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Abstract. This work deals with a Timoshenko equation with delay term and variable exponents.
Firstly, we obtain the blow up of solutions for negative initial energy in a finite time. Later, we
establish the decay results by using an integral inequality due to Komornik. These, improve and
extend the previous studies in the literature.
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1. INTRODUCTION

This paper is interested to study the following problem:

'un+A2u—M(||vu|y2) Au— Au,
m(x)—2
—|—,ulu,(x,t)|u,| (x7t) iHQXR+,
s (x,1 =) [ty "2 (x,1 — 1)
:bM‘M’p(x)iz (11)
u(x,t) = a”(-gf)”) =0 onx € 0Q, t €[0,),
M(X,O) = Uo ()C), Ut (X,O) =up ()C) in Q,
Ly (x, 0 — 1) = fo(x,t—7) inQ x (0,1),

which is contained a Timoshenko equation over Q x R* with the Dirichlet-Neumann
conditions on dQ and the initial conditions on Q and finally a initial condition related
to the presence of the delay time T > 0, given in Q x (0,7) where Q is a bounded
domain in R" with sufficiently smooth boundary. y is a positive constant, t is a real
number, b > 0 is a constant and 0 is the unit outward normal vector on dQ. M (s) is
a positive C!-function given as M (s) = 1+ s" for s > 0, vy > 0. The exponents m (-)
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and p (-) are given continuous functions on  and satisfy

2<m” <m(x) <m" <m* (12)
2<p <px)<pt<ph, '
where
m~ =ess inf m(x), m' = ess inf m (x)
xeQ x€Q
p~ =essinf p(x), pT=essinf p(x),
xeQ x€Q
and

2<ptmt <o ifn<4,

2<ptmt <2 ifn>4.
The Timoshenko equation is among the famous wave equation’s model which de-
scribe extensible beam theory. It has been introduced in 1921 by Timoshenko [31].
For detailed information on derivation the equation, see [9]. The problems with vari-
able exponents arises in many branches in sciences such as nonlinear elasticity theory,
electrorheological fluids and image processing [6,8,29]. Time delay appears in many
practical problems such as thermal, biological, chemical, physical and economic phe-
nomena [15].

Datko et al. [7], indicated that a small delay in a boundary control is a source of

instability. In [20], Nicaise and Pignotti studied the equation as follows

uyy — Au+ aguy (x,t) +aug (x,t — 1) = 0,

where ag, a are positive real parameters. They obtained that, under the condition
0 < a < ayp, the system is exponentially stable. In the case a > ag, they obtained a
sequence of delays that shows the solution is instable. In [32], Xu et al. obtained the
same result similar to the [20] for the one space dimension by adopting the spectral
analysis approach. In [19], Nicaise et al. studied the wave equation in one space
dimension in the case of time-varying delay. In that work, they showed that an expo-
nential stability result under the condition

a<V1—da,
where d is a constant such that
T () <d<1,Vt>0.
In [11], Feng studied the following equation

t
un—i—Azu—M(HVuHZ) Au—/o g(t—s)Au(s)ds~+uiu + pou (t —) = 0.

He obtained well-posedness of solutions with |uy| < uy, and proved decay results
under the assumption |uy | < ;.
Park [21], looked into the following equation
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t
utt+A2u—M<||VuH2)Au+6(t)/ g (i —s)Au(s)ds
0
+aouy +aju (t—7(r)) =0.

He established decay results under the assumption |a;| < /1 —day.
Antontsev et al. [2] concerned with the following equation with variable exponents

Uy + A%u— Auy + |ut|p(x)72 U = |u\q(x)72 u. (1.3)

They proved the local weak solutions and obtained the blow up results for the (1.3)
under suitable conditions.
Antontsev et al. [5] examined the following equation with variable exponents

e +Au—M (||Vu||2> Au+ |y POy = |u| 7972, (1.4)

They established the local existence and proved the nonexistence of solutions with
negative initial energy for the equation (1.4).

When M(s) = 1, and in the absence of (+A?u) term and without strong damping
term (—Au,), the equation (1.1) becomes the following equation

e — Au gty (x,1) g™ 7% (x, 1)

+ ity (3,1 — T Juag "2 (e, — 1) = bu[u[P 2 (1.5)

Messaoudi and Kafini [14] established the decay estimates and proved the global
nonexistence of the equation (1.5).

In recent years, some other authors investigated related studies (see [1,2, 12, 13,

,22-28,30,33-38]).

In the present paper, we consider the blow up and the decay results for the
Timoshenko equation (1.1) with delay term and variable exponents. Our aim in this
work is to study the Timoshenko equation with the strong damping term (—Au),
delay term (upu; (x,¢ — 1)) and variable exponents.

The plan of this paper is as follows: In Section 2, the definitions of the variable
exponent Lebesgue spaces LP() (Q) and Sobolev spaces W'»() (Q), as well as some
of their properties, are stated. In Section 3, we prove the blow up of solutions for neg-
ative initial energy. In Section 4, we establish the decay results by using an integral
inequality due to Komornik.

2. PRELIMINARIES

Let us start by presents our functional spaces and some related results taken from

[ b b b b ]'
Let p: Q — [1,00) be a measurable function. The variable exponent Lebesgue
space with a variable exponent p (-) defined as

’YQ) = {u: Q — R measurable in Q :/ u|? dx < oo },
Q
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and inner with a Luxemburg-type norm

= inf k>0:/
HMHp(.) 1n{ o

is a Banach space (see [8]).
We define the variable-exponent Sobolev space W'7() (Q) as follows

u

A

p(x)
dx <1y,

whrh) (Q) = {u e L") (Q) : Vuexists and |Vu| € LPL) (Q)} .
Variable exponent Sobolev space with respect to the norm

ully iy = Nl + [ Vallpe

is a Banach space. The space WO1 2() () is defined to be the closure of Cj () in
whPL) (Q). The dual space of Wol’p(') (Q) is WO_I’p 0 (), defined in the same way
as in the classical Sobolev spaces, where

1 1

p()P()

S

Assume that

<2 <2
log|x —y]| log|x—y

forall x,y € Q,A,B>0and 0 < § < 1 with [x—y| < 3. (log-Holder condition).
If p > 1 is a measurable function on Q, then

. - + - +
min { a2 a2y} <y () < max {2l )}

for a.e. x € Q and for any u € LP1) (Q).
Let p,q,s > 1 be measurable functions defined on Q such that
1 1 1
= + fora.e. y € Q.
s) PO 4q0)

If f € LP0)(Q) and g € L11) (Q), then fg € L*") (Q) and
178llsy < 201 p) gl -

(Holder’s inequality).

Lemma 1 (pp. 506 in [4], Poincaré’s inequality). Suppose that p (-) satisfies (2.1)
and let Q be a bounded domain of R". Then,

1,p(
Hu”,,(.) <c HVMH,,(.) fOF all u € WO P0) (.Q),

where c=c(p~,p",|Q|) > 0.
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Lemma 2 ([8]). Let m(-) € C (ﬁ) and p: Q — [1,0) be a measurable function,
such that

x €Q(m*(x)—p(x)) > 0.

ess inf

Then, the Sobolev embedding WO1 m) (Q) — LPW (Q) is continuous and compact,
where

nm_ . —
{nm‘ ifm= <n,

any number in [l,00) ifm~ > n.
If in addition m (-) satisfies log-Hdlder condition, then

{m ifm(a) <n

any number in [1,00) if m(x) > n.

Remark 1. Let c be various positive constants which may be different from line to
line. Then, we use the embedding

HZ (Q) — H} (Q) = LP (Q)

which satisfies

lull, < e [[Vull < c||Aul],

where2 < p<oo(n=1,2),2<p< nzf"z (n > 3). Moreover,

0 ifn <4,
[ul|, < cllAull, p =< any number in [1,00) ifn=4,
2 ifn> 4.

3. BLOW UP RESULTS

In this part, we give the blow up result of solutions under two conditions, the first
one if the initial energy is negative and the second if the weight of the external force
b > 0. Firstly, as in [20], we introduce the new function

2(x,p,t) = u (x,t—1p), x€Q, p(0,1),1>0 (3.1)
which gives
2 (x,P,1) +2p (x,p,1) =0, x €Q, p€(0,1), 1 >0.

Then, the problem (1.1) takes the form
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un—f—Azu—M(HVqu) Au

— Aug + pyuy (x,1) |y (xat)|m(X)72 in Q x (0,

iz (x,1,0) |2 (x, 1,0)] "7

= buu|P™ 2 (3.2)
T2 (x,p,1) +2p (x,p,1) =0 in Qx (0,1) x (0,0),

z(x,p,0) = fo (x,—p1) inQx(0,1),

u(x,1) = 2450 onx €99, 1 €[0,00),

u(x,0) =ugp (x), u (x,0) =u; (x) inQ.

Similar to the work of Kafini and Messaoudi [

], we can write the following
definition:

Definition 1. Fix 7 > 0. We call (u,z) a strong solution of (3.2) if
ue W= ([0,T);L*(Q)) W' ([0,T);H; (Q))
NL=([0,T);H* (Q)NH; (Q)),
u € L") (Qx (0,7)),
2eW'=([0,1] x [0,T): L2 (Q)) N L™ ([0, 1]:2"0 (@) N [o,T))

and (u, z) satisfies the initial data and (3.2) in the following sense:
/ut,(-,t)vdx+/Azu(-,z)vdx—/M(Hvu(.,r)uz) At (1) velx
Q Q Q
— [ A Cpvixet g [ )"0 v
Q Q
o [ 0P 2 1) v
Q

:b/ \u(-,t)|”(')*2u(-,t)vdx
Q
and
1:/gzt(',F>J)v1/cz')c+/gzp(-,p,t)wdx:O,
for a.e. t € [0,T) and for (v,w) € H3 (Q)NL*(Q).

The energy functional related to (3.2) is given by

o2 1 2 1 2
E()== —||A —||V

L&) |z (xp,0)"Y Ju?®)
—i—/o /Q () dxdp—>b o p () dx,

V]P0
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for t > 0, where & is a continuous function satisfying

o] (m(x) = 1) <E(x) <T(uim(x) —|mn]), x € Q. (3.3)

The following lemma shows that the related energy of the problem is nonincreasing
under the condition u; > |us|.

Lemma 3. Let (u,z) be a solution of (3.2), such that

E'(0) < ~Co [ (Ju"+ lz(x1,0)") dx <0,
Q
for some Cy > 0.

Proof. Multiplying the first equation in (3.2) by u,, integrating over €2, then mul-
tiplying the second equation in (3.2) by 1&(x)|z m(x)=2
Q % (0,1), then summing, we obtain

z and integrating over

dl, o 1 2 1 2 1 2(v+1)
— 5 + 5 Aull+ 5 [[Vul”+ V|7
i[5 1P+ 5 Dl 1P 4 s 1
plx
+//& rzxp, Y indp— b/|| ]
:—,ul/ \ut\m(x)dxf/ Vi, |* dx (3.4)
Q Q

e ()
— 2 | [ e@leepnl™ 2z (. pur) dp
—/Jz/ iz (x,1,1) |z (x, 1,6) "2 dx.
Q

Now, we estimate the last two terms of the right hand side of (3.4) as follows,

—f// E(x) |z (x,p, )" x)_zzzp (x,p,)dpdx

ik (o

g(())(y (x,0,1)"¢ —\z(x,l,f)r"(x))dx
an(() Var— [ =0 S0 e 1.
By using Young’s inequality, g = m'a(;‘jl and ¢’ = m(x) for the last term, we get
e e e T I
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Consequently, we conclude that

— 2 /Q wz]z (x,1,0)" 2 dx

1 m(x)—1
< m(x) / m) gy )
< || </Qm(x) o ()" dx+ | () |2 (x, 1,0)[" dx

dE (1)

T _/g (m - (571(2) + Jf(il))) g (1)) dx
_/Q< E(x) |ﬂ2|(m(x)—1)> (e 10" dx.

m (x) m(x)

Thus,

As a result, for all x € Q, the relation (3.3) yields

(S0 J

wm(x)  m(x)

) >0, f2 (X) — ,.fn(éz) _ ’“2’ (Zéii — 1)

Since m (x), and hence & (x), is bounded, we infer that fi (x) and f; (x) are bounded.
Hence, if we define

Co (x) =min{fi (x), f2(x)} >0 for any x € Q,
and take Cy = inf5Cy (x), then Cy (x) > Cp > 0. Therefore,

E (1)< -G [ [hworoacs [ |z<x,1,r>r"’<">dx] <o.

fi(x) =p — > 0.

g

In order to obtain the blow up result, we suppose in addition to (1.2) that £ (0) < 0.
We set

H(t)=—-E{),
therefore,
H (t)=—-E'(t) >0,
O<HO)<H@)<b de< ip(u)
- “Japl) T T
where

p () =y () = f u"

Lemma 4 (Lemma 3.2, Lemma 3.6 and Lemma 3.7 in [14]). Assume that the
exponents m(-) and p (-) satisfy

2<m” <m(x)<m"<p <p(x)<pT<2+ ifn>4.

n—4
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Then, depending on Q only, there exists a positive C > 1, such that
P/ () < (llAulP +p (w)).
Then, for any u € Hé (Q) and 2 < s < p~, we have the following inequalities:
@)
K 2 p-
Jully < € (Nl + )
(i1)

x) |z (x m(x)
p/r” (u)§C<|H(t)|+||u;|2+p(u)+/01/9§( )’Z;Eg’”’ dxdp),

(iii)

; [ E@ R
uuupsc<rH<r>|+uufH2+uuu§+ [ sy ) 35)

(iv)
p(u)>Clully-, (3.6)
(v)
[ dx< e (pm 0w+ (w)) 3.7)
Q
To obtain the main result we have the theorem as follows:

Theorem 1. Let the condition (2.1) holds and Lemma 4 be provided. Suppose
further E (0) < 0, and the exponents m(-) and p (-) satisfy

4
2<mm<mx)<mt<p <p()<p’<24-—0  ifn>4
p—

Then, the solution of (3.2) blows up in finite time.
Proof. We define

LG) :Hlfa(t)jue/ s+~ |Vl (3.8)
Q

for small € to be chosen later and

(3.9)

Ogocgmin{p P m }

2p= " p(mt—1)
A direct differentiation of (3.8) using the first equation in (3.2) gives

L’(t):(1—oc)H’“(t)H’(t)—H—:/Qu,zdx—e/g|Au|2dx—£/Q]Vu\2dx

*8/ W”|2(Y+l)dx+8b/ \u|p(x)dx—8#1/ uuy (x,1) |uy (x,t)|m(x>72dx
Q o o
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m(x)—2

—Syz/uz(x,l,t)]z(x,l,tﬂ dx.
Q

Recalling the definition of H (¢) and for 0 < a < 1, we get

L'(t)>Co(1—a)H *(¢) [/Q|”f (1)) der/Q!z(x,l,t)r"(X) dx]

2 2

(1-a)p~ 2 (I—a)p” 2(y+1)
re (U v+ G vl

x) |z (x m(x)
+e(1—a)p/01/9§( ”Z,E,{,f)’”' dxdp

+£/ [~ 18uf ~ |Vul? — V5D
Q

+e<<1—a>p-H<z>+“‘“)p||utu2+““’)” |Au||2)

—|—£ab/ \u]p(x)dx—s;l]/uu, (x,1) uy (x,t)]mmizdx
Q Q
m(x)—2

—EyQ/uz(x,l,t) (e 1,0 dx.
Q

Therefore,

L'(t)>Co(1—a)H *(1) |:/Q’uf(t)’m()c)dx+‘/g‘2(x,l,t)’mmdx]

_ l—a)p”+2
ve(t-a)pHo el U2,
l—a)p™ -2 l—a)p™ -2
+e(“)2pmuuz+s(“)2p\vuu2
(—a)p” —2(v+1) o 20k
€ Vu| "
re Ty IVl

e (e o100
—H—:(l—a)p_/ol/gg’( ”an&’)’”' dxdp -+ eabp (1)

—e / ity (1) [ (e, 1) dix
Q

m(x)—2

—eﬂz/QMZ(x,l,t) 20 1,0)" 7 .

Utilizing Young’s inequality, we obtain

m(x)— 1 m(x +—1 _ m(x) m(x
/|u,| O ) dx < 7_/ 8" u" g+ " /5 W g™ dx (3.10)
Q m~ Ja m Q
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mi(x)— 1 m(x
[ et udr < */ 8’"<x>\ur Y dx
Q

A | (e, 1,0 d.

and

(3.11)

The estimates (3.10) and (3.11) remain vahd 1f d is time-dependent. Hence, taking &
such that

m (x)

& T = kH % (1),
for large k > 1 to be speciﬁed later, we obtain
/ &1 (| dx = kH—© (r)/Q 4y ") i, (3.12)
/QS*W 206, 1,0 dx = kH= (1) |z (x, 1,0) " dx (3.13)
and
8l = [ B ) (3.14)

/kl me gem=1) /\u| (3.15)

By using (3.6) and (3.7), we obtain
H =D (g )/ | dx <
Q

C[(p ™ /7D o ) e ] g6
From (3.9), we infer that
s=m +op (m*— 1) <p ands=m"+op” (m+— l) <p.
Thus, Lemma 4 yields

HO =) )/ | dx<C(HAuH2+p(u)>. (3.17)
By combining (3.10)-(3.17), we conclude that

L'(@)>(1—a)H () [C0—8<m+_1>ck] /Q|ut (1)

+(1—a)H () [C0£<:;;+ 1) ck] /Q\z(x,l,t)y'"“ dx

(p~—2)—ap” C 2, (d—a)p =2 _
— A — ||V
e (2 Yl e 2 g
1-— 42
+8(1—a)pH(t)+€(a)2pHu,H2 (3.18)
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(1-a)p” —2(y+1) 2(74+1) % Now
+e (Y+1) (| Ve | |7V +s(ab mkml>p()

R [z,
e(1—a)p /0 /Q () dxdp.

By choosing a small enough, such that
(1—a)p -2

(1-—a)p” —2(y+1)

>0 and >0,
2 2(v+1)
and k so large that
(p~—2)—ap~ C c
) —m_km,_l >0 and ab—m > 0.
Once k and a are fixed, we choose € small enough that
t—1 t—1
co—e<m >ck>0, co—e<m >ck>0
m+ m+

and

L(0) = H'~*(0) +£/Qu0 ()t (¥)dx-+ 5 [ Vo[> > 0.
Therefore, (3.18) becomes

L'(r) > en [H (1) + e > + | A * + || Va* + || V] PV

L) |z (x,p,r)"
u)—i—/o /Q () dxdp |,

for a constant 11 > 0. As a result,
L(t)>L(0)>0 Vr>0.

Next, for some constants 6, I' > 0, we show L’ () > IT'L° (¢). For this reason, we

estimate
‘ / uuy (x,1) dx
Q

(3.19)

< lfutlla [luelly < Cllal] - Nl

which implies
1/(1-o)
1/(1- 1
L ey <l gy
and utilizing Young’s inequality yields

1/(17()() S 0/(1-
mu OL O(
Aymmow C {11l |5
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where 1/u+1/® = 1. From (3.9), the choice of ® = 2(1 —a) will make
u/(1—a)=2/(1-2a) < p~. Hence,

/ uuy (x,1) dx
Q

where s = u/ (1 — o). By (3.5), we obtain

1/(1-a)

2
< [ully- + ]

1/(1-a)

<C[JH ()] + u]* +p ()

LBz (xp,)"Y
P [ Bkt dxdp]_

/ uuy (x,t)dx
Q

On the other hand, we have

e 1/(1-a)
1V/(1-a) (t) = [H(I“) (t)+£/ uuzdx+2\|vu\|2}
Q

1/(1-o)
/ uuydx ]
Q

1 X X
H O+l +p )+ | /f( ”Z,i{f)’t

Thus, for some ¥ > 0, from (3.19) we arrive at L' (t) > WL'/(1=®) (¢). A simple
integration over (0,¢) yields

Szoc/(lfoc) H(t)—l—el/(lfa)

m(x)
<c )l

dxdp] .

1
L(l/(l*(x) >
)= L~%/(1-) (0) — Por / (1 — )

which implies that the solution blows up in a finite time 7, with

11—

T* .
~ o [L(0)]/1

N

As a result, the proof is completed. ([l

4. DECAY RESULTS

In this part, we obtain the decay results for the problem (4.1) without source term
(i.e. b =0). Similar to the beginning of the blow up section, we introduce a same
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function z defined in (3.1), hence the problem (1.1) becomes equivalent to:

futt—l—Azu—M(HVqu) Au — Auy
g (x,) g (x, 1) "9 2 in Q% (0,e0),
+ 1z (x,1,1) |z (x, l,z‘)|m(x)_2 =0,
T2 (x,p,1) +2p (x,p,1) =0 in Qx(0,1) % (0,00), .1
(X P, ) fO(x _pt) in Q X (071)7
u(x,r) = 241 — o onx€dQ, 1 € [0,%),
u(x,0) =up(x), u, (x,0) =u; (x) in Q.
The energy functional associated to (4.1) is given by
1 2 1 2 1 2 1 2(y+1)
E(t)=~ ~ Al < |V \%
(0= 5 P+ 3 NP+ 5 90l + o [
1 m(x)
L LU U, ws)
0 Jo m (x)

where & is the continuous function introduced in (3.3) and ¢ > 0.
Similar to Lemma 3, we easily establish, for u; > |uz| and for some Cy > 0, that

E’(t)g—Co/ (1™ + 12 (x,1,6) ") dx < 0.
Q

Lemma 5 (Komornik, pp. 103 and pp. 124 in [17]). Let E: Rt — R be a nonin-
creasing function, such that

i 1
/ EVO(1)dr < SEC(O0)E(s) = cE(s) 5> 0,
where o, ® > 0. Then, we have

E(t)<cE(0)/(1+0)"° ife>0,
E(t) <cE(0)e ™ ifo=0,

forallt > 0.
We need the following technical lemma, before we state the main theorem:

Lemma 6 (Lemma 4.2 in [14]). The functional

FO =2 [ Pe0letpn™awp,

satisfies, along the solution of (4.1),

/F, ) [ | Vdx —te~ //i \zxpt| ) dxdp.
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Theorem 2. Suppose that the condition (2.1) is satisfied and the exponents m (-)
and p (-) satisfy

4
2§m_gm(x)§m+<p_§p(x)§p+§2+74 ifn>4.
n_

Then, there exist two constants c, 0. > 0 independent of t, such that, any global solu-
tion of (4.1) satisfies,

E(r) <ce™™ ifm(x) =2,
E (1) < cE(0)/(1+0)%" 2 ifm+

Proof. Multiplying the first equation of (4.1) by uE4(t), for g > 0 to be specified
later, and integrating over Q x (s,T), s < T, to get

T
/ E?(t) / (uu,, + ul?u — uhu — || V| uhu — uAu,
s Q
gt " oz (5,1, [z (e, 1, "2 ) dixde = 0,
which gives
r d 2 2 2
/ E (r)/ @ uty) — 2+ |Auf + |V
s o\ dt
1Vl Y [ Vul? + VaVig + o (x,0) g (x,0)"0 72 (43)
+ppuz (x,1,1) |z (x, l,t)]m(x)_2> dxdt =0

Recalling the definition of E () given in (4.2), adding and subtracting some terms
and using the relation

d d
E9(t )/ uudx | = gET' (1) E’ (t)/ uudx + E? (t)—/ uuydx,
dt Q Q dt Jo

the equation (4.3) becomes,

T T 4
2/ E‘I“(z)dr:—/ o <E‘1( )/ uutdx) dt+q/ ET (1)E' (t)/ uu;dxdt
s s Q
/ E‘f/||Vu|]27|Vu2}dxdt+2/ EY(t /u,zdxdz
y+1
Lt E4(0) [Vl ) ar
2 s dt Q
q T g—1 / 2
+5 ET"(t)E'(t) | |Vul| dxdt (4.4)
s Q

T
—,ul/ E1 (t)/uut\ut]m(x)_dedt
s Q
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—m/ Eq<>/uz<x,1,r>|z<x,1,r>\ (92 g

+2/E" //é ‘”pt' dxdpdt.

Now, we estimate the parts on the right side of (4.4), respectively.
The first term is estimated as follows:

‘_/sTcCllt <Eq( )/Quu,dx> dt

= E"(s)/guut (x,s)dx—Eq(T)/Quu, (x,T)dx

< %Eq (s) [/Qu2 (x,s)dx—|—/gut2 (x,s)dx}

+%E‘1(T) [/Quz(x,T)dx—F/Qutz(x,T)dx}

< SE15) Gy lau () +2E ()|
+SE(T) [C, | Au ()3 426 (7)]
< E1() (G (5) + E (5)] + E9 (T) (G, (T) + E(T)),

where C, is the Poincare constant. Recalling that E (¢) is decreasing, we infer that

—/ST;II (Eq( )/Quu,dx>dt

In a similar way, we handle the term

‘ / ET™ 1 /uu,dxdt

< cET (5) < cE1(0)E (s) < cE (s). (4.5)

< q/ B (1) (1)[C,E (T) + E(T)] di

< —C/TE‘I () E' (1) < cET™ (s) < cE (s).

| 2y/ (”Zﬂ'l /| u2|dx>dt

<‘ 2y/ E9(E (1)) dt

We estimate the next term as follows,

v+1/ Eq/ |Vu|| |Vi? | dxdt| =

27/ ('W H)l )dt

<c / E4 (1) dt < C°E (s)

(4.6)

where C* is a generic constant.
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To treat the other term, we set
Q={xeQ, |u(x,t)| >1} and Q ={xeQ, |y (x,1)] <1},

and by using the Holder’s and Young’s inequalities, to obtain

T
/ E"(t)/u,zdxdt
s Q
T
/ E‘(1) [ / uldx + / u,zdx] dr
s QL Q_

T B Z/m’ N 2/)"1Jr
gc/ E4 (1) (/ | dx) + (/ | dx> d
s Q. Q_
T i Z/m_ 2/m+
c/ E9(t) (/ gy | a’x> + (/ g, | a’x) ] dt
s Q Q

c/TEq )| (~E' )"+ (—E 0)*" | ar
< ca/T [E (1)) /m =2 dt+c(e)/T (—E'(1))dt

T T
+c£/ E(t)‘”ldt—l—c(s)/ (—E’(t))z(q“)/wdt.

IN

IN

For m~ > 2 and the choice of ¢ = m™ /2 — 1 will make
Therefore,

T
/ E? (t)/u,zdxa’t
s Q

gy

m m

mt—m—

<ce / BT dr + e [E(0)) / Y@ ar

T
+c(e)E(s)gce/ EO™di+c(e)E(s). (47

For the case m~ = 2 and the choice of ¢ = m™ /2 — 1 will give a similar result.
The other term is estimated as follows:

‘_;/ST:;; <Eq(t)/Q|Vu|2dx> d
JEO) [ Au(Pdx+3E(s) [ au(T)Pdr <

BT (5) < e (ESIRI(0) ) E(s) SME(s) (48)

<

where ¢ and A are positive constants.
Similarly,

T
/ E‘Fl(t)E’(t)/ \Vul2dxdt <
s Q
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CETYm () < ¢ (Eq—1+2/m+ (0)) E(s) <ME(s) (4.9)

where ¢ and A are positive constants.
For the other term, utilizing Young’s inequality, we conclude that

‘ —uy /TEq( )/Q g™ dxdt | <
e/ E4(1 /\u dde—c/TEq()/ch(x)|u,(t)|m(x)dxdt§
e/s E?(t) [/ dx+/ dx] dt

te / "E1(r) /Q ce () [ ()™ dxdr,

N

where we have used Young’s inequality with

o)
p)= 7P () =m().

thus,
ce (x) = (m(x) — 1) m (o)™ (=m) g1/ (1=m(x))

Hence, by using the embeddings Hj (Q) < L™ (Q) and H} (Q) < L™ (Q), we
conclude that

T 1
‘—m / E4(1) / oty " s
Q
m- mt
<e [ B0 [elaulg +elmu)l ] ar
te / E4(1) / ce (%) ur (1) dxdt
K Q

<e / "o (1) [CEU"’-Z)/Z (0)E (t)+cE"™ 22 (0)E (z)} dt

(4.10)

+c/ E9(0) [ ce () (0] dc
<c£/ ETH (1 dt+/ E4(r / ) s ()™ dixr.

The next term of (4.4) can be estimated in a similar attitude

T
o [ BN [ ule (e 10" dud
K Q

<e [ B0 [elauly +e (s |a

N
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T
* c/ E?(1) / ce (%) |2 (x, 1,1)["™ dxd
s Q
T T
< ce/ ES (1) dr + / E9 (1) / ce (x) |2 (x,1,0)]"™) dxdt. (4.11)
s K Q

As &(x) is bounded, using Lemma 6 and (4.2), we obtain

0z (x m(x)
2 [e [ [ SOEEDOM

2Te™ " 2¢

< 2 g () E () + S Ee (1) (4.12)
< T R0 B () 4SBT E(5) < cE (s)

for some ¢ > 0.
By combining (4.4)-(4.12), we conclude that

T T
/ E4H (1)di < s/ E“* (1) dt + cE (s)

T
te / E4(1) / ce (¥) 2 (x, 1,0) " dxdr.
K Q

At this point, the choice of € small enough, gives

/ " BT ()i < B (5)+ ¢ / a0 /Q ce (%) 2 (x, 1,0)|"®) dxdr.

Once ¢ is fixed, c¢ (x) becomes bounded (i.e. ¢, (x) < M), as m(x) is bounded. There-
fore, we infer that

T T
/ ETH! (t)dzch(s)+cM/ Eq(t)/\z(x,l,t)|m(x)dxdt
s s Q

< CE(s)—CoM / BV E (1) dr

< CE(s)+ % (B9 (5) — BT (T)] < cE (s).

As T — oo, we obtain
/ E4H (1)di < cE (s).
N

Thus, Komornik’s Lemma is satisfied with 6 = g = mt /2 — 1, which implies the
desired result. O
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5. CONCLUSIONS

In recent years, many papers have been published about decay or blow up of
solutions for different type of wave equations (Kirchhoff, Petrovsky, Bessel, ... etc.)
with different state of delay time (constant delay, time-varying delay,...etc.). How-
ever, to the best of our knowledge, there were no blow up and decay results for the
Timoshenko equation with delay term and variable exponents. Firstly, we have been
proved the blow up of solutions. Later, we have been obtained the decay results by
using an integral inequality due to Komornik.
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