((u_k, v_k) \rightharpoonup (u, v) \) in \(E \), then

\[
J'_{\lambda, \mu}(u_k, v_k) = o(1) \text{ strongly in } E' \text{ as } k \to \infty.
\]

Let \((\phi, \psi) \in E \), we have

\[
\langle J'_{\lambda, \mu}(u_k, v_k) - J'_{\lambda, \mu}(u, v), (\phi, \psi) \rangle = \mathcal{A}_{p,s}(u_k, \phi) - \mathcal{A}_{p,s}(u, \phi) + \mathcal{A}_{q,s}(u_k, \phi) - \mathcal{A}_{q,s}(u, \phi)
\]

\[
\quad + \mathcal{A}_{p,s}(v_k, \psi) - \mathcal{A}_{p,s}(v, \psi) + \mathcal{A}_{q,s}(v_k, \psi) - \mathcal{A}_{q,s}(v, \psi)
\]

\[- \lambda \int_{\Omega} (|u_k|^{r-2} u_k - |u|^{r-2} u) \phi dx
\]

\[- \mu \int_{\Omega} (|v_k|^{r-2} v_k - |v|^{r-2} v) \psi dx
\]

\[- \frac{2\alpha}{p^*_s, \theta} \int_{\Omega} \left(\frac{|u_k|^{\alpha-2} u_k |v_k|^\beta}{|x|^{\theta}} - \frac{|u|^{\alpha-2} u |v|^\beta}{|x|^{\theta}} \right) \phi dx
\]

\[- \frac{2\beta}{p^*_s, \theta} \int_{\Omega} \left(\frac{|u_k|^{\alpha} |v_k|^\beta-2 v_k}{|x|^{\theta}} - \frac{|u|^{\alpha} |v|^\beta-2 v}{|x|^{\theta}} \right) \psi dx,
\]

where \(\mathcal{A}_{p,s} \) is defined in (1.5). Since \(\{ (u_k, v_k) \} \) is bounded in \(E \), up to subsequence, this implies the following:

\[
u_k \to u \text{ in } X_p^s(\Omega),
\]

\[
u_k \to u \text{ a.e. in } \Omega,
\]

\[
u_k \to u \text{ in } L^r(\Omega), \quad 1 \leq r < p^*_s, \theta
\]

and

\[
|u_k(x) - u_k(y)|^{p-2}(u_k(x) - u_k(y)) \quad \text{is bounded in } L^p(\mathbb{R}^N),
\]

therefore,

\[
|u_k(x) - u_k(y)|^{p-2}(u_k(x) - u_k(y)) \to |u(x) - u(y)|^{p-2}(u(x) - u(y)) \quad \text{in } L^p(\mathbb{R}^N),
\]

where \(\frac{1}{p} + \frac{1}{p'} = 1 \), and \(|\phi(y)| \frac{1}{|x-y|^{\frac{\theta}{p}}} \in L^p(\mathbb{R}^N) \), so

\[
\mathcal{A}_{p,s}(u_k, \phi) \to \mathcal{A}_{p,s}(u, \phi), \quad \text{as } k \to \infty.
\]

Similarly, we obtain

\[
\mathcal{A}_{q,s}(u_k, \phi) \to \mathcal{A}_{q,s}(u, \phi), \quad \text{as } k \to \infty.
\]
Similar to (2.4), we have

\[v_k \rightarrow v \text{ in } X^p_{\rho}(\Omega), \]
\[v_k \rightarrow v \text{ a.e. in } \Omega, \]
\[v_k \rightarrow v \text{ in } L^r(\Omega), \quad 1 < r < p_{r_\theta}^* \] \hfill (2.7)

and

\[\frac{|v_k(x) - v_k(y)|^{p-2}(v_k(x) - v_k(y))}{|x-y|^{\frac{N+sp}{p}}} \text{ is bounded in } L^p(\mathbb{R}^N), \]

it follows that

\[\frac{|v_k(x) - v_k(y)|^{p-2}(v_k(x) - v_k(y))}{|x-y|^{\frac{N+sp}{p}}} \rightarrow \frac{|v(x) - v(y)|^{p-2}(v(x) - v(y))}{|x-y|^{\frac{N+sp}{p}}} \text{ in } L^p(\mathbb{R}^N) \]

and

\[\psi(x) - \psi(y) \rightarrow \psi(x) - \psi(y) \quad \text{in} \quad L^p(\mathbb{R}^N), \]

so

\[\mathcal{A}_{p,s}(v_k, \psi) \rightarrow \mathcal{A}_{p,s}(v, \psi), \quad \text{as } k \rightarrow \infty. \] \hfill (2.8)

Similarly, we obtain

\[\mathcal{A}_{q,s}(v_k, \psi) \rightarrow \mathcal{A}_{q,s}(v, \psi), \quad \text{as } k \rightarrow \infty. \] \hfill (2.9)

Moreover, by (2.4) and (2.7), we conclude that

\[|u_k|^{r-2}u_k \rightarrow |u|^{r-2}u, \quad |v_k|^{r-2}v_k \rightarrow |v|^{r-2}v \quad \text{in } L^r(\Omega), \]
\[\frac{|u_k|^{\alpha-2}u_k|v_k|^2}{|x|^6} \rightarrow \frac{|u|^{\alpha-2}u|v|^2}{|x|^6}, \quad \frac{|u_k|^{\alpha}|v_k|^{\beta-2}v_k}{|x|^6} \rightarrow \frac{|u|^{\alpha}|v|^{\beta-2}v}{|x|^6} \quad \text{in } L^{p_{r_\theta}^*}(\Omega), \]

thus,

\[\int_{\Omega} (|u_k|^{r-2}u_k|u|^{r-2}u) \phi dx \rightarrow 0, \]
\[\int_{\Omega} (|v_k|^{r-2}v_k|v|^{r-2}v) \psi dx \rightarrow 0, \quad \text{as } k \rightarrow \infty, \] \hfill (2.10)

and

\[\int_{\Omega} \left(\frac{|u_k|^{\alpha-2}u_k|v_k|^2}{|x|^6} - \frac{|u|^{\alpha-2}u|v|^2}{|x|^6} \right) \phi dx \rightarrow 0, \]
\[\int_{\Omega} \left(\frac{|u_k|^{\alpha}|v_k|^{\beta-2}v_k}{|x|^6} - \frac{|u|^{\alpha}|v|^{\beta-2}v}{|x|^6} \right) \psi dx \rightarrow 0, \quad \text{as } k \rightarrow \infty. \] \hfill (2.11)

From (2.5)-(2.6) and (2.8)-(2.11), we deduce that

\[\langle J'_{\lambda,s}(u_k, v_k) - J'_{\lambda,s}(u, v), (\phi, \psi) \rangle \rightarrow 0 \text{ for all } (\phi, \psi) \in E, \]
furthermore, we obtain \(J'_{\lambda,\mu}(u,v), (u,v) = 0 \), it implies that
\[
2 \int_{\Omega} \frac{|u|^{\alpha}|v|^p}{|x|^q} \, dx = \| (u,v) \|_p^p + \| (u,v) \|_q^q - \int_{\Omega} (\lambda|u|^r + \mu|v|^r) \, dx,
\]
therefore,
\[
J_{\lambda,\mu}(u,v) = \left(\frac{1}{p} - \frac{1}{p^*_{\lambda,\mu}} \right) \| (u,v) \|_p^p + \left(\frac{1}{q} - \frac{1}{p^*_{\lambda,\mu}} \right) \| (u,v) \|_q^q - \left(\frac{1}{r} - \frac{1}{p^*_{\lambda,\mu}} \right) \int_{\Omega} (\lambda|u|^r + \mu|v|^r) \, dx
\]
\[
\geq \frac{ps - \theta}{(N - \theta)p} \| (u,v) \|_p^p - \left(\frac{1}{r} - \frac{1}{p^*_{\lambda,\mu}} \right) \int_{\Omega} (\lambda|u|^r + \mu|v|^r) \, dx. \tag{2.12}
\]
By Sobolev embedding, Hölder and Young inequalities, we deduce that
\[
\lambda \int_{\Omega} |u|^r \, dx \leq V_\theta(\Omega) \frac{p^*_{\lambda,\mu} - r}{p^*_{\lambda,\mu}} S_{\lambda,\mu}^{-\frac{r}{p^*_{\lambda,\mu}}} \lambda \| u \|_p^p
\]
\[
\leq \frac{ps - \theta}{(N - \theta)p} \left(\frac{1}{r} - \frac{1}{p^*_{\lambda,\mu}} \right) \| u \|_p^p
\]
\[
\quad + \frac{r - p}{p} \left[\frac{p}{r} \frac{ps - \theta}{(N - \theta)p} \left(\frac{1}{r} - \frac{1}{p^*_{\lambda,\mu}} \right) \right]^{-1} \cdot V_\theta(\Omega) \frac{p^*_{\lambda,\mu} - r}{p^*_{\lambda,\mu}} S_{\lambda,\mu}^{-\frac{r}{p^*_{\lambda,\mu}}} \lambda^{-\frac{r}{p^*_{\lambda,\mu}}}.
\]
Similarly, we have
\[
\mu \int_{\Omega} |v|^r \, dx \leq \frac{ps - \theta}{(N - \theta)p} \left(\frac{1}{r} - \frac{1}{p^*_{\lambda,\mu}} \right) \| v \|_p^p
\]
\[
\leq \frac{ps - \theta}{(N - \theta)p} \left(\frac{1}{r} - \frac{1}{p^*_{\lambda,\mu}} \right) \| v \|_p^p
\]
\[
\quad + \frac{r - p}{p} \left[\frac{p}{r} \frac{ps - \theta}{(N - \theta)p} \left(\frac{1}{r} - \frac{1}{p^*_{\lambda,\mu}} \right) \right]^{-1} \cdot V_\theta(\Omega) \frac{p^*_{\lambda,\mu} - r}{p^*_{\lambda,\mu}} S_{\lambda,\mu}^{-\frac{r}{p^*_{\lambda,\mu}}} \mu^{-\frac{r}{p^*_{\lambda,\mu}}},
\]
so,
\[
\int_{\Omega} (\lambda|u|^r + \mu|v|^r) \, dx \leq \frac{ps - \theta}{(N - \theta)p} \left(\frac{1}{r} - \frac{1}{p^*_{\lambda,\mu}} \right) \| (u,v) \|_p^p
\]
\[
\quad + \frac{r - p}{p} \left[\frac{p}{r} \frac{ps - \theta}{(N - \theta)p} \left(\frac{1}{r} - \frac{1}{p^*_{\lambda,\mu}} \right) \right]^{-1} \cdot V_\theta(\Omega) \frac{p^*_{\lambda,\mu} - r}{p^*_{\lambda,\mu}} S_{\lambda,\mu}^{-\frac{r}{p^*_{\lambda,\mu}}} \lambda^{-\frac{r}{p^*_{\lambda,\mu}}}.
\]
By Lemma 1, and conclude that it follows that, let\(\text{Applying Brezis-Lieb Lemma [25, Lemma 1.32], it follows that} \)\(\text{where} \)

\[
\tilde{C} = \frac{p-r}{p} \left[\frac{p}{r} \left(\frac{1}{r} - \frac{1}{p,s,\theta} \right)^{-1} \right]^{\frac{r(p,s,\theta-1)}{p-r}} V_0(\Omega) \left(\frac{p}{r} \right)^{p(s,\theta-1)} S_{s,\theta}^{-\frac{r}{r-1}}. \]

By (2.12), we conclude that

\[
J_{\lambda,\mu}(u,v) \geq -\left(\frac{1}{r} - \frac{1}{p,s,\theta} \right) \tilde{C}(\lambda)^{\frac{p}{r}} + \mu^{-\frac{p}{r}}. \]

it follows that, let \(C_0 = \left(\frac{1}{r} - \frac{1}{p,s,\theta} \right) \tilde{C} \), we can get

\[
J_{\lambda,\mu}(u,v) \geq -C_0(\lambda)^{\frac{p}{r}} + \mu^{-\frac{p}{r}}. \]

\[\square\]

Lemma 3. \(J_{\lambda,\mu} \) satisfies the (PS)\(_c\) condition with

\[
c < 2 \left(\frac{ps - \theta}{(N - \theta)p} \right) \left(\frac{S_{s,\theta}}{2} \right)^{\frac{N - \theta}{p}} - C_0(\lambda)^{\frac{p}{r}} + \mu^{-\frac{p}{r}}, \]

where \(S_{s,\theta} = \inf_{(u,v) \in E \setminus \{(0,0)\}} \frac{\| (u,v) \|^p_p}{\left(\int_\Omega |u|^s |v|^\theta \, dx \right)^{\frac{p}{p,s,\theta}}} \)

Proof. Let \(\{ (u_k, v_k) \} \) be a (PS)\(_c\) sequence for \(J_{\lambda,\mu} \) in \(E \), these hold that

\[
c + o(1) = \frac{1}{p} \| (u_k, v_k) \|^p_p + \frac{1}{q} \| (u_k, v_k) \|^q_q - \frac{1}{r} \int_\Omega (\lambda |u_k|^r + |v_k|^r) \, dx - \frac{2}{p,s,\theta} \int_\Omega \frac{|u_k|^s |v_k|^\theta}{|x|^\theta} \, dx \]

and

\[
o(1) \| (u_k, v_k) \| = \| (u_k, v_k) \|^p_p + \| (u_k, v_k) \|^q_q - \int_\Omega (\lambda |u_k|^r + |v_k|^r) \, dx - \int_\Omega \frac{|u_k|^s |v_k|^\theta}{|x|^\theta} \, dx. \tag{2.13} \]

By Lemma 1, \(\{ (u_k, v_k) \} \) is bounded in \(E \), then up to a subsequence, we have \((u_k, v_k) \rightharpoonup (u, v) \) in \(E \) and we deduce from Lemma 2 that \(J'_{\lambda,\mu}(u, v) = 0 \), we will show that \((u_k, v_k) \rightharpoonup (u, v) \) in \(E \). Since \(u_k \to u, v_k \to v \) strongly in \(L'(\Omega) \), so

\[
\int_\Omega (\lambda |u_k|^r + |v_k|^r) \, dx \to \int_\Omega (\lambda |u|^r + \mu |v|^r) \, dx, \text{ as } k \to \infty. \]

Applying Brezis-Lieb Lemma [25, Lemma 1.32], it follows that

\[
\| (u_k, v_k) \|^p_p = \| (u_k - u, v_k - v) \|^p_p + \| (u, v) \|^p_p + o(1), \]

\[
\| (u_k, v_k) \|^q_q = \| (u_k - u, v_k - v) \|^q_q + \| (u, v) \|^q_q + o(1). \tag{2.14} \]
and

\[
\int_{\Omega} \frac{|u_k|^\alpha |v_k|^\beta}{|x|^\theta} dx = \int_{\Omega} \frac{|u_k - u|^\alpha |v_k - v|^\beta}{|x|^\theta} dx + \int_{\Omega} \frac{|u|^\alpha |v|^\beta}{|x|^\theta} dx + o(1). \tag{2.15}
\]

From (2.14)-(2.15), we conclude that

\[
c - J_{k, \mu}(u, v) + o(1) = \frac{1}{p} \| (u_k - u, v_k - v) \|_p^p + \frac{1}{q} \| (u_k - u, v_k - v) \|_q^q
\]

\[
- \frac{2}{p^*_s, \theta} \int_{\Omega} \frac{|u_k - u|^\alpha |v_k - v|^\beta}{|x|^\theta} dx.
\]

By (2.13), we obtain

\[
\| (u_k - u, v_k - v) \|_p^p + \| (u_k - u, v_k - v) \|_q^q = 2 \int_{\Omega} \frac{|u_k - u|^\alpha |v_k - v|^\beta}{|x|^\theta} dx + o(1). \tag{2.17}
\]

Therefore, we may assume that

\[
\| (u_k - u, v_k - v) \|_p^p \to d,
\]

\[
\| (u_k - u, v_k - v) \|_q^q \to l,
\]

\[
2 \int_{\Omega} \frac{|u_k - u|^\alpha |v_k - v|^\beta}{|x|^\theta} dx \to m, \quad \text{as } k \to \infty.
\]

Moreover, \(d, l \geq 0 \) and \(d + l = m \). If \(d = 0 \), then \((u_k, v_k) \to (u, v) \), the proof is done.

Suppose that \(d > 0 \), by the definition of \(S_{\alpha, \beta} \), we have \(d \leq m \leq 2S_{\alpha, \beta} \frac{p^*_s, \theta}{p^*_s, \theta} d \frac{p^*_s, \theta}{p^*_s, \theta} \), or,

\[
d \geq \frac{d}{2} \left(\frac{S_{\alpha, \beta}}{2} \right)^{\frac{p^*_s, \theta}{p^*_s, \theta}}.
\]

From (2.16), we deduce that

\[
c = \frac{d}{p} + \frac{l}{q} - \frac{m}{p^*_s, \theta} + J_{k, \mu}(u, v)
\]

\[
= \left(\frac{1}{p} \frac{1}{p^*_s, \theta} \right) d + \left(\frac{1}{q} - \frac{1}{p^*_s, \theta} \right) l + J_{k, \mu}(u, v)
\]

\[
\geq \frac{2}{p^*_s, \theta} \left(\frac{S_{\alpha, \beta}}{2} \right)^{\frac{p}{p^*_s, \theta}} - C_1 (\lambda^{\mu r} + \mu^{\mu r}),
\]

this is a contradiction with the definition of \(c \).

\[\square\]

3. The Proof of Our Main Theorem

Given the function \(J_{k, \mu} \) defined by (1.6) and (2.2), we obtain that

\[
J_{k, \mu}(u, v) \geq \frac{1}{p} \| (u, v) \|_p^p - \frac{2}{p^*_s, \theta} \int_{\Omega} \frac{|u|^\alpha |v|^\beta}{|x|^\theta} dx - \frac{1}{r} \int_{\Omega} (\lambda |u|^r dx + \mu |v|^r) dx
\]
From the structure of h, we have:

$$J_{h,\mu}(u,v) \geq h(||(u,v)||_p^p).$$

It is easy to see that there exists Λ_* such that for any $0 < \lambda \frac{\mu}{p} + \mu \frac{\mu}{p} < \Lambda_*$, we have:

1. h has exactly two distinct positive zero points denoted by R_0 and R_1;
2. h attains nonnegative maximum at R and it verifies $R_0 < R < R_1$;
3. $\frac{2(p-q-\theta)}{(N-\theta)p} \left(\frac{\mu_\beta}{p} \right)^{\frac{\mu_\theta}{p}} - C_0(\lambda \frac{\mu}{p} + \mu \frac{\mu}{p}) \geq 0$, where C_0 is given in Lemma 2.

From the structure of $h(t)$, we see that there are constants $0 < R_0 < R_1$, such that $h(R_0) = h(R_1) = 0$ and

$$h(t) \leq 0 \quad \text{if} \quad t \leq R_0,$$
$$h(t) > 0 \quad \text{if} \quad R_0 < t < R_1,$$
$$h(t) < 0 \quad \text{if} \quad t > R_1.$$

We now introduce the following truncation of the functional $J_{h,\mu}$. Taking the nonincreasing function $\tau: \mathbb{R}^+ \to [0,1]$ and $C^\infty(\mathbb{R}^+)$ such that $\tau(t) = 1$ if $t \leq R_0$; $\tau(t) = 0$ if $t \geq R_1$. Let $\varphi(u,v) = \tau(||(u,v)||_p)$, consider the truncated functional

$$I_{h,\mu}(u,v) = \frac{1}{p} ||(u,v)||_p^p + \frac{1}{q} ||(u,v)||_q^q - \frac{1}{r} \int_\Omega (\lambda |u|^q dx + \mu |v|^q) dx - \frac{2}{p_\alpha} \varphi(u,v) \int_\Omega \frac{|u|^a |v|^\beta}{|x|^\theta} dx. \quad (3.2)$$

Similarly to (3.1), we have

$$I_{h,\mu}(u,v) \geq \tilde{h}(||u,v||_p), \quad (3.3)$$

where $\tilde{h}(t) = c_1 t^p - c_2 t^{p_\beta} \tau(t) - c_3(\lambda \frac{\mu}{p} + \mu \frac{\mu}{p}) \frac{\mu}{p} t^r$.

By the definition of $h(t)$ and $0 \leq \tau(t) \leq 1$ for $t \geq 0$, we obtain $\tilde{h}(t) \geq h(t)$ if $t \geq 0$. It follows from $\tau(t) = 1$ if $0 \leq t \leq R_0$ that $\tilde{h}(t) = h(t)$ if $0 \leq t \leq R_0$. From $h(R_0) = h(R_1) = 0$ and $h(t) > 0$ if $R_0 < t < R_1$, we deduce that $\tilde{h}(t) \geq 0$ if $R_0 < t < R_1$.
Moreover, \(\tilde{h}(t) = t^r (c_1 t^{p-r} - c_3 (\lambda + \mu)^{e+1} t^{-r}) \) is strictly increasing if \(t > R_1 \), then \(\tilde{h}(t) > 0 \) if \(t > R_1 \). Consequently

\[
\tilde{h}(t) \geq 0 \quad \text{for} \quad t \geq R_0.
\]

(3.4)

Lemma 4. We have the following results:

1. \(I_{\lambda, \mu} \in C^1(E, \mathbb{R}) \).
2. If \(I_{\lambda, \mu}(u, v) \leq 0 \), then \(\|(u, v)\| \leq R_0 \). Moreover, \(I_{\lambda, \mu}(\bar{u}, \bar{v}) = I_{\lambda, \mu}(u, v) \) for all \((\bar{u}, \bar{v}) \) in a small enough neighborhood of \((u, v) \).
3. There exists \(\Lambda_\epsilon > 0 \) such that if \(0 < \lambda + \mu < \Lambda_\epsilon \), then \(I_{\lambda, \mu} \) satisfies a local \((PS)_\epsilon\) condition for \(\epsilon < 0 \).

Proof. Since \(\varphi \in C^\infty \) and \(\varphi(u, v) = 1 \) for \((u, v) \) near \((0,0) \), \(I_{\lambda, \mu} \in C^1(E, \mathbb{R}) \) and assertion (1) holds.

By taking \(I_{\lambda, \mu}(u, v) \leq 0 \), we can deduce from (3.3) that

\[
\tilde{h}(\|(u, v)\|) \leq 0
\]

and by (3.4), we have

\[
\|(u, v)\| \leq R_0
\]

implying (2).

For the proof of (3), let \(\{(u_k, v_k)\} \subset E \) be a \((PS)_\epsilon\) sequence of \(I_{\lambda, \mu} \) with \(\epsilon < 0 \). Then we may assume that \(I_{\lambda, \mu}(u_k, v_k) \leq 0, I_{\lambda, \mu}'(u_k, v_k) \to 0 \). By (2), there exists \(\Lambda_\epsilon > 0 \) such that \(0 < \lambda + \mu < \Lambda_\epsilon \), \(\|(u_k, v_k)\| \leq R_0 \), so \(I_{\lambda, \mu}(u_k, v_k) = I_{\lambda, \mu}'(u_k, v_k) \) and \(I_{\lambda, \mu}'(u_k, v_k) = J_{\lambda, \mu}'(u_k, v_k) \). By Lemma 3, \(I_{\lambda, \mu} \) satisfies the \((PS)_\epsilon\) condition for \(\epsilon < 0 \), thus \(I_{\lambda, \mu} \) satisfies the \((PS)_\epsilon\) condition for \(\epsilon < 0 \), this completes the proof. \(\square \)

It is possible to prove the existence of level sets of \(I_{\lambda, \mu} \) with arbitrarily large genus. Now, we use the idea in [7] to construct negative critical value of \(I_{\lambda, \mu} \) via genus, more precisely:

Lemma 5. \(\forall k \in \mathbb{N}, \exists \epsilon = \epsilon(k) > 0 \) such that

\[
\gamma(\{(u, v) \in E : I_{\lambda, \mu} \leq -\epsilon(k)\}) \geq k.
\]

Proof. Let \(k \in \mathbb{N} \). We consider \(E_k \) be a \(k \)-dimensional subspaces of \(E \). Let \((u, v) \in E_k \) with norm \(\|(u, v)\| \neq 1 \). For \(0 < r < R_0 \), we have

\[
J_{\lambda, \mu}(pu, pv) = I_{\lambda, \mu}(pu, pv) = \frac{1}{p} p^\beta + \frac{\rho^q}{q} \|(u, v)\|^q - \frac{\rho^r}{r} \int_\Omega (|u|^r + |v|^r) dx
\]

\[- 2 \rho^{\rho - \beta} \varphi(u, v) \int_\Omega |u|^\alpha |v|^\beta dx. \]
Since E_k is a space of finite dimension, all the norms in E_k are equivalent. If we define
$$
\alpha_k := \sup \{ \| (u, v) \|_p^2 : (u, v) \in E_k, \| (u, v) \|_p = 1 \} < \infty
$$
and
$$
\beta_k := \inf \int_{\Omega} |u|^p \, dx : (u, v) \in E_k, \| (u, v) \|_p = 1 > 0.
$$
Then we have
$$
I_{\lambda, \mu}(\rho u, \rho v) \leq \frac{1}{p} \rho^p + \frac{q}{q} \alpha_k - \beta_k \min(\lambda, \mu) \rho^r.
$$
Then, there exist $\varepsilon(k) > 0$ and $0 < \rho < R_0$ such that $I_{\lambda, \mu}(\rho u, \rho v) \leq -\varepsilon(k)$ for $(u, v) \in E_k$ with $\| (u, v) \|_p = 1$. Let $S_\rho = \{ (u, v) \in E : \| (u, v) \|_p = \rho \}$, so $S_\rho \cap E_k \subset \{ (u, v) \in E : I_{\lambda, \mu}(u, v) \leq -\varepsilon(k) \}$, therefore, by the property of genus in [17] and the fact $\gamma(S_\rho \cap E_k) = k$, it implies that
$$
\gamma(\{ (u, v) \in E : I_{\lambda, \mu}(u, v) \leq -\varepsilon(k) \}) \geq \gamma(S_\rho \cap E_k) = k.
$$

Now, we prove our main result.

Proof of Theorem 1. For $k \in \mathbb{N}$, set
$$
\Gamma_k = \{ A \subset E \setminus \{ (0, 0) \} : A \text{ is closed}, A = -A, \gamma(A) \geq k \},
$$
where $\gamma(A)$ is the genus of A. Let us set
$$
c_k = \inf_{A \in \Gamma_k} \sup_{(u, v) \in A} I_{\lambda, \mu}(u, v),
$$
and
$$
K_c = \{ (u, v) \in E : I_{\lambda, \mu}(u, v) = c, I'_{\lambda, \mu}(u, v) = 0 \}.
$$
Suppose $0 < \lambda \frac{p}{p-q} + \mu \frac{p}{p-r} < \Lambda_*$, where Λ_* is the constant given by Lemma 4. In fact, if we denote $I_{\lambda, \mu}^\pm = \{ (u, v) \in E : I_{\lambda, \mu}(u, v) \leq \mp \varepsilon \}$, by Lemma 5, there exists $\varepsilon(k) > 0$ such that $\gamma(I_{\lambda, \mu}^{-\varepsilon(k)}) \geq k$ for $k \in \mathbb{N}$. Because $I_{\lambda, \mu}$ is continuous and even, $I_{\lambda, \mu}^{-\varepsilon(k)} \subset \Gamma_k$, then $c_k \leq -\varepsilon(k) < 0$ for all $k \in \mathbb{N}$. But $I_{\lambda, \mu}$ is bounded from below, hence $c_k > -\infty$ for all $k \in \mathbb{N}$.

Let us assume that $c = c_k = c_{k+1} = \cdots = c_{k+j}$. Note that $c < 0$, therefore, $I_{\lambda, \mu}$ satisfies the $(PS)_c$ condition, and it is easy to see that K_c is a compact set.

If $\gamma(K_c) \leq l$, then there is a closed and symmetric set U with $K_c \subset U$ and $\gamma(U) \leq l$ by the continuity property of genus [17]. By [1, Lemma 1.3], there is an odd homeomorphism $\eta : E \to E$ such that $\eta(K_{c+\delta} - U) \subset K_{c-\delta}$ for some $\delta > 0$. By definition,
$$
c = c = c_{k+1} = \inf_{A \in \Gamma_k} \sup_{(u, v) \in A} I_{\lambda, \mu}(u, v),
$$
there exists $A \in \Gamma_{k+1}$ such that $\sup_{(u,v) \in A} I_{h,\mu}(u,v) < c + \delta$, i.e. $A \subset \mathscr{I}^{c+\delta}_{h,\mu}$ and $\eta(A - U) \subset \mathscr{I}^{c+\delta}(U) \subset \mathscr{I}^{c-\delta}$, that is

$$\sup_{(u,v) \in \eta(A - U)} I_{h,\mu}(u,v) \leq c - \delta. \tag{3.5}$$

But $\gamma(A - U) \geq \gamma(A) - \gamma(U) \geq k$, and $\eta(\eta(A - U)) \gamma(A - U) \geq k$, then $\eta(A - U) \in \Gamma_k$. This is a contradiction. In fact, $\eta(\eta(A - U)) \in \Gamma_k$ implies that

$$\sup_{(u,v) \in \eta(A - U)} I_{h,\mu}(u,v) \geq c_k = c,$$

which contradicts to (3.5). So we have proved that $\gamma(K_c) \geq l + 1$.

We are now ready to show that $I_{h,\mu}$ has infinitely many critical points. Note c_k is nondecreasing and strictly negative. We distinguish two cases:

Case 1: Suppose that there are $1 < k_1 < \cdots < k_i < \cdots$, satisfying

$$c_{k_1} < \cdots < c_{k_i} < \cdots,$$

then $\gamma(K_{c_i}) \geq 1$, and we see that $\{c_k\}$ is a sequence of distinct critical values of $I_{h,\mu}$.

Case 2: We assume in this case that, for some positive integer k_0, there is $l \geq 1$ such that $c = c_{k_0} = c_{k_0+1} = \cdots = c_{k_0+l}$, then $\gamma(K_{c_{k_0}}) \geq l + 1$, which shows that $K_{c_{k_0}}$ contains infinitely many distinct elements.

Since $J_{h,\mu}(u,v) = I_{h,\mu}(u,v)$ if $I_{h,\mu}(u,v) < 0$, we see that there are infinitely many critical points of $J_{h,\mu}(u,v)$, that is to say, there are negative energy solutions to problem (1.1). This completes the proof of Theorem 1. \hfill \Box

ACKNOWLEDGEMENTS

The authors thank the referee for his or her careful reading of the paper and for the helpful comments, which led to an improvement of this paper.

REFERENCES

Authors’ addresses

Tiantian Zheng
Jinling Institute of Technology, College of Science, 211169 Nanjing, P. R. China
E-mail address: zhengtiantian156@163.com

Chunyan Zhang
Jiangsu Key Laboratory for NSLSCS, School of Mathematical Sciences, Nanjing Normal University, 210023 Nanjing, P. R. China
E-mail address: chunyan7755@126.com

Jihui Zhang
(Corresponding author) Jiangsu Key Laboratory for NSLSCS, School of Mathematical Sciences, Nanjing Normal University, 210023 Nanjing, P. R. China
E-mail address: zhangjihui@njnu.edu.cn