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1. INTRODUCTION

B.-Y. Chen revealed the intrinsic and extrinsic invariants who established an in-
equality including Ricci curvature and squared mean curvature of a submanifold in
a real space form R"(c) in 1999 (see [4]). In 2005 by B.-Y. Chen, a generalization
of this inequality was proved for arbitrary submanifolds in an arbitrary Riemannian
manifold (see [5]). Subsequently, this inequality has been comprehensively examined
for different ambient spaces by some authors who are achieved some results (see
[3,7,16,19,22,25]).

A C*-submersion ¢ can be defined according to the following conditions: a (pse-
udo)-Riemannian submersion [1,8, 12, 17,20,21], an almost Hermitian submersion
[23], a quaternionic submersion [13] , a slant submersion [11], a Clairaut Submer-
sion [10], an anti-invariant submersion [6], conformal anti-invariant submersion [2],
a semi-invariant submersion [ 18], etc. As far as we know, Riemannian submersions
were presented by B. O’Neill [17] and A. Gray [8] in 1960s, independently. Es-
pecially, by utilizing the notion of almost Hermitian submersions, B. Watson [23]
presented some differential geometric features among fibers, base manifolds, and
total manifolds. Subsequently, many results occur on this topic.

The main goal of the current paper is to study sharp type inequalities including
the scalar and Ricci curvatures of anti-invariant Riemannian submersions in complex
space forms. The structure of the paper is as follows: After recalling some basic
definitions and formulas in the second part, we investigate several inequalities in-
cluding the Ricci and the scalar curvatures on ker@, and (ker@, )" distributions of
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anti-invariant Riemannian submersions in complex space forms and then, we obtain
Chen-Ricci inequalities on ker@, and (ker@,)" of anti-invariant Riemannian sub-
mersions in complex space forms.

2. PRELIMINARIES

Let (B1,g1) be an almost Hermitian manifold. This implies [24] that B; admits a
tensor field J of type (1,1) on B; such thatV Z;,Z, € x(B)), we obtain

P=—1, &(Z1,22)+81(Z1,JZy) =0. 2.1)
An almost Hermitian manifold B is called Kaehler manifold if
(V3)Z =0, VZi,Z, € x(B1),

here V! is the Levi-Civita connection on B;. If {Z,,JZ,} spans a plane section, the
sectional curvature Fp, (Z1) = Kp,(Z1 NJZ,) of span{Z,,JZ,} is called a sectional
curvature. The Riemannian-Christoffel curvature tensor of a Kaehler manifold [24]
B (v) of constant holomorphic sectional curvature v satisfies

A%
Rp,(Z1,25,73,74) = 2 {81(Z1,24)81(Z2,23) — 81(Z1,23)81(Z2, Z4)
+ 81022, 23)81(JZ1,Z4) — 81 (JZ1,Z3) 81 (VZa, Zs) (22
+281(Z1,J22)81(JZ3,24) }

forall Z,72,,75,74 € X(Bl)-
Let (B1,g1) and (B3, g2) be Riemannian manifolds. A Riemannian submersion is

a smooth map ¢: By — B; which is onto and satisfies the following conditions:

(1) @sp: TpyB1 — Ty(p)Ba is onto for all p € By;

(ii) the fibres @ !, x € B,, are Riemannian submanifolds of By;
(iii) @, preserves the length of the horizontal vectors.
The vectors tangent to the fibres are called vertical and those normal to the fibres
are called horizontal. The tangent bundle of B; splits as the Whitney sum of two
distributions, the vertical one ker @, and the orthogonal complementary distribution
(ker@,)~ called horizontal, and we denote by % and v the horizontal and vertical
projections, respectively. A horizontal vector field Z; on B is called as basic if Z;
is @-related to a vector field Z;, on B, [17]. A Riemannian submersion ¢: B — B,
specifies two (1,2) tensor fields 7 and 4 on By, by the formulae [17]:

T(Z1,25) = T3, Zr = hV, 3 vZr +VV, 5 hZ,

and
A(Z1,2>) = Az, Z> = V5, hZy +hV,}, vZ,
for all Z,,Z; € x(By).
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Lemma 1 (Lemma 4 in [17]). Let ¢: (B1,82) — (B2,82) be a Riemannian sub-
mersion. Then we have:

Ay 7> = —A2,7, Z1,7Z> € x((ker@,)"); (2.3)
TnF =Tk, F,F € y(kero.); (2.4)
81T, 23) = —81(1Tr23,22), F € y(kerg.), Z»,7Z3 €¥(B1);
81(A2,2,73) = —81(A2,23,22), Zi € x((ker9.)"), Z5,Z3 € x(B)).
Let RB' RB2 Rker¢- and Rker®)" stand for the Riemannian curvature tensors of

Riemannian manifolds By, B;, the vertical distribution ker ¢, and the horizontal dis-
tribution (ker @, )", respectively.

Lemma 2 (Theorem 2 in [17]). Let @: (By,g2) — (B2,82) be a Riemannian sub-
mersion. Then we have:

RE\(F\, >, F3,Fy) = R (F\, P>, F3, Fy) + g1(T, Fy, Tp, F3)

(2.5)
—81(TpFa, Ir, F3),
RPV(Z,,25,73,74) = RYT9) (2. 75, 73, 74) — 281( A2, 22, Az, Z4) 2.6)
+81(Az,23, A7, Z4) — 81(Az2,23, Az, Z4),
RP(Z,F, 20, ) = 8i1((Vy, T)(F, ), Z2) + 81((VR A) (21, 2,), ) 27

_gl(q‘Flzh%zZZ)+g1(-jlezF27/qZ]Fl)
forall Zy,7y,73,Z4 € y((ker@.)*) and Fy, B>, F3, Fy € y(ker@,).

Further, the 4 mean curvature of every fibre of @ Riemannian submersion is
defined

1 s
_’]—[: ENa N = Z %pEp7 (28)
p=1

where {E|,E;,...,Es} forms an orthonormal basis for the vertical distribution ker @.,.
Also, @ has totally geodesic fibres if 7 = 0 on ker @, and (ker@,)".

Definition 1 (Definition 3.1 in [6]). Let (By,g1,J) be a Kaehler manifold and
(B2,g82) be a Riemannian manifold. ¢: (By,g1,J) — (B2, g2) is called anti-invariant,
if ker @, is anti-invariant with respect to J, i.e. J(ker@,) C (ker@,)= .

From above definition, we get J(ker@,) N (ker @, )" # {0}. We denote the com-
plementary orthogonal distribution to J(ker ¢,) in (ker@,)* by 1. Then we obtain

(ker@,)* = J(ker@,) ®n.

It is straightforward to show that 1 is an invariant distribution of (ker @,
endomorphism J. So, for Z; € y(ker@. )", we can state

JZy = oz, +BZ, 2.9)

)* under the
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here aZ; € x(ker,) and BZ; € y(n). Using (2.1) and (2.9), we have
B2Z, = -7, —JoZ,. (2.10)

Example 1. Let By be a 4-dimensional Euclidean space given by B; = {(x,y,z,w) €
R*:z€ R —{k5,kn},k € Z and x # 0}. We define the Kaehler structure (J,g;) on
B given by

g1 = (dx)*+(dy)*) + (dz)* + (dw)* and J(by,ba,b3,bs) = (—bs,b3,—b2,by).

Let B be {(x,v) € R?: x # 0}. We choose the Riemannian metric g, on B; in the
following form

g2 = e ((dx)> + (dv)?).
Now we define the map ¢: (By,g1,J) — (B2,82) by
(P(x7yvza W) = (exCOSZ,ex sinz).

Then the kernel of @, is

ker@, = Span{F, = —e"cosz=— —€*sinz=— ,F, = ¢"sinz=— —e*cosz—},

dy ow’ dy ow

and the horizontal distribution is spanned by

d J d
(ker@, )" = Span{Z; = ¢*cosz=— — e"sinz=—,Z, = e*sinz=— + e cosz=—}.

ox 0z ox 0z

Thus, @ is a Riemannnian submersion. Moreover, JF; = Z, and JF, = Z; imply that
(ker@,)* = J(ker@,). Hence ¢ ia an anti-invariant Riemannnian submersion.

3. BASIC INEQUALITIES

First we give the following result. Since ¢ is an anti-invariant Riemannian sub-
mersion, and using (2.2) and (2.5) we have:

Lemma 3. (B;(v),g1) and (Ba,g2) denote a complex space form and a Rieman-
nian manifold and let ¢: (B1(v),g1) — (Ba,g2) be an anti-invariant Riemannian
submersion. Then any for Fy,F>, Fs, Fy € x(ker@.) we obtain

v
R (Fy,F>, 3, Fy) = Z{gl(FlaF4)gl(F27F3> —g1(F,F3)g1(F2, Fy)}
_gl((l;“lF47(Ifl72F3)+g1(%2F47%1F3)’
v
K (F,F) = Z{g%(Flan) — IR PRI} = 1T Bl
+81(Ip B, I F),

3.1

here KX'® is q bi-sectional curvature of ker @, .
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Let ¢: B;(v) — B; be an anti-invariant Riemannian submersion. For every node
k € By, let {E\,...,Es,e1,...,e,} be an orthonormal basis of T;B;(v) such that
ker@, = span{Ej,...,E,}, (ker@,)* = span{ey,...,e,}.

Now, if we take Fy = Fyand F, = F3 =E;,i=1,2,...,5sin (3.1), and using (2.8)
then we arrive at

. ker v 3
Ric*? (F) = Z(S— Dei(F,F) —sg1(Tr P, H) + Y e1(TrFL, TR E). (3.2)
i=1

From here, we get:

Theorem 1. Let ¢: (B1(V),g1) — (B2, 82) be an anti-invariant Riemannian sub-
mersion. Then we have

. \%
Ric"*"® (Fy) > Z(S_ Dgi(Fi, Fi) —sgi(Tp Fi, H).

For a unit vertical vector F| € y(ker @), the equality status of the inequality holds if
and only if every fibre is totally geodesic.

Taking Fy = E;, j=1,...,5in (3.2) and using (2.4), then we obtain

\V S
Zpker(p* = ZS(S_ 1) _SZH—V{”z + Z 81 ((12‘71Ej7 {Z;EiEj)°
ij=1
Therefore, we can state the following result.

Theorem 2. Let ¢: (B1(V),g1) — (B2,82) be an anti-invariant Riemannian sub-
mersion. Then we have

v
2p" > Zs(s = 1) = 5| A
The equality status of the inequality satisfies if and only if every fibre is totally
geodesic.
Since @ is an anti-invariant submersion, and using (2.2), (2.6), (2.9) we obtain:

Lemma 4. Ler ¢: (B1(v),g1) — (B2,82) be an anti-invariant Riemannian sub-
mersion. Then for Z1,7,,73,Z4 € x((ker@,)") we have

1 A%
R&er®) (7). 7). 73,7,4) = Z{gl(zl,ZA,)gl(Zz,Zﬁ —81(Z1,23)81(Z,,2Z4)

+81(B22,23)81(BZ1,Z4) — 81(BZ1,23)81(BZ2,Z4) (3 3,
+2g1 (Zl s BZZ)gl (BZ3>Z4)} +281 (-’lelz% ’{42324)
—81(A2,25,7,Z4) + 81(Az,Z3, Az,Z4),

v
(21,22) = Z{gf(Zl,Zz) ~ 1zl
—31(BZ1,22)} +3) Az 22,

plkere.)*

here B*er®:)" is q bi-sectional curvature of (ker@,)*.
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Now, if we take Z4 =Zy and Zp = Z3 = e}, j=1,2,...,min (3.3), and using (2.3),
(2.10) then we get

) A%
Rlc(ker(p*)l(zl) — Z{(m-|-2)gl(Z1,Z1) +381(JOCZ],ZI)}

m (3.4
-3 Z 81 (ﬂzlej"qzlej)‘
j=1
Taking Z; = e;,i =1,2,...,min (3.4), then we have:
2p(ker<f>*)L _ %{m(er 2)+3tr(Ja)} —3 Z 81(Agej, Acej). (3.5)
ij=1
Then we write v
1
2plker®:)” < 2 mlm+2)+3r(Ja)}. (3.6)

Thus, we can give:

Theorem 3. Let ¢: (B1(V),g1) — (B2,82) be an anti-invariant Riemannian sub-
mersion. Then
(kerg, )" X
2p < 4{m(m+2) +3tr(Ja) }.

The equality status of (3.6) satisfies if and only if (ker @,)= is integrable.

4. CHEN-RICCI INEQUALITIES

Let (B1(v),g1) be a complex space form, (B,,g,) a Riemannian manifold and
¢@: B1(v) — B, be an anti-invariant Riemannian submersion. For every node k €
By, let{E|,...,E,ej,...,en} be an orthonormal basis of 7;B; (V) such that ker @, =
span{Ey,...,Es} and (ker@.)" = span{ey,...,e,}. Let’s denote T} by

(1:5 = gl(%iEjvef)’ 4.1)
where 1 <i,j <sand 1 <t <m. Similarly, let’s denote /‘47‘}‘ by
A = g1(Aiej, Eq), 4.2)
inwhich 1 <i j <mand 1 <o < s and we employee
m N
3(A) =) Y (V. T)gEr.ei). (4.3)
i=1k=1

Now, from (3.1), we get
20509 = V(s = 1) = HP+ Y 01 (TEy T ).
ij=1
Using (2.4) and (4.1), we arrive at J
2pkere. — \Z)s(s— 1) — |||+ Xn‘, Z (T5). (4.4)

t=1i j=1
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From [9] we know that
m S 1 1 m 2
I M e
7 m (4.5)
) P2y ¥ [m- (7)),
t=1j=2 1=12<i<j<s

If we put (4.5) in (4.4), we obtain

m

20559 = Ys(s— 1) — g 2N+ 5 Y [T~ Ty~ T
t=1
2y Y @2y Y |TT- ().
t=1j=2 1=12<i<j<s

From here, we have
200 > s 1) - o HP2Y Y [T (1)) @s
t=12<i<j<s

On the other hand, from (2.5), taking F| = Fy = E;,F) = F3 = Ej and using (4.1), we
have

<

2 Z RBI (Ezan)ElaEl) =2 Z Rker(p*(Eiij;EhEi)
2<i<j<s 2<i<j<s
m s )
2y ¥ [nT- ().
1=12<i<j<s

From the last equality, (4.6) can be written as

\%
2pFer® > Z5(s—1)— 2\|9{HZ+2 Y R“'"(E,E;E;E)
4 2<i<j<s
4.7
—-2 Y RPVE,EjE}E).
2<i< j<s
Furthermore, we know that
N
Zpker(p* =2 Z Rkerq)* (Eiij7Ej7Ei) +2 ZRker(p* (Elij’EjvEl)'
2<i<j<s =
If we put the last equality in (4.7), then we have
v
2RickT® (Ep) > 2361 752||}[||2 2 Y RP(E,E;E,E).

2<i<j<s

Since B is a complex space form, curvature tensor R?' of B provides equation
(2.2), therefore we acquire

<

1
Ric*"® (E;) > Z(s —1)— ZSZH}[HZ.
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Thus, we can give the following result:

Theorem 4. Let ¢: B (V) — B, be an anti-invariant Riemannian submersion from
a complex space form (B (V), g1) onto a Riemannian manifold (B, g>). Then we have

\Y

1
Ric*"® (Ey) > 7(s— 1) — 27| #4]]*

The equality status of the inequality satisfies if and only
T =T+ + T
T;=0,j=2,....s.
From (3.5), we have

2p(ker<l>* — f{m(m+2)+3tr(Joc }-3 Z 81 fz’eejvﬂeej)
i,j=1

Using (2.10) and (4.2), then we have
s m
2pkere)t — {m(m+2) +3tr(Jo)} Z Z (%) (4.8)
a=1i,j=1
From (2.3) then (4.8) turns into

v N m
2plkere)’ — 2 mm+2)+3tr(Ja)} -6 Y Y (-6 Z Y (A%’ @49
a=1j=2 a=12<i<j<m
Moreover, from (2.6), taking Z| = Z4 = e;,Z, = Z3 = e and using (4.2) we obtain
o) Z RB (ei,ej,epei) =2 Z R(ker(P*)L (ei,ej,ej,ei)

2<i<j<m 2<i<j<m

+6i Y @y

a=12<i<j<m

(4.10)

If we consider (4.10) in (4.9), then we have
S m

2pker@)” —{m(m—i—Z) +3tr(Jo)}—6 Y Y (ay)?
a=1j=2
] Z RBI (e[,ej,ej,ei)—l—2 Z R(ker(p*n(e,-,ej,ej,e,-).
2<i<j<m 2<i<j<m
Since B; is a complex space form, curvature tensor R8B! of By satisfies (2.2), hence
we get

\Y
2Ric T (e1) = 7 (2m—2+ 6] Bes|[*) ~ 6 3 Z Aapy)?
a=1j=2
Then we can write

Ric(ker(p*)L(el) < —(m—1+43||Ber?).

A<
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Thus, we can give the following result:

Theorem 5. Let ¢: B;(V) — By be an anti-invariant Riemannian submersion from
a complex space form (B1(V),g1) onto a Riemannian manifold (B2, g>). Then we have

v
Ric )" (e1) < 2 (m—1+3[|Be]*),
the equality status of the inequality satisfies if and only
ﬂlj:O,j:2,...,m.

Next, we can state the inequality of Chen Ricci among the ker@, and (ker@,)=.
The p scalar curvature of By (V) is defined as

m S
2p =) Ric(e;,e)+ Y Ric(Ey,ex),
t=1 k=1

N
B
ZR 1 elaEkaE/ﬂel')
1k=1

Ms

2p = Z RP\(Ej, Ex By, Ej) +
Jk=1

m s “4.11)
+ ZR elaetvetv +ZZRBI Ejaetyeta j)
it=1 t=1j=1
Since B (V) is a complex space form, using (4.11) and (2.2), we have
Vv
2p = Z{S(S_ 1) +m(m+2)+2sm+3tr(Ja)}. (4.12)

On the other hand, using the equations (2.5), (2.6) and (2.7), we obtain also the p
scalar curvature of B; (V) as

2p _ 2pker(p* _|_2p(ker(p*)i —|—S2||.'7‘[||2

81 (quEjﬂ quEj) +3 Z 81 (/qeiet?/qeief)

it=1

&1(Ve, T Erei) + Y. Y {81(Ti,ei, Tr,ei) — g1 (Ao Er, Ae Er) }
i=1k=1

gl((V;T E})et ZZ{gl(%jet,%je,)—gl(ﬂe,Ej,-qe,Ej)}'
t=1j=1

+
1=

~.

M” -

Il
—_
-

I
_

-
M-

N
I
w O
I
L

Using (4.3) and (4.5), we obtain

1 1 &
2p = 2pker®: | pplkere.)” _|_§s2||_r].[H2_ 5 Y [, —‘15’2—-"—‘7;§]2 (4.13)
t=1

m

ST W WL S CARER W 3

t=1j=2 1=12<j<k<s a=1r=
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+6 Z f (A1) +

a=12<i<t<m i

280+ Y Z {81(Tk e, Tgje0) — 81( A Ej A E)) }

t=1j=
Using (4.7), (4.10) and (4.12) in the (4.13) then we have

Ms

N
Z gl %kel7%kel) gl(/{zleiEIﬂﬂeiEk)}
1k=1

v 1
g lsm+m+s—143]Be 12} = Ric*"® (E}) 4 Ric™*r®)" (¢)) + ZSZH}[HZ

1 m ; ) m S )
B L A S W)
t=1 t=1j=2
+3 Z Z %) A)+ 1TV 1> = (12" |17,
a=1t=
where HTVHZ = ;nzl Zi:lgl ({Z;Ekeh%kei)’ H“qHHZ = i:] Zi:lgl (’qeiEkv“qeiEk)‘

Since B (V) is a complex space form, from (2.2), we have following result readily:

Theorem 6. Let ¢: B (V) — B, be an anti-invariant Riemannian submersion from
a complex space form (B (V), g1) onto a Riemannian manifold (B, g>). Then we have

\% 1
Z{sm+m+s— 1+3||Bey||*} < Ric* ¥ (E}) + Ric*e"®)" (¢)) + ZSZH}[HZ

Zzﬂu =80 + TP~ 1A%

a=1r=

the equality status of the inequality satisfies if and only
,Zitlzrz‘zf2+...+q;§ {Tltjzov J=2,...,8.

Remark 1. Recently, Chen-Ricci inequalities were stated for Riemannian maps
from complex space forms in [14]. Recall that Riemannian maps generalize the well-
known concepts of isometric immersions and Riemannian submersions (see, e.g., the
recent work of Lee et. al.,[15]). Therefore, a natural problem is to extend the results
of this work in the general setting of anti-invariant Riemannian maps.
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