Mapping bijectively σ-algebras onto power sets

N. Kwami Agbeko
MAPPING BIJECTIVELY σ-ALGEBRAS ONTO POWER SETS

N. Kwami Agbeko
Department of Applied Mathematics, University of Miskolc
3515 Miskolc – Egyetemváros, Hungary
matagbek@gold.uni-miskolc.hu

[Received February 6, 2001]

Dedicated to the memory of my Father

Abstract. As an application of the so-called "optimal measure" we attempt to seek sets whose power sets are equinumerous with σ-algebras, which seems to be new information about σ-algebras.

Mathematical Subject Classification: 28A20, 28E10
Keywords: Measurable sets

1. Introduction

Some new information about σ-algebras is investigated, consisting of mapping bijectively σ-algebras onto power sets. Such σ-algebras, in fact, form a rather broad class. A special grouping of the so-called optimal measures is used in our investigation (for more about optimal measures cf. [1-4]. We provide constructively a bijective mapping that will serve the purpose. In the proof we first characterize set-inclusion as well as some asymptotic behaviors of sequences of measurable sets. Without loss of generality we shall restrict ourselves to infinite σ-algebras, since the opposite case can be easily done.

Throughout this communication (Ω, \mathcal{F}) will stand for an arbitrary measurable space, with both Ω and \mathcal{F} being infinite sets (where, as usual, the elements of \mathcal{F} are referred to as measurable sets).

By an optimal measure we mean a set function $p^* : \mathcal{F} \rightarrow [0, 1]$ which fulfills the following axioms:

P1. $p^*(\emptyset) = 0$ and $p^*(\Omega) = 1$.
P2. $p^*(B \cup E) = p^*(B) \lor p^*(E)$ for all measurable sets B and E (where \lor stands for the maximum).
P3. $p^* \left(\bigcap_{n=1}^{\infty} E_n \right) = \lim_{n \to \infty} p^*(E_n) = \bigwedge_{n=1}^{\infty} p^*(E_n)$, for every decreasing sequence of measurable sets (E_n), where \bigwedge stands for the minimum.

In [2] we have obtained the following results for all optimal measures p^*.
By \((p^*)\)-atom we mean a measurable set \(H\), \(p^*(H) > 0\) such that whenever \(B \in \mathcal{F}\), \(B \subset H\), then \(p^*(B) = p^*(H)\) or \(p^*(B) = 0\).

A \((p^*)\)-atom \(H\) is decomposable if there exists a subatom \(B \subset H\) such that \(p^*(B) = p^*(H) = p^*(H \setminus B)\). If no such subatom exists, we shall say that \(H\) is indecomposable.

Fundamental Optimal Measure Theorem. Let \((\Omega, \mathcal{F})\) be a measurable space and \(p^*\) an optimal measure on it. Then there exists a collection \(\mathcal{H}(p^*) = \{H_n : n \in J\}\) of disjoint indecomposable \((p^*)\)-atoms, where \(J\) is some countable (i.e. finite or countably infinite) index-set such that for any measurable set \(B\), with \(p^*(B) > 0\), we have that
\[
p^*(B) = \max \left\{ p^*(B \bigcap H_n) : n \in J \right\}.
\]
Moreover, the only limit point of the set \(\{p^*(H_n) : n \in J\}\) is 0 provided that \(J\) is a countably infinite set. (\(\mathcal{H}(p^*)\) is referred to as a \((p^*)\)-generating countable system.)

NOTATIONS.
1. \(\mathcal{P}\) will denote the set of all optimal measures defined on \((\Omega, \mathcal{F})\).
2. \(\mathcal{P}_\infty\) is the set of all optimal measures whose generating systems are countably infinite.
3. For every \(A \in \mathcal{F}\), we write \(\overline{A}\) for the complement of \(A\).
4. \(\mathbb{N}\) stands for the set of counting numbers (or positive integers).
5. \(A \subset B\) means set \(A\) is a proper subset of set \(B\).
6. \(A \subseteq B\) means set \(A\) is a subset of set \(B\).
7. \(\mathcal{P}(A)\) stands for the power set of set \(A\).

2. Main results

Definition 2.1. We say that an optimal measure \(p^* \in \mathcal{P}_\infty\) is of order-one if there is a unique indecomposable \((p^*)\)-atom \(H\) such that \(p^*(H) = 1\). (Any such atom will be referred to as an order-one-atom and the set of all order-one optimal measures will be denoted by \(\mathcal{P}_{\infty}^1\).)

Example 1. Fix a sequence \((\omega_n) \subset \Omega\) and define \(p_0^* \in \mathcal{P}_\infty\) by
\[
p_0^*(B) = \max \left\{ \frac{1}{n} : \omega_n \in B \right\}.
\]
Then \(p_0^* \in \mathcal{P}_{\infty}^1\).

In fact, via the Structure Theorem, there is an indecomposable \(p_0^*\)-atom \(H\) such that \(p_0^*(H) = 1\). This is possible if and only if \(\omega_1 \in H\). We note that there is no other indecomposable \(p_0^*\)-atom \(H^*\) with \(H^* \cap H = \emptyset\) such that \(p_0^*(H^*) = 1\), otherwise necessarily it would ensue that \(\omega_1 \in H^*\), which is absurd. Hence \(p_0^* \in \mathcal{P}_{\infty}^1\).

FURTHER NOTATIONS.

If \(H\) is the order-one-atom of some \(p^* \in \mathcal{P}_\infty\), we write \(p = \left\{ q^* \in \mathcal{P}_\infty : q^*(H) = 1 \right\}\).

We then refer to the elements of the class \(p\) as representing members of the class, and
call H the unitary atom of the class. (If the unitary atom of a class is the order-one-atom of a representing member, we shall speak of representation.)

We further denote by \mathcal{P}_1^∞ the set of all p classes.

If A is a nonempty measurable set and $p \in \mathcal{P}_1^\infty$, the identity $p(A) = 1$ (resp. the inequality $p(A) < 1$) will simply mean that $p^*(A) = 1$ (resp. $p^*(A) < 1$) for any representing member $p^* \in p$. We shall also write $p(A) = 0$ to mean that $p^*(A) = 0$ whenever $p^* \in p$.

Write \forall for the set of all unitary atoms on the measurable space (Ω, \mathcal{F}).

Lemma 2.1. Let $A, B \in \mathcal{F}$ and $p \in \mathcal{P}_1^\infty$ be arbitrary. In order that $p(A \cap B) = 1$ it is necessary and sufficient that $p(A) = 1$ and $p(B) = 1$.

Proof. As the necessity is obvious, we only have to show the sufficiency. In fact, assume that $p(A) = 1$ and $p(B) = 1$. Let H be the unitary atom of class p, and let p^* denote an arbitrary but fixed representing member in the class. Without loss of generality we may assume that p^* is a representation of p (i.e. H is the order-one atom of p^*). Then $p^*(H) = 1$. Clearly, $p^*(A \cap H) = 1$ and $p^*(B \cap H) = 1$. Hence $p^*(A \cap H \cap B) = 0$. It is enough to prove that both identities $p^*(A \cap H \cap B) = 0$ and $p^*(A \cap H \cap B) = 0$ are valid. On the contrary, assume that at least one of these identities fails to hold: $p^*(A \cap H \cap B) = 0$, say. Then $p^*(A \cap H \cap B) = 1$. Now, since $p^*(H \cap B) = 1$, it ensues that either $p^*(A \cap H \cap B) = 1$ or $p^*(A \cap H \cap B) = 1$. Then combining each of these last identities with $p^*(A \cap H \cap B) = 1$, we have that $p^*(A \cap H \cap B) = 1$ and $p^*(A \cap H \cap B) = 1$, or $p^*(A \cap H \cap B) = 1$ and $p^*(A \cap H \cap B) = 1$. This violates that H is an order-one-atom (because the sets $A \cap H \cap B, A \cap H \cap B$ and $A \cap H \cap B$ are pairwise disjoint). **q.e.d.**

Remark 2.0. Let $p \in \mathcal{P}_1^\infty$ be arbitrary. Then the identity $p(\emptyset) = 0$ holds.

Remark 2.1. Let $A \in \mathcal{F}$ and $p \in \mathcal{P}_1^\infty$ be arbitrary. Then the identities $p(A) = 1$ and $p(A) = 1$ cannot hold simultaneously, i.e., for no representing member p^* of class p the identities $p^*(A) = 1$ and $p^*(A) = 1$ hold at the same time.

In fact, assume the contrary. Then **Lemma 2.1** would imply that

$$p(A) = p(\overline{A}) = 1 = p(A \cap \overline{A}) = p(\emptyset) = 0$$

which is absurd, indeed. **q.e.d.**

Definition 2.2. For any $A \in \mathcal{F}$ define the set $\Delta(A)$ by

1. $\Delta(A) \subseteq \mathcal{P}_1^\infty$.
2. If $p \in \Delta(A)$, then $p(A) = 1$.

Remark 2.2. Let $A \in \mathcal{F}$. Then $\Delta(A) = \emptyset$ if and only if $A = \emptyset$.

Remark 2.3. If H is a unitary atom (with p its corresponding class), then $\Delta (H) = \{p\}$.

Let $A \in \mathcal{F}$ and denote by ∇_A the set of all unitary atoms H such that $p(A) = 1$, where $\Delta (H) = \{p\}$. It is clear that $\nabla_A \cap \nabla_A = \emptyset$ and $\nabla_A \cup \nabla_A = \nabla$. From this observation the following lemma is straightforward:

Lemma 2.2. For every set $A \in \mathcal{F}$, we have that $\Delta (\overline{A}) = \overline{\Delta (A)}$.

Proposition 2.3. Let $A, B \in \mathcal{F}$ be arbitrary. Then

1. $\Delta (\Omega) = P_\infty^1$.
2. $\Delta (A \cap B) = \Delta (A) \cap \Delta (B)$.
3. $\Delta (A \cup B) = \Delta (A) \cup \Delta (B)$.

Proof. Part 1 is an easy task. Let us show Part 2. In fact, let $p \in \Delta (A \cap B)$. Then $p(A \cap B) = 1$. Hence Lemma 2.1 implies that $p(A) = 1$ and $p(B) = 1$, so that $p \in \Delta (A)$ and $p \in \Delta (B)$, i.e. $p \in \Delta (A) \cap \Delta (B)$. Consequently $\Delta (A \cap B) \subseteq \Delta (A) \cap \Delta (B)$. To show the reverse inclusion, pick an arbitrary $p \in \Delta (A) \cap \Delta (B)$. Then $p(A) = 1$ and $p(B) = 1$. Via Lemma 2.1, we have that $p(A \cap B) = 1$, i.e. $p \in \Delta (A \cap B)$. So $\Delta (A) \cap \Delta (B) \subseteq \Delta (A \cap B)$.

To end the proof, let us show the third part. In fact, let A and $B \in \mathcal{F}$ be arbitrary. Then making use of the second part of this proposition, it ensues that $\Delta (\overline{A \cap B}) = \Delta (\overline{A}) \cap \Delta (\overline{B})$. By applying Lemma 2.2 and De Morgan identities, we obtain that

$$\Delta (A \cup B) = \overline{\Delta (A \cup B)} = \overline{\overline{A \cap B}} = \overline{\Delta (A) \cap \Delta (B)}$$

$$= \Delta (\overline{A}) \cup \Delta (\overline{B}) = \overline{\Delta (A) \cup \Delta (B)} = \Delta (A) \cup \Delta (B).$$

This was to be proven. q.e.d.

Lemma 2.4. Let A and $B \in \mathcal{F}$ be arbitrary nonempty sets. In order that $A \subseteq B$, it is necessary and sufficient that $\Delta (A) \subseteq \Delta (B)$.

Proof. As the necessity is trivial, we need only show the sufficiency. In fact, assume that $A \setminus B$ is not an empty set. Then because of Remark 2.2, $\Delta (A \setminus B)$ is neither empty. Fix some $p \in \Delta (A \setminus B)$, i.e. $p(A \setminus B) = 1$. This implies that $p(B) < 1$. (Otherwise we would obtain via Lemma 2.1 that $1 = p((A \setminus B) \cap B) = p(\emptyset) = 0$, which is absurd.) Then $p(A) = 1$ and $p(B) < 1$, i.e. $p \in \Delta (A) \setminus \Delta (B)$. So the set $\Delta (A) \setminus \Delta (B)$ is not empty. q.e.d.

Lemma 2.5. Let A and $B \in \mathcal{F}$ be arbitrary nonempty sets. In order that $A \cap B = \emptyset$, it is necessary and sufficient that $\Delta (A) \cap \Delta (B) = \emptyset$.

(The proof follows from Proposition 2.3/2 and Remark 2.2.)

Lemma 2.6. Let A and $B \in \mathcal{F}$ be arbitrary nonempty sets. In order that $A = B$ it is necessary and sufficient that $\Delta (A) = \Delta (B)$.
We simply note that

\[
\Delta (A \setminus B) = \Delta (A) \setminus \Delta (B)
\]

which completes the proof.

Lemma 2.7. Let \(A \) and \(B \in \mathcal{F} \) be arbitrary nonempty sets. Then \(\Delta (A \setminus B) = \Delta (A) \setminus \Delta (B) \).

Proof. We simply note that Proposition 2.3/2 and Lemma 2.2 entail that

\[
\Delta (A \setminus B) = \Delta (A \cap \overline{B}) = \Delta (A \setminus (\overline{B})) = \Delta (A \setminus B),
\]

which completes the proof. q.e.d.

Proposition 2.8. Let \((A_n) \subseteq \mathcal{F} \) and \(A \in \mathcal{F} \) be arbitrary. Then \((A_n) \) converges increasingly to \(A \) if and only if \((\Delta (A_n)) \) converges increasingly to \(\Delta (A) \).

Proof. Assume that \((A_n) \) converges increasingly to \(A \). Then by applying repeatedly Lemma 2.4, we have for every \(n \in \mathbb{N} \) that

\[
\Delta (A_n) \subseteq \Delta (A_{n+1}) \subseteq \Delta (A).
\]

We need to prove that \(\Delta (A) = \bigcup_{n=1}^{\infty} \Delta (A_n) \). To do this, it will be enough to show that \(\Delta (A) \subseteq \bigcup_{n=1}^{\infty} \Delta (A_n) \) and \(\bigcup_{n=1}^{\infty} \Delta (A_n) \subseteq \Delta (A) \). In fact, we note that the second inclusion is trivial. To prove the first one, let us pick an arbitrary class \(p \in \Delta (A) \) and fix any representing member \(p^* \) of class \(p \). We note that following the proof of Lemma 0.1 (cf. [1], page 134), there can be found a positive integer \(n_0 \) such that

\[
1 = p^* (A) = p^* \left(\bigcup_{k=1}^{\infty} A_k \right) = p^* (A_n), \text{ whenever } n \geq n_0. \text{ Hence } p \in \bigcup_{n=n_0}^{\infty} \Delta (A_n) \subseteq \bigcup_{n=1}^{\infty} \Delta (A_n), \text{ i.e.}
\]

\[
\Delta (A) \subseteq \bigcup_{n=n_0}^{\infty} \Delta (A_n) \subseteq \bigcup_{n=1}^{\infty} \Delta (A_n).
\]

Conversely, assume that sequence \((\Delta (A_n)) \) converges increasingly to \(\Delta (A) \). Then for every \(n \in \mathbb{N} \) we have that \(\Delta (A_n) \subseteq \Delta (A_{n+1}) \subseteq \Delta (A) \), so that \(A_n \subseteq A_{n+1} \subseteq A \) (because of Lemma 2.4). Hence \(\bigcup_{n=1}^{\infty} A_n \subseteq A \). Now, suppose that set \(A \setminus \bigcup_{n=1}^{\infty} A_n \) is not empty. Then via Remark 2.2 and Axiom 3 there can be found some \(p \in \mathcal{P}_\infty^\infty \) and some representing member \(p^* \) of class \(p \) such that

\[
1 = p^* \left(A \setminus \bigcup_{n=1}^{\infty} A_n \right) = p^* \left(\bigcap_{n=1}^{\infty} A \cap \overline{A_n} \right) = \bigcup_{n=1}^{\infty} p^* (A \cap \overline{A_n}),
\]
since sequence \((\overline{A_n}) \) is a decreasing sequence. Consequently \(1 = p^\ast (A \cap \overline{A_n}) \) for all \(n \in \mathbb{N} \). But Lemma 2.1 yields that \(p^\ast (A) = 1 \) and \(p^\ast (\overline{A_n}) = 1 \) for all \(n \in \mathbb{N} \). Hence Axiom 3 entails that

\[
1 = \bigwedge_{n=1}^{\infty} p^\ast (\overline{A_n}) = p^\ast \left(\bigcap_{n=1}^{\infty} \overline{A_n} \right) = p^\ast (\overline{A}).
\]

Nevertheless, this contradicts Remark 2.1 q.e.d.

Proposition 2.9. Let \((A_n) \subset \mathcal{F} \) and \(A \in \mathcal{F} \) be arbitrary. Then \((A_n) \) converges decreasingly to \(A \) if and only if \((\Delta (A_n)) \) converges decreasingly to \(\Delta (A) \).

Proof. Assume that \((A_n) \) converges decreasingly to \(A \). Then by applying repeatedly Lemma 2.4, we have for every \(n \in \mathbb{N} \) that

\[
\Delta (A) \subset \Delta (A_{n+1}) \subset \Delta (A_n).
\]

We need to prove that \(\Delta (A) = \bigcap_{n=1}^{\infty} \Delta (A_n) \). To do this, it will be enough to show that \(\Delta (A) \subseteq \bigcap_{n=1}^{\infty} \Delta (A_n) \) and \(\bigcap_{n=1}^{\infty} \Delta (A_n) \subseteq \Delta (A) \). In fact, we note that the first inclusion is trivial. To prove the second inclusion let us pick some \(p \in \bigcap_{n=1}^{\infty} \Delta (A_n) \).

Then \(p \in \Delta (A_n) \) for all \(n \in \mathbb{N} \). Hence \(p (A_n) = 1 \) for all \(n \in \mathbb{N} \). If we fix any representing member \(p^\ast \) in class \(p \), we then obtain via Axiom 3 that

\[
p^\ast (A) = p^\ast \left(\bigcap_{n=1}^{\infty} A_n \right) = \bigwedge_{n=1}^{\infty} p^\ast (A_n) = 1,
\]

implying that \(p (A) = 1 \), i.e. \(p \in \Delta (A) \). Consequently, \(\bigcap_{n=1}^{\infty} \Delta (A_n) \subseteq \Delta (A) \).

Conversely, assume that sequence \((\Delta (A_n)) \) converges decreasingly to \(\Delta (A) \). Then for every \(n \in \mathbb{N} \) we obtain that \(\Delta (A) \subset \Delta (A_{n+1}) \subset \Delta (A_n) \) so that \(A \subset A_{n+1} \subset A_n \), \(n \in \mathbb{N} \) (by Lemma 2.4). Hence \(A \subseteq \bigcap_{n=1}^{\infty} A_n \). To show the reverse inclusion let us assume that set \(\left(\bigcap_{n=1}^{\infty} A_n \right) \setminus A \) is not empty. Then via Remark 2.2 and Axiom 3 there can be found some \(p \in \mathcal{P}_{\ast}^\ast \) such that for every representing member \(p^\ast \) of class \(p \)

\[
1 = p^\ast \left(\bigcap_{n=1}^{\infty} A_n \right) \setminus A = p^\ast \left(\bigcap_{n=1}^{\infty} A_n \cap \overline{A} \right) \supseteq \bigwedge_{n=1}^{\infty} p^\ast (A_n \cap \overline{A}),
\]

since \((A_n) \) is a decreasing sequence. Consequently, \(1 = p^\ast (A_n \cap \overline{A}) \) for all \(n \in \mathbb{N} \). Hence Lemma 2.1 yields that \(p (\overline{A}) = 1 \) and \(p (A_n) = 1 \) for all \(n \in \mathbb{N} \). But then \(p \in \Delta (A_n) \) for all \(n \in \mathbb{N} \) and hence \(p \in \bigcap_{n=1}^{\infty} \Delta (A_n) = \Delta (A) \). Nevertheless, this
is absurd since $p \in \Delta(A) = \overline{\Delta(A)}$. We can thus conclude on the validity of the proposition. q.e.d.

Theorem 2.10. Let $(A_n) \subset \mathcal{F}$ and $A \in \mathcal{F}$ be arbitrary. In order that (A_n) converge to A, it is necessary and sufficient that $(\Delta(A_n))$ converge to $\Delta(A)$.

Proof. For every counting number $n \in \mathbb{N}$ write $E_n = \cap_{k=n}^\infty A_k$ and $B_n = \cup_{k=n}^\infty A_k$. It is clear that sequence (B_n) converges decreasingly to $\limsup_{n \to \infty} A_n$ and sequence (E_n) converges increasingly to $\liminf_{n \to \infty} A_n$. Consequently, by applying Theorems 2.8 and 2.9 to these sequences, we can conclude on the validity of the theorem. q.e.d.

Definition 2.3. A mapping $\Delta : \mathcal{F} \to \mathcal{P}(\mathcal{P}_\infty^1)$ is said to be powering if it is defined by:

$$\Delta(A) = \begin{cases} \emptyset & \text{if } A = \emptyset \\ \{p \in \mathcal{P}_\infty^1 : p(A) = 1\} & \text{if } A \neq \emptyset \end{cases}$$

Remark 2.3. If H is the unitary atom of a class $p \in \mathcal{P}_\infty^1$, then $\Delta(H) = \{p\}$.

The following result can easily be derived from Lemma 2.6 and Remark 2.2.

Proposition 2.11. If $\Delta : \mathcal{F} \to \mathcal{P}(\mathcal{P}_\infty^1)$ is a powering mapping, then it is an injection.

Definition 2.4. If $\Gamma \subseteq \mathcal{P}_\infty^1$ is a nonempty set, then the collection C of all the unitary atoms of the classes $p \in \Gamma$ will be called unitary-atomic collection of Γ.

Postulate of powering. If $\Gamma \in \mathcal{P}(\mathcal{P}_\infty^1) \setminus \{\emptyset\}$ and C denotes the governing-atomic collection of Γ, then $\bigcup C$ is measurable and $\Delta(\bigcup C) \subseteq \Gamma$.

Theorem 2.12. The powering mapping $\Delta : \mathcal{F} \to \mathcal{P}(\mathcal{P}_\infty^1)$ is surjective if and only if the postulate of powering is valid.

Proof. Assume that *Postulate of powering* is valid. Let $\Gamma \in \mathcal{P}(\mathcal{P}_\infty^1)$ be arbitrarily fixed. We note that if $\Gamma = \emptyset$, then there is nothing to be proven. Suppose that Γ is a nonempty subset of \mathcal{P}_∞^1, and denote by C its corresponding governing-atomic collection. Then $\bigcup C$ is measurable and $\Delta(\bigcup C) \subseteq \Gamma$ (by the postulate). Let us show that $\Gamma \subseteq \Delta(\bigcup C)$. In fact, pick any class $p \in \Gamma$ and p^* any representing member of p, with H the unitary atom of p. Since $H \subseteq \bigcup C$, it ensues from Lemma 2.2 that $\Delta(H) \subseteq \Delta(\bigcup C)$. But, via Remark 2.3 we have that $\{p\} = \Delta(H)$ and $p \in \Delta(\bigcup C)$, i.e. $\Gamma \subseteq \Delta(\bigcup C)$. Therefore $\Gamma = \Delta(\bigcup C)$.

To prove the converse biconditional, let us assume that the powering mapping Δ is a surjection. We note that Δ is a bijection, since it is also an injection (by Proposition 2.11). Let $\Gamma \in \mathcal{P}(\mathcal{P}_\infty^1) \setminus \{\emptyset\}$ be arbitrary and write C for the corresponding unitary-atomic collection. Obviously we have that $\Gamma = \bigcup \{\Delta(H) : H \in C\}$ is a subset of \mathcal{P}_∞^1.
Then via the bijective property it ensues that $\Delta^{-1}(\Gamma) \subseteq \mathcal{F}$. Clearly $\Delta(H) \subseteq \Gamma$ for every $H \in \mathcal{C}$. By Lemma 2.2 together with the bijective property, we obtain that

$$H = \Delta^{-1}(\Delta(H)) \subseteq \Delta^{-1}(\Gamma)$$

whenever $H \in \mathcal{C}$. Consequently the inclusion $\bigcup \mathcal{C} \subseteq \Delta^{-1}(\Gamma)$ follows. Now let us show that if $\omega \in \Delta^{-1}(\Gamma)$, then there is some $H \in \mathcal{C}$ such that $\omega \in H$. Assume on the contrary that there can be found some $\omega_1 \in \Delta^{-1}(\Gamma)$ such that $\omega_1 \notin H$ for all $H \in \mathcal{C}$. We can thus define an optimal measure $q^* : \mathcal{F} \to [0, 1]$ so that

$$q^*(B) \begin{cases} = 1 & \text{if } \omega_1 \in B \\ < 1 & \text{if } \omega_1 \notin B. \end{cases}$$

(See Example 1) Then there is a unique indecomposable q^*-atom (to be denoted by \tilde{H}) such that $q^*(\tilde{H}) = 1$. It is clear that $\omega_1 \in \tilde{H}$ and $q^*(\Delta^{-1}(\Gamma)) = 1$. We further note that

$$\bigcup \{\Delta(H) : H \in \mathcal{C}\} = \Gamma = \Delta(\Delta^{-1}(\Gamma)) = \{p \in \mathcal{P}_1^\infty : p(\Delta^{-1}(\Gamma)) = 1\}.$$

From this fact and the identity $q^*(\Delta^{-1}(\Gamma)) = 1$, there must exist some class $p_0 \in \mathcal{P}_1^\infty$ with $p_0(\Delta^{-1}(\Gamma)) = 1$, such that $q^*(\tilde{H} \cap H \cap \Delta^{-1}(\Gamma)) = 1$, where H is the unitary atom of class p_0. Nevertheless, this is possible only if $\omega_1 \in H$, which is absurd, since we have supposed that $\omega_1 \notin H$ for all $H \in \mathcal{C}$. Therefore, if $\omega \in \Delta^{-1}(\Gamma)$, then there is some $H \in \mathcal{C}$ such that $\omega \in H$. It ensues that $\omega \in \bigcup \mathcal{C}$ for all $\omega \in \Delta^{-1}(\Gamma)$, as $H \subseteq \bigcup \mathcal{C}$ whenever $H \in \mathcal{C}$. Thus $\Delta^{-1}(\Gamma) \subseteq \bigcup \mathcal{C}$. Therefore, $\bigcup \mathcal{C} = \Delta^{-1}(\Gamma)$, which leads to the postulate. q.e.d.

Theorem 2.12 entails that an infinite σ-algebra is equinumerous with a power set if and only if Postulate 1 is valid. This suggests that there are infinite σ-algebras that are not equinumerous with infinite power sets.

REFERENCES