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Abstract. A module M is called a UC-module if whenever every submodule of M has a unique
closure. In this paper, we establish new characterizations of several well-studied classes of rings
in terms of UC-modules, and show that UC is not a Morita invariant property. In addition, we
study the behaviour of UC-modules under excellent extensions of rings.
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1. INTRODUCTION

Throughout this note all rings are associative with unity and R denotes such a ring.
Modules are unital and MR shall indicate that M is a right R-module. Unless stated
otherwise, all R-modules are understood to be right R-modules. Let M be an R-
module. A submodule C of M is a complement of submodule A in M if C is maximal
such that C∩A = 0. A submodule C of M is closed in M provided C has no proper
essential extension in M. For a submodule C of M, C is a closed submodule if and
only if C is a complement submodule [7, 1.10]. The intersection of any two closed
submodules of a module may not be closed [13, Example 1.6]. It is well known that,
for any submodule A of M, there exists a closed submodule C of M such that A is
essential in C, and C is called a closure of A (in M). Smith [21] defines a module
M to be a UC-module if every submodule has a unique closure, or equivalently, the
intersection of any two closed submodules of M is also closed. Smith in his study
[21] provides 20 different characterizations of UC-modules, and later UC-modules
were studied by many authors [2, 6, 8, 11, 15, 16]. We should note that UC-modules
are called dimension modules in [5]. It is well known that every direct summand
of a module M is a closed submodule of M. The converse is not true, generally
(for example, the Z-module Zp ⊕Zp3). A module M is called an extending (or CS)
module if every closed submodule of M is a direct summand of M [9]. Wilson [22]
says that a module M has the summand intersection property (in short, SIP-module) if
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the intersection of any two direct summands is again a direct summand. UC-modules
and SIP-modules coincide when the module is extending [2, Lemma 17].

In this paper, we first prove in Proposition 1 that if M is a UC-module, then for
every decomposition M = A⊕B and every R-homomorphism f : A → B, Ker( f ) is a
complement submodule of M. This proposition is key to our work in this paper and is
used to characterize many well known classes of rings in terms of UC-modules. For
example, we show in Theorem 1 that a ring R is semisimple if and only if every R-
module is a UC-module; or equivalently, every injective R-module is a UC-module;
or equivalently, every UC-module is injective. We prove in Theorem 2 that a ring
R is a right V-ring (that is, every simple right R-module is injective) if and only if
every finitely cogenerated R-module is a UC-module; or equivalently, every finitely
copresented R-module is a UC-module. In Corollary 2, we prove that a ring R is an
SSI-ring if and only if R is a right Noetherian ring and every finitely cogenerated (or
finitely copresented) right R-module is a UC-module. Later, it is shown in Proposition
2 that if the class of UC-R-modules is closed under finite direct sums, then R is a
right V-ring. It is proved in Theorem 3 that a ring R is semisimple if and only if the
following are satisfied: (1) R is a right Noetherian ring, and (2) the class of UC-
R-modules is closed under arbitrary direct sums. We give a new characterization of
SI-rings in Theorem 4 that a ring R is a right SI-ring if and only if Z(RR) = 0 and
every singular right R-module is a UC-module. Analogous to an idea of Enochs [10],
we introduce the notion of UC-cover, and we prove that R is a semisimple ring if and
only if every right R-module has a UC-cover (Theorem 5). At the end of this section,
we show in Example 2 that UC is not a Morita invariant property.

Section 4 is devoted to the behaviour of UC-modules under excellent extensions
of rings. We prove in Theorem 8 that if M is a right S-module, then MR is a UC-
module if and only if MS is a UC-module, and prove in Theorem 9 that if M is a right
R-module, then (M⊗R S)S is a UC-module if and only MR is a UC-module. Let S be
a right excellent extension of R. Then R is right finitely Σ-UC if and only if S is also
(Theorem 10).

For a submodule A of M, the notation A ≤ M, A ≤ess M, A ≤⊕ M and A ≤c M mean
that A is a submodule, an essential submodule, a direct summand and a complement
submodule of M, respectively. For a module M, we use Z(M) and E(M) to denote
the singular submodule and the injective hull, respectively. CFMΛ(R) denotes the
column finite card(Λ)×card(Λ) matrix ring over R, where card(Λ) is the cardinality
of Λ. For a module M, M(I) is the direct sum of copies of M indexed by a set I. For
definitions and notations which are not given, please see [3].

2. UC-MODULES

First, we begin by proving a useful proposition:

Proposition 1. If M is a UC-module, then for every decomposition M = A⊕B and
every R-homomorphism g : A → B, Ker(g)≤c M.
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Proof. Assume M is a UC-module. Let M = A ⊕ B and g : A → B be an R-
homomorphism. Let C = {u+ g(u) | u ∈ A}. We want to show that M = C ⊕B.
Let x ∈ M, then x = u+ v where u ∈ A and v ∈ B. Now, x = u+ g(u)− g(u)+ v.
But u+ g(u) ∈ C and −g(u)+ v ∈ B. So, M = C+B. Let us choose x ∈ C∩B. We
can write x = u+ g(u) where u ∈ A and hence u = x− g(u) ∈ A∩B = 0. Therefore
g(u) = 0 which gives x = 0. So, M = C⊕B. Since M is a UC-module, an intersec-
tion of closed submodules is closed, thus C∩A is a closed submodule of M. It is a
straightforward matter to show that C∩A = Ker(g). Thus, Ker(g)≤c M. □

Corollary 1. Let M be an R-module. If E(M)⊕E(E(M)/M) is a UC-module,
then M is injective.

Proof. It is mutatis mutandis the same as the proof (3) ⇒ (1) of [14, Theorem
4.12]. □

3. CHARACTERIZATIONS OF RINGS IN TERMS OF UC-MODULES

Let R be a ring. R is semisimple if and only if every R-module is semisimple if and
only if every R-module is injective [23, 20.3] if and only if every injective R-module
has the SIP [22, Proposition 3]. Recall from [4] that R is said to be an SSI-ring
if every semisimple R-module is injective; or equivalently, R is a right Noetherian
V-ring [4, Proposition 1]. First, we provide some characterizations of semisimple
rings:

Theorem 1. The following conditions are equivalent for a ring R:
(1) R is semisimple;
(2) Every R-module is a UC-module;
(3) Every injective R-module is a UC-module;
(4) Every UC-module is injective.

Proof. (1) ⇒ (2) Since R is semisimple, every R-module is semisimple. Then,
every R module is a UC-module (see also [5, Corollary 3]).
(2)⇒ (3) Clear.
(3) ⇒ (1) We want to show that every injective R-module has the SIP. Since every
injective R-module is a UC-module, then every injective R-module has the SIP. So, R
is semisimple by [22, Proposition 3].
(1)⇒ (4) Since R is semisimple then every R-module is injective.
(4)⇒ (1) Suppose that every UC-module is injective. Then, every semisimple mod-
ule is injective. Thus, R is an SSI-ring, and hence R is a right Noetherian V-ring by
[4, Proposition 1]. Since R is right Noetherian, E(R) =

⊕
λ∈Λ Eλ, where Eλ is an

indecomposable injective for each λ ∈ Λ. Let 0 ̸= e ∈ Eλ. It follows that eR ≤ Eλ is
a uniform submodule of Eλ. Thus, eR is a UC-module, and hence eR is injective by
the hypothesis. Hence eR ≤⊕ Eλ. Since Eλ is indecomposable, Eλ = eR. Then Eλ is
a simple R-module for each λ ∈ Λ. Therefore, E(R) is a semisimple R-module, and
hence R is a semisimple ring. □
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Remark 1. The proof of (4)⇒ (1) can also be proved in a different way: Assume
(4) holds. Then R is an SSI-ring. Since R is a product of simple rings, it is right
nonsingular and thus a UC-module, whence injective. Since simple self-injective
rings are von Neumann regular (that is, every principal ideal is a direct summand of
RR), the Noetherian condition implies semisimplicity.

An R-module M is finitely cogenerated if and only if Soc(M) is finitely generated
and essential in M [23, 21.3]. An R-module X is called finitely copresented if (i) X is
finitely cogenerated and (ii) in every exact sequence 0 → X →Y → Z → 0 in Mod-R
with Y finitely cogenerated, Z is also finitely cogenerated [23, p.248]. Recall from
[23] that a ring R is called a right V -ring (co-semisimple) if every simple right R-
module is injective. A ring R is a right V-ring if and only if every finitely cogenerated
R-module is semisimple if and only if every finitely cogenerated R-module is injective
[23, 23.1] if and only if every finitely copresented R-module is semisimple if and only
if every finitely copresented R-module is injective [23, 31.7].

Theorem 2. The following conditions are equivalent for a ring R:
(1) R is a right V-ring;
(2) Every finitely cogenerated R-module is a UC-module;
(3) Every finitely copresented R-module is a UC-module.

Proof. (1)⇒ (2) This is immediate, since it has already been noted that if R is a
right V-ring, then every finitely cogenerated R-module is semisimple and thus UC.
(2)⇒ (3) It is clear since every finitely copresented module is finitely cogenerated.
(3) ⇒ (1) Let M be a finitely copresented R-module. We will show that M is in-
jective. By [23, 30.1], E(M) and E(M)/M are finitely cogenerated. Since E(M)/M
is finitely cogenerated, E(E(M)/M) is finitely cogenerated. Since any finitely co-
generated injective module is finitely copresented, by condition (3) and [23, 21.4],
E(M)⊕E(E(M)/M) is a UC-module. By Corollary 1, M is injective. By [23, 31.7],
R is a right V-ring. □

Corollary 2. A ring R is an SSI-ring if and only if R is a right Noetherian ring and
every finitely cogenerated (or finitely copresented) right R-module is a UC-module.

Proof. Note that R is an SSI-ring if and only if R is a right Noetherian, right V-ring
[4, Proposition 1]. The equivalence holds true by Theorem 2. □

Proposition 2. If the class of UC-R-modules is closed under finite direct sums,
then R is a right V-ring.

Proof. Let M be a finitely cogenerated R-module. Then M is a finite direct sum of
uniform R-modules. Since uniform modules are UC-modules, M is a UC-module by
the hypothesis. Hence, by Theorem 2, R is a right V-ring. □

Theorem 3. A ring R is semisimple if and only if the following are satisfied:
(1) R is a right Noetherian ring,
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(2) The class of UC-R-modules is closed under arbitrary direct sums.

Proof. (⇒:) (1) Clear.
(2) If R is semisimple, then every R-module is a UC-module by Theorem 1(2).
(⇐:) Let M be an injective R-module. Since R is a right Noetherian ring, M is a
direct sum of uniform modules. Since uniform modules are UC-modules, M is a
UC-module. Hence, by Theorem 1(3), R is semisimple. □

Any module isomorphic to the factor M/N of an essential extension N ≤ M is
called a singular module. Now, we recall some facts about singular modules:
Fact 1: If Z(RR) = 0, the class of all singular right R-modules is closed under essen-
tial extensions [13, Proposition 1.23(c)].
Fact 2: The class of all singular right R-modules is closed under factor modules, and
direct sums [13, Proposition 1.22(b)].
Fact 3: Let M be an R-module. M/N is singular whenever N ≤ess M. Thus, E(M)/M
is always singular. The converse of this assertion is not true in general, please see
[13, p. 32].

A ring R is called a right SI-ring if every singular right R-module is injective [12].
In the next theorem we give a new characterization of SI-rings:

Theorem 4. The following are equivalent for a ring R:

(1) R is a right SI-ring;
(2) Z(RR) = 0 and every singular right R-module is a UC-module.

Proof. (1) ⇒ (2) If R is a right SI-ring, then every singular right R-module is
semisimple by [20, Lemma 3.1]. On the other hand, it is clear that R is right nonsin-
gular. Hence, (2) holds.
(2)⇒ (1) Let M be a singular right R-module. We want to show that M is injective.
By Fact 1, E(M) is singular. Moreover, by Facts 1 and 3, E(E(M)/M) is a singular
R-module. It follows that E(M)⊕E(E(M)/M) is a singular module from Fact 2.
Then, by the hypothesis, E(M)⊕E(E(M)/M) is a UC-module. Hence, by Corollary
1, M is injective. So, R is a right SI-ring. □

It is well-known that R is right Noetherian if and only if every direct sum of inject-
ive modules is injective.

Lemma 1. If the direct sum of any family of injective envelopes of simple right
R-modules is a UC-module, then R is a right Noetherian ring.

Proof. Let {Si}i∈I be a family of simple modules. Set M = ⊕i∈IE(Si). We will
show that M is injective. By the hypothesis, E(M)⊕E(E(M)/M) is a UC-module.
By Corollary 1, M is injective. So, R is right Noetherian. □

The next example shows that converse of Lemma 1 is not true generally.
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Example 1. Consider M =Zp∞ ⊕Zp∞ as a Z-module. It is well-known that the ring
of integer Z is a right Noetherian ring, and M is an injective Z-module. It is proved
in [14, Example 2.4(1)] that M does not have the SIP. Then, M is not a UC-module
by [2, Lemma 17].

Enochs [10] introduced the injective cover notion which is the dual to the injective
envelope, and showed that a ring R is a right Noetherian ring if and only if every right
R-module has an injective cover. Now, we introduce the UC-cover notion.

Definition 1. An R-homomorphism g : E → M is called a UC-cover of a right
R-module M if E is a UC-module such that any diagram

with E ′ a UC-module can be completed; and the diagram

can be completed only by an automorphism α.

Now, we prove in Theorem 5 that a ring R is semisimple if and only if every right
R-module has a UC-cover.

Theorem 5. The following are equivalent for a ring R:
(1) R is semisimple;
(2) Every right R-module has a UC-cover.

Proof. (1)⇒ (2) Obvious.
(2) ⇒ (1) First, we want to prove R is right Noetherian. Let {Si}i∈I be a family of
simple right R-module and let M =

⊕
i∈I E(Si). Call g : E → M a UC-cover of M.

Consider the following diagram:
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where πi is the canonical injection for i ∈ I. Note that all modules E(Si) are uniform
and injective modules. It follows that all modules E(Si) are UC-modules. By the
definition of UC-cover, there exists a homomorphism αi : E(Si)→ E such that gαi =
πi for i ∈ I. Define α : M → E by α(Σn

i=1xi) = Σn
i=1αi(xi) for xi ∈ (E(Si)) and i ∈ I.

It can easily be checked that α is well-defined and we have

gα(Σn
i=1xi) = Σ

n
i=1gαi(xi) = Σ

n
i=1πi(xi) = Σ

n
i=1xi.

Thus, gα = 1M, and α : M → E is a split monomorphism. Then M ∼= D ≤⊕ E. Since
a direct summand of a UC-module is again a UC-module, M is a UC-module. By
Lemma 1, R is a right Noetherian ring. With similar argument, we can prove that
an arbitrary direct sum M =

⊕
i∈I Mi of right UC-modules is again a UC-module.

Hence, by Theorem 3, R is semisimple. □

Theorem 6. Let R = ∏α∈Λ Rα be a product of rings. Then R is right UC if and
only if each Rα is right UC.

Proof. Let πα be the αth projection map and iα the αth inclusion map canonically.
(⇒:) Let 0 ̸=Cα be a closed right ideal of Rα for each Rα. We show that C = iα(Cα)
is a closed right ideal of R. If C is not a closed right ideal of R, there is a right ideal
B of R such that C is properly contained in B and C ≤ess B. If β ̸= α, then C ≤ess B
implies that πβ(B) = 0. Thus B = iαπα(B). Since C is properly contained in B and
C ≤ess B, Cα is properly contained in πα(B) and Cα ≤ess πα(B). This is impossible
because Cα is a closed right ideal of Rα. Thus C is a nonzero closed right ideal of R.
The rest is straightforward.
(⇐:) Let 0 ̸=C be a closed right ideal of R. Set Cα = πα(C), α ∈ Λ. It can easily be
checked that C = ∏α∈ΛCα. Since C is a closed right ideal of R, clearly, Cα is a closed
right ideal of Rα for each α ∈ Λ. Since C ̸= 0, there exists α ∈ Λ such that Cα is a
nonzero closed right ideal of Rα. The rest is straightforward. □

In this section, we give some results about UC-rings. Recall that a ring R is said to
be a right UC-ring if the module RR is a UC-module. Let R be a ring, e an idempotent
in R such that R= ReR, and S the subring eRe. It is clear that if M is a right R-module,
then Me is a right S-module.

Theorem 7. Using the above notation, the module (Me)S is a UC-module if and
only if the module MR is a UC-module.
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Proof. Immediate by [1, Lemma 5(i)]. □

Corollary 3. Using the above notation, the ring R is a UC-ring if and only if the
module (Re)eRe is a UC-module.

Proof. This follows immediately from Theorem 7. □

In this note, Rn denotes the set of all n× 1 column matrices over R. Let R be
a ring, n a positive integer, Mn(R) the ring of n× n matrices over R, and e11 the
matrix in Mn(R) with (1,1) entry 1 and all other entries 0. It is well known that e11
is idempotent, R ∼= e11Mn(R)e11 and Mn(R) = Mn(R)e11Mn(R). Thus, Corollary 3
gives the next two results without further proof.

Corollary 4. The ring Mn(R) is a UC-ring if and only if the free R-module Rn is a
UC-module.

Corollary 5. Let R be a ring, and let Λ be an infinite set. Then CFMΛ(R) is right
UC if and only if R(Λ)

R is UC.

In the following example we see that UC is not a Morita invariant property.

Example 2. Consider the ring Z4. Although Z4 is UC, the ring R =

[
Z4 Z4
Z4 Z4

]
of 2× 2 matrices over Z4 is not UC. If R were UC, then by Corollary 4, the right
Z4-module Z2

4 would be UC. One can now argue that this is not so, since if A and B

are the submodules of Z2
4 generated by

[
1
2

]
and

[
0
1

]
, respectively, then A and B

are both direct summands of Z2
4 (and thus closed submodules), yet their intersection,

which is the submodule generated by
[

2
0

]
, is not closed.

4. UC-MODULES AND EXCELLENT EXTENSIONS

Recall from [17] that let R be a subring of a ring S such that they have the same
identity. The ring S is called a right excellent extension of R if the following two
conditions are satisfied:

(1) SR and RS are free modules with a basis {1 = a1,a2, ...,an} such that aiR =
Rai for i = 1, ...,n.

(2) For any submodule AS of a module MS, if AR is a direct summand of MR, then
AS is a direct summand of MS.

Lemma 2 ([18, Proposition 1.6]). Let AS be a submodule of an S-module M. Then
AS is closed in MS if and only if AR is closed in MR.

Lemma 3 ([19, Lemma 2.4]). Let AR be a submodule of MR. Then AR is a closed
submodule of MR if and only if (A⊗R S)S is a closed submodule of (M⊗R S)S.
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Theorem 8. Let M be a right S-module. Then MR is a UC-module if and only if
MS is a UC-module.

Proof. Let MR be a UC-module and AS and BS are closed submodules of MS. By
Lemma 2, AR and BR are closed submodules of MR. Since MR is UC, AR ∩BR =CR
is a closed submodule of MR. By Lemma 2, AS ∩BS = CS is a closed submodule of
MS. So, MS is a UC-module. The converse can be proved similarly. □

Theorem 9. Let M be a right R-module. Then (M ⊗R S)S is a UC-module if and
only MR is a UC-module.

Proof. Immediate by the definition of UC-modules and Lemma 3. □

An R-module M is called f initely Σ-UC if every finite direct sum of copies of M is
UC. The ring R is called right f initely Σ-UC if RR is f initely Σ-UC.

Theorem 10. Let S be a right excellent extension of R. Then R is right finitely
Σ-UC if and only if S is also.

Proof. Suppose RR is finitely Σ-UC. Then for any k > 0, (Sk)R ∼= (Rnk)R is UC.
Thus, (Sk)S is UC by Theorem 8.

For the converse, suppose SS is finitely Σ-UC. Then for any k > 0, (Rk ⊗R S)S ∼=
(Sk)S is UC. By Theorem 9, (Rk)R is UC. □

It can easily be checked that the theorem still holds (with the same proof) if “fi-
nitely Σ-UC” is replaced by “countably Σ-UC” or “Σ-UC”.
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