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Abstract. This paper is concerned with the asymptotic behavior of a p-Landau-Lifschitz type
functional with radial structure as parameter goes to zero. We study the concentration compact-
ness and give several global properties in the case of p > 2.
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1. INTRODUCTION

Let B = {x ∈ R2;x2
1 + x2

2 < 1}. Denote S1 = {x = (x1 + ix2,x3) ∈ C × R;
x2

1 + x2
2 = 1,x3 = 0} and S2 = {x ∈ C×R;x2

1 + x2
2 + x2

3 = 1}. Let g(x) = (eidθ,0)
where x = (cosθ,sinθ) on ∂B, d ∈ N. We are concerned with the minimizer of the
energy functional of p-Landau-Lifschitz type

Eε(u,B) =
1
p

∫
B
|∇u|pdx+

1
2εp

∫
B

u2
3dx (p > 2)

in the function class

W = {u(x) = (sin f (r)eidθ,cos f (r)) ∈W 1,p(B,S2);u|∂B = g},
which is named the radial minimizer of Eε(u,B).

When p = 2, the functional Eε(u,B) was introduced in the study of some sim-
plified model of high-energy physics, which controls the statics of planar ferromag-
nets and antiferromagnets (cf. [8] and [15]). In addition, it is helpful to understand
the dynamics of singularities appearing in the liquid crystals (cf. [2, 7, 12, 14] and
[6]). In particular, the authors of [7] discussed the asymptotic behaviour of the ra-
dial minimizer of Eε(u,B) in §5. When the penalization term 1

2ε2

∫
B u2

3dx is replaced
by 1

4ε2

∫
B(1−|u|2)2dx and S2 is replaced by C, the functional becomes the Ginzburg-

Landau energy introduced in the theory of superconductors (cf. [3] and the references
therein). Nineteen problems were proposed in [3]. Comte and Mironescu studied
Problem 7 in [4, 5, 13]. Problem 7 and Theorems VII.2 and VII.3 in [3] describe the
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global properties of the Ginzburg-Landau functional. For the Landau-Lifschitz func-
tional, Theorem 4.2 in [7] shows analogous results of Theorems VII.2 and VII.3 in
[3].

When p > 2, Lei studied the behaviour of minimizers of Eε(u,B) as ε → 0
(cf. [10]). In addition, he also proved the W 1,p

loc convergence of the radial minim-
izers, and obtained some estimates of the convergent rate of the radial minimizer (cf.
[9]). For the p-Ginzburg-Landau functional, the behaviour of radial minimizers was
studied in [1] and [11]. In particular, the analogous global properties are shown in
[11].

In polar coordinates, for u(x) = (sin f (r)eidθ,cos f (r)), we have

|∇u|= ( f 2
r +d2r−2 sin2 f )1/2.

Sometimes we denote sin f (r)eidθ by u′. If we denote

V = { f ∈W 1,p
loc (0,1];r1/p fr,r(1−p)/p sin f ∈ Lp(0,1), f (r)≥ 0, f (1) =

π

2
},

then V = { f (r);u(x) = (sin f (r)eidθ,cos f (r)) ∈W}.
Substituting u(x) = (sin f (r)eidθ,cos f (r)) ∈W into Eε(u,B) we obtain

Eε(u,B) = 2πEε( f ,(0,1)),

where

Eε( f ,(0,1)) =
∫ 1

0
[
1
p
( f 2

r +d2r−2 sin2 f )p/2 +
1

2εp cos2 f ]rdr.

This shows that u = (sin f (r)eidθ,cos f (r)) ∈ W is the minimizer of Eε(u,B) if and
only if f (r) ∈V is the minimizer of Eε( f ,(0,1)). Applying the direct method in the
calculus of variations we can see that the functional Eε(u,B) achieves its minimum
on W by a function uε(x) = (sin fε(r)eidθ,cos fε(r)), hence fε(r) is the minimizer of
Eε( f ,(0,1)).

Recall some results in [9]. Let uε = (sin fε(r)eidθ,cos fε(r)) be a radial minimizer
of Eε(u,B) on W . Then Theorem 1.1 in [9] shows that for any γ ∈ (0,1), there exists
a constant h = h(γ) which is independent of ε ∈ (0,1) such that

Zε = {x ∈ B; |uε3|> γ} ⊂ B(0,hε). (1.1)

This implies that all the points where u2
ε3 = 1 are contained in B(0,hε). Hence as

ε → 0, these points converge to 0. Furthermore, Proposition 3.2 and Theorem 1.3 in
[9] show that for any compact subset K ⊂ B\{0}, there exists a positive constant C
(independent of ε), such that

Eε(uε,K)≤C (1.2)

sup
x∈K

|uε3(x)| ≤Cε
p−2

2 . (1.3)
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Here K = B\B(0,η). In addition, Proposition 2.1 in [9] shows

Eε(uε,B)≤Cε
2−p. (1.4)

In this paper, we will study the global properties of the p-Landau-Lifschitz model,
which are described by the concentration properties.

Theorem 1. Let uε = (sin fε(r)eidθ,cos fε(r)) be a radial minimizer of Eε(u,B) on
W. Then as ε → 0, there exists a subsequence εk such that

1
2ε2

k
|uεk3|2 → L1δo, weakly star in C(B), (1.5)

ε
p−2
k |∇uεk |

p → 2p
p−2

L1δo, weakly star in C(B). (1.6)

Here δo is the Dirac mass at the origin, and the positive constant L1 satisfies
πdp

p
sup

γ∈(0,1)
(1− γ

2)p/2h2−p(γ)≤ L1 ≤ (1− 2
p
)min

W
E1(u,B)+

2πdp

p2 , (1.7)

where h(γ) is a positive constant in (1.1).

Theorem 2. Let uε = (sin fε(r)eidθ,cos fε(r)) be a radial minimizer of Eε(u,B)
on W. Then for any α ≥ 2− 4/p, we can find a subsequence εk of ε, and constants
L3 > 0 and L4 ≥ 0 which are independent of ε, such that as k → ∞,

|uεk3|α|∇uεk |
2 → L3δo, weakly star in C(B), (1.8)

ε
p−2
k |det(∇u′εk

)|p/2 → L4δo, weakly star in C(B). (1.9)

The related results in higher dimension to Theorems 2 and 1 can be found in [16]
and [17].

2. PROOF OF THEOREM 1

2.1. Proofs of (1.5) and (1.6)

In view of (1.4), there exist two Radon measures ω1 and ω2, such that as ε → 0,

ε
p−2
k |∇uεk |

p → ω1, weakly star in C(B), (2.1)

1
2ε2

k
u2

εk3 → ω2, weakly star in C(B), (2.2)

for some subsequence εk of ε. Sometimes we also denote uεk by uε for convenience.
Furthermore, (1.2) implies that as ε → 0,

ε
p−2

∫
K
|∇uε|pdx → 0,

1
2ε2

∫
K

u2
ε3dx → 0,
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where K is an arbitrary compact subset of B \ {0}. These results lead to
supp(ωi)⊂ {0} for i = 1,2. Then we can find constants L1 and L2 such that

ω1 = L2δo, ω2 = L1δo. (2.3)

Next, we shall point out the relation between L1 and L2. It is not difficult to see that
the radial minimizer uε solves the system

−div[|∇u|p−2
∇u] = u|∇u|p + 1

εp (uu2
3 −u3e3) in B. (2.4)

Multiplying (2.4) by x ·∇u and integrating by parts, we can obtain the Pohozaev type
identity

−
∫

∂BR(0)
|x||∇u|p−2|∂νu|2ds+

∫
BR(0)

|∇u|pdx− 2
p

∫
BR(0)

|∇u|pdx

+
1
p

∫
∂BR(0)

|x||∇u|pds =− 1
2εp

∫
∂BR(0)

|x|u2
3ds+

1
εp

∫
BR(0)

u2
3dx (2.5)

for any R∈ (0,1]. Hereafter, we denote fε by f . By (1.2) and the mean value theorem,
there exists σ ∈ (1/4,1/2) such that

r[( fr)
2 +d2r−2(n−1)sin2 f ]p/2|r=σ +

r
εp cos2 f |r=σ ≤C. (2.6)

Then, we take R = σ in (2.5) and multiply it by εp−2 to obtain

− ε
p−2

σ
2[( fr)

2 +
d2

r2 sin2 f ]p/2|r=σ +(1− 2
p
)εp−2

∫
σ

0
[( fr)

2 +
d2

r2 sin2 f ]p/2rdr

+
σ2

p
ε

p−2[( fr)
2 +

d2

r2 sin2 f ]p/2|r=σ =− σ2

2ε2 cos2 f |r=σ +
1
ε2

∫
σ

0
cos2 f rdr.

Using (2.6), we get

(1− 2
p
)εp−2

∫
Bσ(0)

|∇uε|pdx− 1
ε2

∫
Bσ(0)

u2
ε3dx → 0 (2.7)

as ε → 0. Combining this result with (2.1)-(2.3), we obtain

L2 =
2p

p−2
L1.

Thus, (1.5) and (1.6) are proved.

2.2. Proof of (1.7)

Step 1. Upper bound
Similar to the proof of Proposition 2.1 in [9], it is easy to derive

ε
p−2Eε(uε,B)≤

2πdp

p(p−2)
+min

W
E1(u,B)+Cε

p−2. (2.8)
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Here C > 0 is independent of ε. On the other hand, (1.5) and (1.6) lead to

lim
ε→0

[
εp−2

p
|∇uε|p +

1
2ε2 u2

ε3] =
p

p−2
L1δo, weakly star in C(B̄). (2.9)

This result, together with (2.8), implies the upper bound of L1 in (1.7).

Step 2. Lower bound
From (1.1), we can deduce that, for any σ > 0, there exists C = C(σ) > 0 inde-

pendent of ε, such that∫
σ

hε

[( fr)
2 +d2r−2 sin2 f ]p/2rdr ≥ dp

∫
σ

hε

r1−p sinp f dr

≥ dp

p−2
(1− γ

2)p/2h2−p(γ)ε2−p −C(σ).
(2.10)

Applying (2.7), we obtain that

lim
ε→0

ε
p−2Eε(uε,Bσ(0)) = π lim

ε→0
ε

p−2
∫

σ

0
[( fr)

2 +d2r−2 sin2 f ]p/2rdr.

Inserting (2.10) into this result, we deduce that for any η ∈ (0,1),

lim
ε→0

ε
p−2Eε(uε,Bσ(0))≥

πdp

p−2
(1− γ

2)p/2h2−p(γ).

Taking the supremum and writing

H := sup
γ∈(0,1)

(1− γ
2)p/2h2−p(γ),

we have
lim
ε→0

ε
p−2Eε(uε,Bσ(0))≥

πdp

p−2
H.

Combining this with (2.9), we can get p
p−2 L1 ≥ πdp

p−2 H. This means L1 ≥ πdp

p H, thus
we obtain the lower bound of L1 in (1.7).

3. PROOF OF THEOREM 2

3.1. Proof of (1.8)

According to Proposition 2.2 in [18], there exists a constant C = C(h) > 0 which
is independent of ε, such that

∥∇uε∥L∞(B(0,hε)) ≤Cε
−1. (3.1)

Therefore, ∫
B(0,hε)

|∇uε|2|uε3|αdx ≤ C
ε2 π(hε)2 ≤C. (3.2)

Next, using Hölder’s inequality and (1.3) and (1.2), we see that as ε → 0,∫
B\B(0,σ)

|∇uε|2|uε3|αdx ≤ [
∫

B\B(0,σ)
|∇uε|pdx]

2
p [
∫

B\B(0,σ)
|uε3|

pα

p−2 dx]
p−2

p → 0. (3.3)
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By the same derivation of (13) in [13], we also get from ∥uε3∥L2(B) ≤ Cε (which is
deduced by (1.4)) that ∫

σ

hε

d2

r2 (sin f )2(cos f )αrdr ≤C (3.4)

by using Hölder’s inequality. In addition, noting α ≥ 2− 4
p , using Hölder’s inequality

and (1.4), we also deduce that∫
σ

hε

( fr)
2(cos f )αrdr ≤C

∫
σ

hε

( fr)
2(cos f )2− 4

p rdr

≤C(
∫

σ

hε

(cos f )2rdr)1− 2
p (
∫

σ

hε

( fr)
prdr)

2
p ≤Cε

2(1− 2
p )+

2
p (2−p) ≤C. (3.5)

Combining this result with (3.2)-(3.4), and noting |∇u|2 = ( fr)
2 + d2

r2 (sin f )2, we ob-
tain that |∇uε|2|uε3|α is bounded in L1(B). Thus, there exists a Radon measure ω3
such that

lim
ε→0

|∇uε|2|uε3|α = ω3, weakly star in C(B).

By virtue of (3.3), supp(ω3)⊂ {0}. Hence we can find L3 ≥ 0 such that ω3 = L3δo.
We claim L3 > 0. Since f (r) ∈ C[0,1] and f (0) = 0 (see Remark in p.68 of [9]),

f (hε) ≥ 1/2 (which can be deduced by (1.1) with γ = cos(1/2)), there must exist
rε ∈ (0,hε) such that f (rε) = 1/4. Using (3.1), we can find a sufficiently small pos-
itive constant δ which is independent of ε, such that

1
8
≤ f (x)≤ 3

8
, r ∈ (rε(1−δ),rε(1+δ)).

Therefore, ∫
B(0,rε(1+δ))\B(0,rε(1−δ))

(cos f )α|∇uε|2dx ≥ 2πd2(sin
1
8
)2(cos

3
8
)α

∫ rε(1+δ)

rε(1−δ)

dr
r

> 0.

This implies L3 > 0. Equation (1.8) is proved.

3.2. Proof of (1.9)

By a direct calculation, it follows

det(∇u′ε) =
d
r2 (sin f cos f )(x ·∇ f ). (3.6)

Using Hölder’s inequality and (1.2), we get∫
B\B(0,σ)

|det(∇u′ε)|p/2dx ≤C.

This means that when ε → 0,

ε
p−2

∫
B\B(0,σ)

|det(∇u′ε)|p/2dx → 0. (3.7)
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In addition, in view of |det(∇u′ε)| ≤ 1
2 |∇u′ε|2, we can deduce from (1.4) that

ε
p−2

∫
B(0,σ)

|det(∇u′ε)|p/2dx ≤Cε
p−2

∫
B(0,σ)

|∇u′ε|pdx ≤C.

Combining this with (3.7) yields the upper bound of εp−2|det(∇u′ε)|p/2 in L1(B).
Then, we can find a Radon measure ω4 such that

lim
ε→0

ε
p−2|det(∇u′ε)|p/2 = ω4, weakly star in C(B).

In view of (3.7), supp(ω4)⊂{0}. There exists a constant L4 ≥ 0 such that ω4 = L4δo.
The proof of Theorem 2 is completed.
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