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Abstract. In this work ⊕− g−supplemented modules are defined and some properties of these
modules are investigated. It is proved that the finite direct sum of ⊕−g−supplemented modules
is also ⊕− g−supplemented. Let M be a distributive and ⊕− g−supplemented R−module.
Then every factor module and homomorphic image of M are ⊕− g−supplemented. Let M be
a ⊕− g−supplemented R−module with SSP property. Then every direct summand of M is
⊕−g−supplemented.
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1. INTRODUCTION

Throughout this paper all rings will be associative with identity and all modules
will be unital left modules.

Let R be a ring and M be an R -module. We will denote a submodule N of M by
N ≤ M. Let M be an R -module and N ≤ M. If L = M for every submodule L of
M such that M = N + L, then N is called a small submodule of M and denoted by
N ≪ M. Let M be an R -module and N ≤ M. If there exists a submodule K of M
such that M = N+K and N∩K = 0, then N is called a direct summand of M and it is
denoted by M = N⊕K. For any R−module M, we have M = M⊕0. The intersection
of all maximal submodules of M is called the radical of M and denoted by RadM.
A submodule N of an R -module M is called an essential submodule and denoted by
N ⊴ M in case K ∩N ̸= 0 for every submodule K ̸= 0. Let M be an R -module and K
be a submodule of M. K is called a generalized small (or briefly, g−small) submodule
of M if for every essential submodule T of M with the property M = K +T implies
that T = M, then we write K ≪g M (in [10], it is called an e-small submodule of
M and denoted by K ≪e M). It is clear that every small submodule is a generalized
small submodule but the converse is not true in general. Let M be an R -module.
M is called a hollow module if every proper submodule of M is small in M. M is
called a generalized hollow (or briefly, g−hollow) module if every proper submodule
of M is g-small in M. Here it is clear that every hollow module is generalized hollow.

© 2023 Miskolc University Press

http://dx.doi.org/10.18514/MMN.2023.3896


336 C. NEBIYEV AND H. H. ÖKTEN

The converse of this statement is not always true. M is called a local module if M
has the largest submodule, i.e. a proper submodule which contains all other proper
submodules. Let U and V be submodules of M. If M =U +V and V is minimal with
respect to this property, or equivalently, M =U +V and U ∩V ≪V , then V is called
a supplement of U in M. M is called a supplemented module if every submodule
of M has a supplement in M. If every submodule of M has a supplement that is a
direct summand in M, then M is called a ⊕−supplemented module. Let M be an R
−module and U,V ≤ M. If M = U +V and M = U + T with T ⊴ V implies that
T =V , or equivalently, M =U +V and U ∩V ≪g V , then V is called a g-supplement
of U in M. If every submodule of M has a g-supplement in M, then M is called a
g-supplemented module. A module M is said to have the Summand Sum Property
(SSP) if the sum of two direct summands of M is again a direct summand of M (see
[1]). We say that a module M has (D3) property if M1 ∩M2 is a direct summand
of M for every direct summands M1 and M2 of M with M = M1 +M2 (see[7]). The
intersection of all essential maximal submodules of an R−module M is called the
generalized radical of M and denoted by RadgM (in [10], it is denoted by RadeM). If
M have no essential maximal submodules, then we denote RadgM = M.

More information about supplemented modules are in [2, 9]. More results about
⊕−supplemented modules are in [3, 4, 7]. More information about g-supplemented
modules are in [5].

Now we will give some important properties of generalized small submodules.

Lemma 1. Let M be an R -module and K, N ≤ M. Consider the following condi-
tions.

(1) If K ≤ N and N is a generalized small submodule of M, then K is a general-
ized small submodule of M.

(2) If K is contained in N and a generalized small submodule of N, then K is a
generalized small submodule in submodules of M which contains N.

(3) Let T be an R−module and f : M → T be an R-module homomorphism. If
K ≪g M, then f (K)≪g T .

(4) If K ≪g L and N ≪g T with L, T ≤ M, then K +N ≪g L+T .

Proof. See [5, Lemma 1]. □

Corollary 1. Let M be an R -module and K ≤ N ≤ M. If N ≪g M, then N/K ≪g
M/K. [5]

Corollary 2. Let M be an R -module, K ≪g M and L ≤ M. Then (K +L)/L ≪g
M/L. [5]
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2. ⊕−g−SUPPLEMENTED MODULES

Definition 1. Let M be an R−module. If every submodule of M has a g-supplement
that is a direct summand of M, then M is called a ⊕−g−supplemented module. (See
also [8])

Clearly we can see that every ⊕− g−supplemented module is g−supplemented.
We also clearly can see that every ⊕−supplemented and every generalized hollow
modules are ⊕−g−supplemented.

Lemma 2. Let M be an R−module, V be a supplement of U in M and X ,Y ≤ V .
Then X is a g-supplement of Y in V if and only if X is a g-supplement of U +Y in M.

Proof. (=⇒)Let M = U +Y + T with T ⊴ X . Since V is a supplement of U in
M and Y +T ≤V , V = Y +T and since X is a g-supplement of Y in V , then T = X .
Hence X is a g-supplement of U +Y in M.

(⇐=) Let V = Y + T with T ⊴ X . Since V is a supplement of U in M, M =
U +V =U +Y +T and since X is a g-supplement of U +Y in M, then T = X . Hence
X is a g-supplement of Y in V . □

Corollary 3. Let M = M1 ⊕M2 and X ,Y ≤ M2. Then X is a g-supplement of Y in
M2 if and only if X is a g-supplement of M1 +Y in M.

Proof. Clear from Lemma 2. □

Lemma 3. Let M be an R−module and M = M1 ⊕M2. If M1 and M2 are ⊕−
g−supplemented, then M is also ⊕−g−supplemented.

Proof. Let U be any submodule of M. Since M2 is ⊕−g−supplemented, (M1 +U)
∩M2 has a g-supplement X that is a direct summand of M2. Since X is a g-supplement
of (M1 +U)∩M2 in M2, M2 = (M1 +U)∩M2 +X and (M1 +U)∩X = (M1 +U)∩
M2 ∩ X ≪g X . By M2 = (M1 +U)∩M2 + X , M = M1 ⊕M2 = M1 + (M1 +U)∩
M2 +X = M1 +U +X . Since M1 is ⊕− g−supplemented, (U +X)∩M1 has a g-
supplement Y that is a direct summand of M1. Since Y is a g-supplement of (U +X)∩
M1 in M1, M1 = (U +X)∩M1 +Y and (U +X)∩Y = (U +X)∩M1 ∩Y ≪g Y . By
M1 = (U +X)∩M1+Y , M = M1+U +X = (U +X)∩M1+Y +U +X =U +X +Y .
Since (M1 +U)∩ X ≪g X and (U +X)∩Y ≪g Y , by Lemma 1, U ∩ (X +Y ) ≤
(U +Y )∩X +(U +X)∩Y ≤ (M1 +U)∩X +(U +X)∩Y ≪g X +Y . Hence X +Y
is a g-supplement of U in M. Since X is a direct summand of M2 and Y is a dir-
ect summand of M1, X +Y is a direct summand of M = M1 ⊕ M2. Hence M is
⊕−g−supplemented. □

Corollary 4. Let M be an R−module and M = M1 ⊕M2 ⊕ ...⊕Mn. If Mi is ⊕−
g−supplemented for every i = 1,2, ...,n, then M is also ⊕−g−supplemented.

Proof. Clear from Lemma 3. □
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Proposition 1. Let M be a ⊕− g−supplemented module. If every g-supplement
submodule in M is a direct summand of M, then every direct summand of M is ⊕−
g−supplemented.

Proof. Let N be a direct summand of M and M = N ⊕K with K ≤ M. Since M is
g-supplemented, by [5, Theorem 2], M/K is g-supplemented. By M

K = N⊕K
K

∼= N
N∩K =

N
0
∼= N, N is also g-supplemented. Let X ≤ N and Y be a g-supplement of X in N.

Since M = N ⊕K, by Corollary 3, Y is a g-supplement of K +X in M. Since every g-
supplement submodule in M is a direct summand of M, Y is a direct summand of M.
By Y ≤ N, Y is also a direct summand of N. Hence N is ⊕−g−supplemented. □

Lemma 4. Let M be a ⊕−g−supplemented R−module and K ≤ M. If X+K
K is a

direct summand of M
K for every direct summand X of M, then M

K is ⊕−g−supplemented.

Proof. Let U/K be any submodule of M/K. Since M is ⊕−g−supplemented, U
has a g-supplement X in M that is a direct summand in M. Since X is a g-supplement
of U in M and K ≤ U , by [5, Lemma 4], X+K

K is a g-supplement of U/K in M/K.
Since X is a direct summand of M, by hypothesis, X+K

K is a direct summand of M/K.
Hence M/K is ⊕−g−supplemented. □

Lemma 5. Let M be a distributive and ⊕− g−supplemented R−module. Then
every factor module of M is ⊕−g−supplemented.

Proof. Let K ≤ M and X be a direct summand of M. Since X is a direct summand
of M, there exists Y ≤ M such that M = X ⊕Y . Since M = X ⊕Y , M

K = X+K
K + Y+K

K .
Since M is distributive, (X +K)∩ (Y +K) = K and X+K

K ∩ Y+K
K = (X+K)∩(Y+K)

K =
K
K = 0. Hence M

K = X+K
K ⊕ Y+K

K and by Lemma 4, M/K is ⊕−g−supplemented. □

Corollary 5. Let M be a distributive and ⊕−g−supplemented R−module. Then
every homomorphic image of M is ⊕−g−supplemented.

Proof. Clear from Lemma 5. □

Lemma 6. Let M be a ⊕−g−supplemented R−module with (D3) property. Then
every direct summand of M is ⊕−g−supplemented.

Proof. Let K be any direct summand of M. Then there exists T ≤ M such that
M = K ⊕ T . Let U ≤ K. Since M is ⊕− g−supplemented, U has a g-supplement
X that is a direct summand in M. Here M =U +X and U ∩X ≪g X . Since U ≤ K,
M =U +X = K+X and since M has (D3) property, K∩X is a direct summand of M.
Then there exists Y ≤ M such that M = (K ∩X)⊕Y . Here K = (K ∩X)⊕ (K ∩Y ).
Since M =U+X and U ≤K, by Modular Law, K =U+(K ∩X). Let π : M −→K∩X
be a canonical projection. Since U∩X ≪g X ≤M, by Lemma 1, U∩K∩X =U∩X =
π(U ∩X)≪g K ∩X . Hence K is ⊕−g−supplemented. □

Corollary 6. Let M be a ⊕− g−supplemented R−module with (D3) property.
Then M/X is ⊕−g−supplemented for every direct summand X of M.
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Proof. Let X be any direct summand of M. Then there exists Y ≤ M such that M =
X ⊕Y . By Lemma 6, Y is ⊕−g−supplemented. Then by M

X = X+Y
X

∼= Y
X∩Y = Y

0
∼=Y ,

M/X is also ⊕−g−supplemented. □

Corollary 7. Let M be a ⊕−g−supplemented R−module with (D3) property and
f : M −→ N be an R−module epimorphism with N is an R−module and Ker ( f ) is a
direct summand of M. Then N is ⊕−g−supplemented.

Proof. Clear from Corollary 6, since M/Ker ( f )∼= Im( f ) = N. □

Lemma 7. Let M be a ⊕−g−supplemented R−module, K ≤M and K = (K ∩M1)
⊕(K ∩M2) for every M1,M2 ≤ M with M = M1 ⊕M2. Then M/K is ⊕−g−supple-
mented.

Proof. Let U/K ≤ M/K. Since M is ⊕−g−supplemented, U has a g-supplement
V that is a direct summand in M. Here there exists X ≤ M such that M =V ⊕X . By
hypothesis, K = (K ∩V )⊕(K ∩X). Since V is a g-supplement of U in M and K ≤U ,
by [5, Lemma 4], V+K

K is a g-supplement of U/K in M/K. Since M = V ⊕X , M
K =

V+K
K + X+K

K . Here V+K
K ∩ X+K

K = (V+K)∩(X+K)
K = (V+K)∩X+K

K = (V+K∩V+K∩X)∩X+K
K =

(V+K∩X)∩X+K
K = V∩X+K∩X+K

K = 0+K
K = K

K = 0. Hence M
K = V+K

K ⊕ X+K
K . Thus M/K

is ⊕−g−supplemented. □

Corollary 8. Let M be a ⊕− g−supplemented R−module, f : M −→ N be and
R−module epimorphism with N be an R−module and Ker ( f ) = (Ker ( f )∩M1)⊕
(Ker ( f )∩M2) for every M1,M2 ≤ M with M = M1 ⊕M2. Then N is ⊕−g−supple-
mented.

Proof. Clear from Lemma 7, since M/Ker ( f )∼= Im( f ) = N. □

Proposition 2. Let M be a ⊕− g−supplemented R−module. Then there exist
M1,M2 ≤ M such that M = M1 ⊕M2, RadgM1 ≪g M1 and RadgM2 = M2.

Proof. Since M is ⊕− g−supplemented, RadgM has a g-supplement M1 in M
such that M1 is a direct summand of M. Since M1 is a direct summand of M, there
exists M2 ≤ M such that M = M1 ⊕M2. Since M1 is a g-supplement of RadgM in
M, M = RadgM+M1 and M1 ∩RadgM ≪g M1. Since M = M1 ⊕M2, by [6, Lemma
4], RadgM = RadgM1 ⊕ RadgM2. Hence RadgM1 = M1 ∩ RadgM ≪g M1. Since
RadgM = RadgM1 ⊕RadgM2, M = RadgM+M1 = RadgM1 +RadgM2 +M1 = M1 ⊕
RadgM2. Hence M2 = M2 ∩M = M2 ∩ (M1 ⊕RadgM2) = (M2 ∩M1)⊕RadgM2 =
0⊕RadgM2 = RadgM2. □

Proposition 3. Let M be a ⊕− g−supplemented R−module. Then there exist
M1,M2 ≤ M such that M = M1 ⊕M2, RadM1 ≪g M1 and RadM2 = M2.

Proof. We can also prove this similar to proof of the previous Proposition. But we
prove by different way. Since M is ⊕−g−supplemented, RadM has a g-supplement



340 C. NEBIYEV AND H. H. ÖKTEN

M1 in M such that M1 is a direct summand of M. Since M1 is a direct summand of M,
there exists M2 ≤ M such that M = M1⊕M2. Since M1 is a g-supplement of RadM in
M, M = RadM+M1 and RadM1 = M1∩RadM ≪g M1. Assume that X be a maximal
submodule of M2. Since M

M1+X = M1+M2
M1+X

∼= M2
M2∩(M1+X) =

M2
M2∩M1+X = M2

X , M1 +X is a
maximal submodule of M. Then M = RadM+M1 ≤ M1+X . This is a contradiction.
Hence RadM2 = M2. □

Lemma 8. Let M be a ⊕−g−supplemented R−module with SSP property. Then
M/K is ⊕−g−supplemented for every direct summand K of M.

Proof. Let K be any direct summand of M and U/K ≤ M/K. Since M is ⊕−
g−supplemented, U has a g-supplement V in M such that V is a direct summand of
M. By [5, Lemma 4], V+K

K is a g-supplement of U/K in M/K. Since K and V are
direct summands of M and M has SSP property, K +V is also a direct summand of
M. Hence there exists T ≤ M such that M = (K +V )⊕T . Since M = (K +V )⊕T ,
M
K = K+V+T

K = V+K
K + T+K

K . Since (V +K)∩ T = 0, V+K
K ∩ T+K

K = (V+K)∩(T+K)
K =

(V+K)∩T+K
K = 0+K

K = 0. Hence M
K = V+K

K ⊕ T+K
K and M/K is ⊕− g−supplemented.

□

Corollary 9. Let M be a ⊕−g−supplemented R−module with SSP property. Then
every direct summand of M is ⊕−g−supplemented.

Proof. Let T be any direct summand of M. Then there exists a submodule K
of M such that M = T ⊕K. By Lemma 8, M/K is ⊕− g−supplemented. Since
M
K = T+K

K
∼= T

T∩K = T
0
∼= T , T is also ⊕−g−supplemented. □

Remark 1. Let M be an R−module which has only four proper submodules 0,
A, B, C with C ≤ A, C ≤ B, A ≰ B and B ≰ A. Then M is g-supplemented but not
⊕−g−supplemented.
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