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Abstract. We present new formulas for the g-Drazin inverse of the sum in a Banach algebra.
The block representations for the g-Drazin inverse of a 2× 2 block operator matrix are thereby
established. These extend the known results obtained in [3, 7].
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1. INTRODUCTION

Let A be a complex Banach algebra with an identity 1. The commutant of a ∈ A
is defined by comm(a) = {x ∈ A | xa = ax}. Let Aqnil = {a ∈ A | 1− comm(a)a⊆
A−1}. As is well known, we have a∈Aqnil⇔ lim

n→∞
‖ an ‖ 1

n= 0. We say that a∈A has

g-Drazin inverse (i.e. generalized Drazin inverse) if there exists b ∈ comm(a) such
that b = bab,a− a2b ∈ Aqnil. Such b is unique, if it exists, and it is denoted by ad .
When we have in the preceding a−a2b is nilpotent, then b is the Drazin inverse aD

of a. The Drazin and g-Drazin inverse are useful in matrix and operator theory. It
has been applied in many fields such as ordinary differential equations, statistics and
probability, Marcov chain, etc (see [2]).

The g-Drazin inverse of the sum of two elements in a Banach algebra has been
studied by many authors, e.g. [3, 6, 8, 10, 11] and [12]. In [9, Theorem 2.1], Yang
and Liu gave the representation of the Drazin inverse of two complex matrices P
and Q such that PQP = 0,PQ2 = 0, which recovered the case PQ = 0 studied by
Hartwig et al. In [7], Ljubisavljevic and Cvetkovic-Ilic derived an expression of
(P+Q)D under a weaker condition PQP2 = 0,PQPQ = 0,PQ2P = 0 and PQ3 = 0.
As the computational and applied requirements, the explicit representation of the
g-Drazin inverse is expected under certain weaker conditions. This inspires us to
derive the explicit formulas of (a+b)d in terms of a,b and their g-Drazin inverses in

The first author was supported by the Natural Science Foundation of Zhejiang Province, China,
Grant No. LY21A010018.

© 2023 Miskolc University Press

http://dx.doi.org/10.18514/MMN.2023.3925


1260 HUANYIN CHEN AND MARJAN SHEIBANI

Banach algebras. In Section 2, we give the explicit representations for (a+b)d under
the conditions aba2 = 0,abab = 0,ab2a = 0 and ab3 = 0 in a Banach algebra A .
Furthermore, the representation of (a+ b)d under the conditions a2ba = 0,abab =
0,ab2a = 0 and ab3 = 0 is presented. The known results are thereby extended to
wider cases (see [7, Corollary 2.3] and [9, Theorem 2.1]).

Let L(X) denote the set of all bounded linear operators on a Banach space X . Let

M =

(
A B
C D

)
(∗)

where A ∈ L(X),D ∈ L(Y ) have g-Drain inverses and X ,Y are complex Banach
spaces. Then M is a bounded linear operator on X⊕Y . In Section 3, we apply our res-
ults and give the representations for the g-Drazin inverse of some operator matrix M
whose Shur complement is zero, i.e. D =CAdB. As Drazin and g-Drazin inverses co-
incide with each other for complex matrices, our results also extend [1, Theorem 4.1
and Theorem 4.2] with alternative formulas for the Drazin inverse of 2× 2 block
complex matrices.

2. ADDITIVE RESULTS

In [3, Theorem 2.2 and Theorem 2.4], the authors investigated the g-Drazin in-
vertibility of a+ b under the preceding conditions. The purpose of this section is
to further study such problems and establish the explicit formulas of the g-Drazin
inverse of the sum. If p = p2 ∈ A is an idempotent, We can represent a ∈ A as

a =

(
a11 a12
a21 a22

)
p
, where a11 = pap,a12 = pa(1− p),a21 = (1− p)ap and a22 =

(1− p)a(1− p). We use aπ to stand for the spectral idempotent 1− aad of a ∈ Ad .
We begin with

Lemma 1. Let

x =
(

a 0
c b

)
p

or
(

b c
0 a

)
p

Then

xd =

(
ad 0
z bd

)
p

or
(

bd z
0 ad

)
p
,

where
z =

∞

∑
i=0

(bd)i+2caiaπ +
∞

∑
i=0

bibπc(ad)i+2−bdcad .

Proof. See [6, Theorem 2.1]. �

Lemma 2. Let a,b ∈ Ad . If ab = 0, then a+b ∈ Ad . In this case

(a+b)d =
∞

∑
i=0

bibπ(ad)i+1 +
∞

∑
i=0

(bd)i+1aiaπ.
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Proof. See [4, Lemma 2.2]. �

We are now ready to extend [3, Theorem 2.2] and prove:

Theorem 1. Let a,b ∈ Ad . If aba2 = 0,abab = 0,ab2a = 0 and ab3 = 0, then

(a+b)d = ad +(ad)3ba+(ad)2b+(ad)3b2

+b(ad)2 +b(ad)4ba+b(ad)3b+b(ad)4b2 +a(bd)9aba+(bd)8aba

+a(bd)9a2b+a(bd)8ab+a(bd)9ab2 +(bd)8a2b+(bd)7ab+(bd)8ab2

+(ab+b2)z(a+adba+aadb+adb2)

+
(
a(bd)4 +(bd)3)z(a2ba+a3b+a2b2),

where

z =−bd(ad)3 +bπ(ad)4 +bbπ(ad)5 +(bd)4aπ

− (bd)5ad− (bd)4(ad)2 +
∞

∑
n=1

un,

un = b3n−1bπ(ad)3n+3 +b3nbπ(ad)3n+4 +b3n+1bπ(ad)3n+5

+(bd)3n+4a3naπ +(bd)3n+3a3n−1aπ +(bd)3n+2a3n−2aπ.

Proof. Set

M =

(
a3 +a2b+aba+ab2 a3b+a2b2 +abab+ab3

a2 +ab+ba+b2 a2b+ab2 +bab+b3

)
.

Then M = G+F , where

G =

(
a2b+aba+ab2 a3b+a2b2

0 a2b+ab2 +bab

)
, F =

(
a3 0

a2 +ab+ba+b2 b3

)
.

Clearly F = A+B, where

A =

(
0 0
ab 0

)
and B =

(
a3 0

a2 +ba+b2 b3

)
.

Moreover we have B = H +K, where

H =

(
a3 0

a2 +ba 0

)
and K =

(
0 0
b2 b3

)
.

In view of [3, Theorem 2.2], we have

(a+b)d = (a+b,ab+b2)Md
(

a
1

)
,

where Md = Fd +(Fd)2G and

Fd = Bd +(Bd)2A,
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Bd = (I−KKd)
[ ∞

∑
n=0

Kn(Hd)n]Hd +Kd[ ∞

∑
n=0

(Kd)nHn](I−HHd),

Hd =

(
(ad)3 0

(ad)4 +b(ad)5 0

)
,

Kd =

(
0 0

(bd)4 (bd)3

)
.

We compute that

I−HHd =

(
aπ 0

−(a+b)(ad)2 1

)
;

(H−H2Hd)n =

(
a3naπ 0

(a+b)a3n−2aπ 0

)
;

I−KKd =

(
1 0
−bd bπ

)
,

(K−K2Kd)n =

(
0 0

b3n−1bπ b3nbπ

)
n ∈ N.

Moreover we have

(Hd)n+1 =

(
(ad)3n+3 0

(ad)3n+4 +b(ad)3n+5 0

)
, (Kd)n+1 =

(
0 0

(bd)3n+4 (bd)3n+3

)
.

Therefore we have

Bd = (I−KKd)Hd +
∞

∑
n=1

(K−K2Kd)n(Hd)n+1

+Kd(I−HHd)+
∞

∑
n=1

(Kd)n+1(H−H2Hd)n

=

(
(ad)3 0

z (bd)5

)
,

where

z =−bd(ad)3 +bπ(ad)4 +bbπ(ad)5 +(bd)4aπ

− (bd)5ad− (bd)4(ad)2 +
∞

∑
n=1

un,

un = b3n−1bπ(ad)3n+3 +b3nbπ(ad)3n+4 +b3n+1bπ(ad)3n+5

+(bd)3n+4a3naπ +(bd)3n+3a3n−1aπ +(bd)3n+2a3n−2aπ.

Then we have

Fd = Bd(I +BdA)
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=

(
(ad)3 0

z (bd)5

)(
1 0

(bd)5ab 1

)
=

(
(ad)3 0

z+(bd)10ab (bd)5

)
.

Moreover we have

Md = Fd(I +FdG) =

(
(ad)3 0

z+(bd)10ab (bd)5

)
(

1+adb+(ad)2ba+(ad)2b2 aadb+adb2

z(a2b+aba+ab2) z(a3b+a2b2)+(bd)5(a2b+bab+ab2)

)
.

Therefore (a+b)d = (a+b,ab+b2)Md
(

a
1

)
= vw, where

v = (a+b,ab+b2)

(
(ad)3 0

z+(bd)10ab (bd)5

)
=
(
(ad)2 +b(ad)3 +(a+b)bz+(a+b)(bd)9ab,(a+b)(bd)4),

w =

(
1+adb+(ad)2ba+(ad)2b2 aadb+adb2

z(a2b+aba+ab2) z(a3b+a2b2)+(bd)5(a2b+bab+ab2)

)
(

a
1

)
=

(
a+adba+aadb+adb2

z(a2ba+a3b+a2b2)+(bd)5(a2b+bab+ab2)

)
.

By the direct computation, we complete the proof. �

Bu and Zhang considered the Drazin inverses of block complex matrices under the
conditions PQP2 = 0,QPQP = 0 and Q2 = 0 (see [1, Remark 3.1]). As an immediate
consequence of Theorem 1, we now derive

Corollary 1. Let a,b ∈ Ad . If aba2 = 0,abab = 0 and b2 = 0, then

(a+b)d = ad +(ad)2b+(ad)3ba+b(ad)2 +b(ad)3b+b(ad)4ba.

Proof. Using the notations in Theorem 1, we have un = 0,z = (ad)4 + b(ad)5. In
view of Theorem 1, a+b has g-Drazin inverse and

(a+b)d = ad +(ad)3ba+(ad)2b+b(ad)2 +b(ad)4ba+b(ad)3b

+abz(a+adba+aadb)

= ad +(ad)2b+(ad)3ba+b(ad)2 +b(ad)3b+b(ad)4ba,

as asserted. �

Using the previous corollary, we now extend [3, Theorem 2.4].
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Theorem 2. Let a,b ∈ Ad . If a2ba = 0,abab = 0,ab2a = 0 and ab3 = 0, then

(a+b)d =
[
(a+b)2bΓ+(a+b)Λ

][
Γ+∆(a+b)a

]
+
[
(a+b)2b∆+(a+b)Ξ

][
Λ+Ξ(a+b)a

]
,

where

Γ = α
d + z2βα+α

dz2βα
2 + z1β

d
α

2,

∆ = z1 +α
dz2βα+ z1β

d
α,

Λ = β
d
α+(βd)2

α
2 +βα

d +βα
dz1βα+βαz2β

d
βα

+βα
dz2βα

2 +βαz2β
d
α

2,

Ξ = β
d +(βd)2

α+βαz2 +βα
dz2βα+βαz2β

d
α,

α = b2 +ab,β = ba+a2,

α
d = (bd)2 +(bd)4ab,βd = (ad)2 +b(ad)3 +bab(ad)5,

z1 =
∞

∑
i=0

(αd)i+2
β

i
β

π +
∞

∑
i=0

α
i
α

π(βd)i+2−α
d
β

d ,

z2 = α
dz1 + z1β

d .

Proof. Let α = b2 + ab and β = ba+ a2. Since ab3 = 0, it follows by Lemma 2
that α has g-Drazin inverse and αd = (bd)2 +(bd)4ab. Since a2ba = 0, similarly, we
have βd = (ad)2 +b(ad)3 +bab(ad)5. Set

M =

(
b2 +ab 1

(a+b)a(a+b)b ba+a2

)
.

Then M = A+B, where

A =

(
α 1
0 β

)
and B =

(
0 0

βα 0

)
.

In view of Lemma 1, Ad =

(
αd z1
0 βd

)
, where

z1 =
∞

∑
i=0

(αd)i+2
β

i
β

π +
∞

∑
i=0

α
i
α

π(βd)i+2−α
d
β

d .

Let z2 = αdz1 + z1βd . Then

(Ad)2 =

(
(αd)2 z2

0 (βd)2

)
.

Clearly B2 = 0, and so Bd = 0. We compute that

(Ad)2B =

(
z2βα 0
βdα 0

)
,
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(Ad)3BA =

(
αdz2βα2 + z1βdα2 αdz2βα+ z1βdα

(βd)2α2 (βd)2α

)
,

B(Ad)2 =

(
0 0

βαd βαz2

)
,

B(Ad)3B =

(
0 0

βαdz1βα+βαz2βdβα 0

)
,

B(Ad)4BA =

(
0 0

βαdz2βα2 +βαz2βdα2 βαdz2βα+βαz2βdα

)
.

We easily check that ABAB = 0,ABA2 = 0 and B2 = 0. In view of Corollary 1, we
have

Md = Ad +(Ad)2B+(Ad)3BA+B(Ad)2 +B(Ad)3B+B(Ad)4BA =

(
Γ ∆

Λ Ξ

)
,

where

Γ = α
d + z2βα+α

dz2βα
2 + z1β

d
α

2,

∆ = z1 +α
dz2βα+ z1β

d
α,

Λ = β
d
α+(βd)2

α
2 +βα

d +βα
dz1βα+βαz2β

d
βα

+βα
dz2βα

2 +βαz2β
d
α

2,

Ξ = β
d +(βd)2

α+βαz2 +βα
dz2βα+βαz2β

d
α,

Let N =

((
1
a

)
(b,1)

)2

. Then N =

(
b2 +ab a+b

ab2 +a2b a2 +ab

)
. As in the proof of

[3, Theorem 2.4], we have

M =

(
1 0
0 a+b

)(
(a+b)b 1
a(a+b)b a

)
, N =

(
(a+b)b 1

a(a+b)b a

)(
1 0
0 a+b

)
.

By using Cline’s formula (see [5, Theorem 2.9]), N has g-Drazin inverse and

Nd =

(
(a+b)b 1

a(a+b)b a

)
[Md ]2

(
1 0
0 a+b

)
.

In view of [5, Theorem 2.7], Q :=
(

1
a

)
(b,1) has g-Drazin inverse and (Qd)2 =

(Q2)d = Nd . By using Cline’s formula again,

(a+b)d = (b,1)Nd
(

1
a

)
= (b,1)

(
(a+b)b 1
a(a+b)b a

)
[Md ]2

(
1 0
0 a+b

)(
1
a

)
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= ((a+b)2b,a+b)[Md ]2
(

1
a2 +ba

)
=
(
((a+b)2b,a+b)Md)(Md

(
1

a2 +ba

))
=
[
(a+b)2bΓ+(a+b)Λ

][
Γ+∆(a+b)a

]
+
[
(a+b)2b∆+(a+b)Ξ

][
Λ+Ξ(a+b)a

]
.

This completes the proof. �

Corollary 2. Let a,b ∈ Ad . If a2ba = 0,abab = 0 and b2 = 0, then

(a+b)d =
[
(a+b)abΓ+(a+b)Λ

][
Γ+∆(a+b)a

]
+
[
(a+b)ab∆+(a+b)Ξ

][
Λ+Ξ(a+b)a

]
,

where

Γ = z2βα+ z1β
d
α

2, ∆ = z1 + z1β
d
α,

Λ = β
d
α+(βd)2

α
2 +βαz2β

d
βα+βαz2β

d
α

2,

Ξ = β
d +(βd)2

α+βαz2 +βαz2β
d
α,

α = ab, β = ba+a2, α
d = 0, β

d = (ad)2 +b(ad)3 +bab(ad)5,

z1 = (βd)2 +ab(ad)6, z2 = (βd)3 +ab(ad)8.

Proof. This is obvious by Theorem 2. �

For complex matrices, Drain and g-Drazin inverses coincide with each other. Thus
the preceding theorems give alternative formulas for the Drazin inverse of the sum of
two block complex matrices provided in [7, Corollary 2.]. The following example
illustrates that Theorem 2 is not a trivial generalization of [9, Theorem 2.1].

Example 1. Let

a =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 ,b =


0 −1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 ∈M4(C).

Then a,b ∈ M4(C)d . It is clear that a2ba = 0,abab = 0,ab2a = 0 and ab3 = 0, but

aba = ab2 =


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 6= 0.
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3. BLOCK OPERATOR MATRICES

In [1], Bu and Zhang considered a class of block complex matrices with zero
generalized Schur complement. The goal of this section is to provide explicit repres-
entations for the g-Drazin inverse of the operator matrix M given by (∗). We now
derive.

Theorem 3. Let A ∈ L(X) have g-Drazin inverse, D ∈ L(Y ) and M be given by
(∗). Let W = AAd +AdBCAd . If AW has g-Drazin inverse, AAπBCA = 0,CAπBCA =
0,AAπBCB = 0,CAπ BCB = 0 and D = CAdB, then M has g-Drazin inverse. In this
case

Md = Pd +(Pd)2Q+(Pd)3QP+Q(Pd)2 +Q(Pd)3Q+Q(Pd)4QP,

where P =

(
A AAdB
C CAdB

)
and Q =

(
0 AπB
0 0

)
and

Pd =

(
AAd

CAd

)
[(AW )d ]2

(
A,AAdB

)
+

∞

∑
i=1

(
AAd

CAd

)
[(AW )d ]i+2 ( Ai+1Aπ +AAdBCAi−1Aπ,0

)
.

Proof. One easily checks that

M =

(
A B
C CAdB

)
= P+Q,

where

P =

(
A AAdB
C CAdB

)
, Q =

(
0 AπB
0 0

)
.

By hypothesis, we have PQPQ = 0,PQP2 = 0,Q2 = 0. By virtue of Corollary 1, we
have Md = Pd +(Pd)2Q+(Pd)3QP+Q(Pd)2+Q(Pd)3Q+Q(Pd)4QP. Moreover we
have

P = P1 +P2,P1 =

(
A2Ad AAdB
CAAd CAdB

)
, P2 =

(
AAπ 0
CAπ 0

)
and P2P1 = 0. By virtue of Lemma 1, P2 has g-Drazin inverse. Obviously, we have

P1 =

(
AAd

CAd

)(
A,AAdB

)
.

By hypothesis, we see that (
A,AAdB

)( AAd

CAd

)
= AW

has g-Drazin inverse. By using Cline’s formula, we see that

Pd
1 =

(
AAd

CAd

)
[(AW )d ]2

(
A,AAdB

)
.
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For any i ∈ N, we compute that

(Pd
1 )

i =

(
AAd

CAd

)
[(AW )d ]i+1 ( A,AAdB

)
and Pi

2 =

(
AiAπ 0

CAi−1Aπ 0

)
.

According to Lemma 2, P has g-Drazin inverse and

Pd =
∞

∑
i=0

Pi
1Pπ

1 (P
d
2 )

i+1 +
∞

∑
i=0

(Pd
1 )

i+1Pi
2Pπ

2

=

(
AAd

CAd

)
[(AW )d ]2

(
A,AAdB

)
+

∞

∑
i=1

(
AAd

CAd

)
[(AW )d ]i+2 ( Ai+1Aπ +AAdBCAi−1Aπ,0

)
.

This completes the proof. �

Corollary 3. Let A ∈ L(X) have g-Drazin inverse, D ∈ L(Y ) and M be given by
(∗). Let W = AAd +AdBCAd . If AW has g-Drazin inverse, AπBC = 0 and D =CAdB,
then M has g-Drazin inverse. In this case

Md = Pd +(Pd)2Q,

where

P =

(
A AAdB
C CAdB

)
, Q =

(
0 AπB
0 0

)
and

Pd =

(
AAd

CAd

)
[(AW )d ]2

(
A,AAdB

)
+

∞

∑
i=1

(
AAd

CAd

)
[(AW )d ]i+2 ( Ai+1Aπ +BCAi−1Aπ,0

)
.

Proof. Since QP = 0, we obtain the result by Theorem 3. �

The following example illustrates that Theorem 3 is a nontrivial generalization of
[9, Theorem 3.3].

Example 2. Let A,B,C and D be the linear operators on C2 given by 2×2 matrices
over C.

A =

(
0 1
0 0

)
,B =

(
1 −1
0 0

)
,C =

(
1 1
1 −1

)
and D = 0.

Set M =

(
A B
C D

)
. Then M can be seen as the linear operator acting on C2×C2.

We check that

AAπBCA = 0,CAπBCA = 0,AAπBCB = 0,CAπBCB = 0
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and D =CAdB, while CAπBC =

(
0 2
0 −2

)
6= 0.

Finally, we split the block operator matrix M in an other way and extend [1, The-
orem 4.2] as follows.

Theorem 4. Let A ∈ L(X) have g-Drazin inverse, D ∈ L(Y ) and M be given by
(∗). Let W = AAd +AdBCAd . If AW has g-Drazin inverse, BCAπA2 = 0, BCAπAB =
0, BCAπBCAd = 0 and D =CAdB, then M has g-Drazin inverse. In this case

Md = Pd +(Pd)2Q+(Pd)3QP+Q(Pd)2 +Q(Pd)3Q+Q(Pd)4QP,

where

P =

(
A B

CAAd CAdB

)
, Q =

(
0 0

CAπ 0

)
and

Pd =

(
AAd

CAd

)
[(AW )d ]2

(
A,AAdB

)
+

∞

∑
i=1

(
Ai−1AπBCAd

0

)
[(AW )d ]i+2 ( A,AAdB

)
.

Proof. Clearly we have

M =

(
A B
C CAdB

)
= P+Q,

where

P =

(
A B

CAAd CAdB

)
and Q =

(
0 0

CAπ 0

)
.

Then we check that PQPQ = 0,PQP2 = 0,Q2 = 0. In view of Corollary 1, we have

Md = Pd +(Pd)2Q+(Pd)3QP+Q(Pd)2 +Q(Pd)3Q+Q(Pd)4QP.

Moreover we have

P = P1 +P2,P1 =

(
A2Ad AAdB
CAAd CAdB

)
, P2 =

(
AAπ AπB

0 0

)
and P1P2 = 0. In light of Lemma 2, P2 has g-Drazin inverse. As in the proof of
Theorem 3, we have

Pd
1 =

(
AAd

CAd

)
[(AW )d ]2

(
A,AAdB

)
.

For any i ∈ N, we compute that

(Pd
1 )

i =

(
AAd

CAd

)
[(AW )d ]i+1 ( A,AAdB

)
and Pi

2 =

(
AiAπ Ai−1AπB

0 0

)
.
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According to Lemma 2, P has g-Drazin inverse and

Pd =
∞

∑
i=0

Pi
2Pπ

2 (P
d
1 )

i+1 +
∞

∑
i=0

(Pd
2 )

i+1Pi
1Pπ

1

=

(
AAd

CAd

)
[(AW )d ]2

(
A,AAdB

)
+

∞

∑
i=1

(
Ai−1AπBCAd

0

)
[(AW )d ]i+2 ( A,AAdB

)
,

and we are through. �

As an immediate consequence of Theorem 4, we have

Corollary 4. Let A ∈ L(X) have g-Drazin inverse, D ∈ L(Y ) and M be given by
(∗). Let W = AAd +AdBCAd . If AW has g-Drazin inverse, BCAπ = 0 and D =CAdB,
then M has g-Drazin inverse. In this case,

Md = Pd +Q(Pd)2,

where

Q =

(
0 0

CAπ 0

)
,

Pd =

(
AAd

CAd

)
[(AW )d ]2

(
A,AAdB

)
+

∞

∑
i=1

(
Ai−1AπBCAd

0

)
[(AW )d ]i+2 ( A,AAdB

)
.
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