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Abstract. Feature selection is one of the issues in machine learning as well as statistical pattern
recognition. This is important in many fields (such as classification) because there are many
features in these areas, many of which are either unused or have little information load. Not
eliminating these features does not make a problem in terms of information, but it does increase
the computational burden for the intended application. Besides, it causes to store of so much
useless information along with useful data. A problem for machine learning research occurs
when there are many possible features with few attributes of training data. One way is to first
specify the best attributes for prediction and then to classify features based on a measure of their
dependence. In this study, the Fuzzy- Rough subset evaluation has been used to take features in
core of similar features. Fuzzy-rough set-based feature selection (FS) has been demonstrated to
be extremely advantageous at reducing dataset size but has various problems that yield it unpro-
ductive for big datasets. Fuzzy- Rough subset evaluation algorithm indicates that the techniques
greatly decrease dimensionality while keeping classification accuracy. This paper considers clas-
sifying attributes by using fuzzy set similarity measures as well as the dependency degree as a
relatedness measure. Here we use Artificial Neural Network, Naive Bayes as classifiers, and
the performance of these techniques are compared by accuracy, precision, recall, and F-measure
metrics.
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1. INTRODUCTION

These days with the increasing of computer and database technology, a large num-
ber of features can be obtained and saved in databases for various real-world im-
plementations. Some of the features could be irrelevant or redundant for classifying
learning; they could significantly lead to reduces efficiency and accuracy of classifi-
ers and causes utmost computational confusion. Consequently, for employing a data
collection it is needed to prepossess the data to extract inessential attributes. Attrib-
ute choosing or feature selection, a significant method for declining the number of
unneeded attributes, is applied to figure out an ideal attribute subclass to carry out
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classification on the assumption that keeping categorization accuracy. Of late years,
attribute extraction has been comprehensively utilizing in data procedure, template
identification, and machine learning [9], [12], [14], [24], [25].

The standard of the machine-legible input that works on it usually contributes to
the success of machine learning algorithms. These items comprise whether there is
indifferent, needless, untrustworthy, or noisy data. Data mining, which has started to
gain great importance recently, has achieved great success in interpreting big data by
processing; It makes predictions effective in solving major problems in many sectors,
especially finance, health, communication, and education [15].

The use of feature selection, artificial intelligence, and machine learning applica-
tions in the field of health is carried out in many sub-fields such as medical diagnosis
and disease tracking, cost estimation, imaging analysis, resource planning, and emer-
gency management, processing of unstructured data [3, 4, 16, 18]. Artificial intelli-
gence models, which are also used to make high-scale patient data functional, play
an active role in increasing data reliability and quality [6], [23]. However, regarding
the use of artificial intelligence in the field of health; The accuracy of clinical data,
data management, legal and ethical processes regarding data protection limit the use
of artificial intelligence in the field of health. Machine learning techniques are most
commonly used in the field of health sciences for predicting, diagnosis, and determin-
ing post-illness complications, and it is aimed to provide patients with better quality
healthcare services by saving time and workload [5].

Indeed, it is stated that machine learning-based classification methods play a de-
cisive role in both decision support systems and disease diagnosis in today’s medical
research [13].

Recently, there has been a great deal of interest in evolving methods that able
to deal with inaccuracies and uncertainties, and a significant amount of them is in
the field of fuzzy and rough sets. Rough set theory’s success is owing to some par-
ticulars of the theory. Merely the facts covered in the data are investigated. No
further information about the inputs is needed for data analysis such as thresholds
or proficient knowledge on a specific field. And it detects the minutest knowledge
representation for data. While rough set theory controls only one type of handicap
that exists in data, it is supplementary to other concepts for the goal, like fuzzy set
theory. Fuzzy sets are deal with ambiguity, and rough sets are cover the undiscrimin-
ating [17]. Parkinson’s disease (PD) appears as the decease of dopaminergic neurons
in the substantiate nigra pars condensed inside the midbrain. This neuro damage
caused a domain of symptoms containing coordination outcomes, bradykinesia, vo-
cal changes, and toughness. Dysarthria is also detected in PD patients; it is specified
by laxity, paralysis, and deficiency of coordination in the motor-speech system: af-
fecting respiration, phonation, articulation, and prosody. whereas symptoms and the
disease period change, PD is mostly not distinguished for many years. accordingly,
there is a necessity for more accurate diagnostic implements for PD finding because,
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as the disease moves forward, more symptoms become apparent that make PD more
difficult to treat. Therefore, a big deal of endeavor has been made to extend methods
for early detection, mostly at pre-symptomatic phases in order to slow or stop disease
forward movement. The rapid advance in machine learning techniques has made it
challenging to combine large-scale, high-dimensional objects. Thus, it has exten-
ded quickly in computer-aided machine learning approaches for Combined analysis.
Well-known pattern analysis methods, such as Artificial Neural Network (ANN), Na-
ive Byes (NB), have been used for early detection of PD and the prediction of PD
progression [8], [19].

2. MATERIALS AND METHODS

Fuzzy sets were presented and expressed using membership functions by L.A.
Zadeh in 1965 and have many convenient utilizations [27]. For the aim to implement
fuzzy set similarity measures to specify concurrence between two distinct features,
each feature is expressed as a fuzzy set over the patient’s data sets. The dataset must
be normalized to specify a degree of membership in [0,1]. The patient’s membership
degree in the fuzzy set specifies the level of certainty for that patient’s data. Suppose
U is a reference set (finite and non-null collection of items) and R is a non-null set of
finite features.

Definition 1. In the classical set theory an element must belong or not belong
to a set. In fuzzy theory, an element can belong to a set by k degree (0 ≤ k ≤ 1) .
The fuzzy belonging function is shown such as µA (x) ∈ (0,1) where A is an element
collection, x is an object, and A is a fuzzy set which is given below [21].

Definition 2. A quaternary (U,R,KS,S) gives a fuzzy information system (FIS).
KS is the set of entire fuzzy numbers and S is a knowledge operation which F (x, r) =
µr (x) ,∀x ∈U,r ∈ R and S : U ×R → KS and µr (x) is membership degree.

Definition 3. A rough set concept is another way to deal with ambiguity. Unlike
the fuzzy set, the uncertainty in the rough set is determined with a boundary area, not
through a partial membership function. Internal topological functions and closures as
estimation can define a rough set. U is a given universe and R ⊆U ×U is an indis-
cernibility connection which demonstrates our information shortage about members
of U . Let R is equivalence intercourse and X ⊆ U . Now determine the set X with
about R through a primary hypothesis of rough set theory.

• R-lower approximation of X: R(x) =
⋃
{R(x) : R(x)⊆ X}

• R-upper approximation of X: R(x) =
⋃
{R(x) : R(x)∩X ̸=∅}

• R-boundary approximation of X: RnR(x) = R(x)−R(x)
The rough set membership function is described as:

µX R :U → (0,1) where µX R(x)=
|X ∩R(x) |
|R(x) |

and |R(x) | denotes the cardinality of x.
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Definition 4. A quaternary (U,R,KS,S) gives a fuzzy information system (FIS).
KS is the set of all fuzzy numbers and S is an information function which F (x, r) =
µr (x) ,∀x ∈U,r ∈ R and S : U ×R → KS and µr (x) is membership degree.

Definition 5. Let R = (U,A) be an information framework, that U is a not empty
collection of limited objects (the universe of discourse), and A is a nonempty limited
collection of features which a : U → Va; ∀a ∈ A. Va is the collection of values that
criteria a can receive.

IND(P) =
{
(x,y) ∈U2|∀a ∈ P, a(x) = a(y)}

The division of U , which is produced by IND(P), is demonstrated U/IND(P) (or
U/P for simplicity) and can be computed as:

U/IND(P) =
⊗{

U/IND({a})|a ∈ P}

where
⊗

is particularly defined as follows for sets A and B:

A
⊗

B = {X ∩Y |X ∈ A,Y ∈ B,X ∩Y ̸=∅}

If (x,y) ∈ IND(P), then x and y are indistinguishable by criteria from P. The
equation classes of the P indistinguishable relationship are demonstrated [x]P.

Let X ⊆ U . X can be approximated by employing only the knowledge contained
within P by setting up the P− lower and P−upper approximations of X :

PX = {x ∈U | [x]P ⊆ X}
PX = {x ∈U | [x]P ∩X ̸=∅}

⟨PX ,PX⟩ is labelled as a rough set. Let P and Q be sets of elements inducing equi-
valence relationship over U , then the positive, negative, and boundary regions can be
described as:

POSP(Q) =
⋃

X∈ U/Q

PX

NEGP(Q) =U −
⋃

X∈ U/Q

PX

BNDP(Q) =
⋃

X∈ U/Q

PX −
⋃

X∈ U/Q

PX

The positive region comprises all items of U that can be categorized into classes of
U/Q by employing the information in attribute P. The boundary region is the set of
attributes that can possibly, but not sure, be categorized in this method. The negative
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region is the set of elements that cannot be categorized into classes of U/Q. A signi-
ficant subject in data mining is finding dependencies between features. intuitionally,
a set of features Q depends entirely on a set of attributes P, which is demonstrated
by P ⇒ Q, if all data values from Q are uniquely specified by values of objects from
P . If there is an operative dependency between values of Q and P, then Q depends
entirely on P. ∀P,Q ⊂ A, Q depends on P in a degree k(0 ≤ k ≤ 1), which is denoted
P ⇒ k Q, if:

k = γP =
|POSP(Q)|

|U |
• If k = 1 , Q depends entirely on P;
• if 0 < k < 1,Q depends partially (in a degree k ) on P;
• if k = 0, then Q does not depend on P.

By computing the change in dependency when a feature is eliminated from the set
of observed conditional features, a scale of the importance of the attribute can be
acquired. The vast the change in dependency, the more important the attribute is. If
the importance is 0, then the attribute is dispensable. More officially, given P, Q, and
an attribute a ∈ P [2]:

σP(Q,a) = γP(Q)− γP−a(Q)

Definition 6. A description for fuzzy P−lower and P−upper approximations was
identified as follows:

µPX(Fi) = inf
x

max{1−µFi(x),µx(x)} ∀i

µPX (Fi) = sup
x

min{µFi (x) ,µx (x)} ∀i

where Fi is a fuzzy equivalency class, and X is the (fuzzy) notion to be approximated.

The ⟨µPX ,µPX⟩ is described as a fuzzy-rough set. These definitions disunite a
concise from the crisp upper and lower approximations, as the memberships of single
attributes to the approximations are not clearly accessible. Thereupon, the fuzzy
lower and upper approximations are described as follows in [7].

µPX (x) = sup
F∈U/P

min
(

µF (x) , inf
y∈U

max{1−µF (y) ,µX (y)}
)

µPX (x) = sup
F∈U/P

min

(
µF (x) , sup

y∈U
min{µF (y) ,µX (y)}

)
Definition 7. Fuzzy-Rough Reduction procedure: Fuzzy-rough set-based FS con-

structs on the idea of the fuzzy lower approximation to provide a reduction of data-
sets comprising real-valued features. The procedure will be the same with a crisp
approach when the attributes are well-defined nominal attributes. The membership
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of an attribute x ∈ U be the property of the fuzzy positive region can be determined
by:

µPOSP(Q)(x) = sup
X∈U/Q

µPX(x)

The fuzzy- rough dependency function can be determined as come after:

γ
′
P(Q) =

|µPOSP(Q)(x)|
|U |

=
∑x∈U µPOSP(Q)(x)

|U |
If the fuzzy-rough diminution process is to be a utility, it should be able to struggle

with various features by calculating the dependency between the multiple subsets of
the original attribute set. In the fuzzy condition, objects could belong to various equi-
valence classes, and thus, the Cartesian product of U/IND({a}) and U/IND({b})
must be noted in assigning U/P .

(U/P) =
⊗

{U/IND(a)|a ∈ P}

where
A = {X ∩Y |X ∈ A,Y ∈ B,X ∩Y ̸=∅}

Each set in U/P indicate an equivalence class [22].

Definition 8. A fuzzy knowledge framework is determined as (U,B,VF ,F), which
VF is the set of whole fuzzy data and F is an knowledge assignment determined as
F : U ×B →VF .

Such that F(x, b) = µb(x),∀x ∈U and b ∈ B , where µb(x) is a membership grade
of the criteria x for the feature b .

Definition 9. Let FDS be a fuzzy decision system and fuzzy resemblance among
two criteria for every feature could be determined as [10]:

SIMa(xi,x j) = 1−
|µa(xi)−µa(x j)|
|µamax −µamin |

That, µa(xi) and µa(x j) are membership function of criteria xi, x j separately and
µamax and µamin are maximum and minimum membership function for a criterion “a”
respectively [20].

For a subset of attributes P,

(xi,x j) ∈ SIMδ
P iff SIMa(xi,x j)≥ δ

where δ is a resemblance entrance and tolerance classes are produced by fuzzy sim-
ilarity connection as:

SIMδ
P(xi) = {x j ∈U |(xi,x j) ∈ SIMδ

P}
So, lower and upper approximations of X ⊆U are expressed as:

PδX = {xi|SIMδ
P(xi)⊆ X}
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PδX = {xi|SIMδ
P(xi)∩X ̸=∅}

The pair ( PδX , PδX ) is named tolerance fuzzy rough set. The positive region and
dependency degree determined as before.

In each phase, we append one feature in the decrement collection and compute the
grade of dependency, when there is not increase in the amount of dependency, the
algorithm ends.

3. THE RESEARCH FINDINGS AND DISCUSSION

Fuzzy logic employs linguistic variables, determined as fuzzy sets, to approach hu-
man reasoning. The used feature selection technic gets pre-processed data set as an
input and generates ranked attributes based on the got-together approach of F−Score
and Accuracy on data set statement values normalized by fuzzy Gaussian member-
ship function. we used fuzzy- rough subset evaluation to feature selection. These
top- n selected data are used by the Fuzzy- discernibility and Neural- a network for
classification. The process is explained with the following steps:

a. Normalization Before doing anything with the dataset, it must be normal-
ized. Occasionally, some values may be missing in the real valued dataset,
there are operations such as filling or eliminating these values in preparation.
And sometimes the scalars of the data are not the same, so it is necessary to
bring them to the same proportions, and this is one of the works done in pre-
paration as normalization or standardization. Sometimes there are nominal
values that must be change to numeric values. Fuzzification is one of those
normalization which based on fuzzy membership function. Fuzzification is
the procedure of turning crisp inputs into fuzzy utilities. The membership
functions supplied membership values indicate the degree of membership of
a linguistic term.

The datasets used in this study comprise expression data for a set of attrib-
utes existing at https://www.kaggle.com/c/parkinsons-detection. This work
is applied using Weka version 3.9.5.

b. Attribute Selection After normalized the dataset it is time to attribute
selection. In this study as said before we applied a fuzzy rough subset
evaluation technique for attribute selection and the searching method is Hill
Climber. In this method, the fuzzy- rough set similarity is implemented for
every feature and then select the n−top attributes.

c. Classifying In this study, Artificial Neural Network (ANN) and Naive
Bayes (NB) are utilized as classifiers to determine the performance of attrib-
ute selection technique. Artificial Neural Network (ANN) and Naive Bayes
(NB) are employed as classifiers to determine the performance of attribute
selection techniques in this work. Naive Bayes is an uncomplicated learning
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algorithm that makes use of Bayes principle each other by a powerful sup-
position which the criteria are circumstantially individualistic, dedicated the
class. Meanwhile this independence supposition is frequently disturbed, Na-
ive Bayes against all odds constantly gives passionate classification correct-
ness. Unified by its algorithmic performance and plenty alternative favour-
able features, it guides to Naive Bayes becoming extensively used virtually
[26].

An ANN is adaptive in disposition because it changes its anatomy and
modifies its weight to keep down the error. An adaptation of weight is based
on the knowledge that moves internally and externally by network within
the learning period. The vantages of ANN are it needs less formal statist-
ical training, indirectly uncover complex nonlinear connections betwixt de-
pendent and independent variables, figure out all probable interplays among
predictor variables, and the presence of various training algorithms [1].

d. Measurement Metrics As mentioned in this paper, classification and ac-
curacy, precision, recall, F−measure, and computational time metrics have
been employed to analyze these techniques. The classifier performance is
evaluated using training set validation. The average accuracy for the datasets
is determined as the measure of correctly classified test samples. Then, the
performances of every technique are evaluated with each other. The meas-
urement metrics definitions are given below:
d-1. Accuracy This evaluation parameter is used to determine how close the

measurements of a value are to the true value.

Accuracy =
T P+T N

T P+T N +FN +FP
.

Here, TP is a true positive indicator that is accurately identified, TN rep-
resents a true negative that has been properly rejected, FP false positive
that is misidentified, and likewise, FN represents a false negative that
has been wrongly rejected.

d-2. Precision This is determined by the proximity of two or more meas-
urements to each other. Precision is also expressed as a positive predict-
ive measure.

Precision(p) =
T P

T P+FP
.

d-3. Recall is also noted as the actual positive proportion or sensibility that
is retrieved to measure a division of the relevant samples.

Recall (r) =
T P

T P+FN
.

d-4. Recall-Precision metric is a useful measure of success of prediction
when the classes are very imbalanced. A large domain below the graph
displays both great recall and big precision, that high precision shows
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fallen false-positive rate, and high recall relates to a fallen false-negative
rate.

d-5. F- Measure This is an evaluation of test carefulness. It considers both
p and r in the test to account for the measure.

F −Measure =
2pr
p+ r

.

d-6. Computing Period The interval indispensable to accomplish computa-
tional progress by assessing the classification implementation time [11].

Sum up Table 1 shows the Artificial Neural Network classification performance
for Parkinson detection before selection attribute and after that. As can be seen from
the table, a relative increase in performance is visible, and this means that the reduc-
tion of dimensions in the dataset while raising performance has caused a significant
reduction in the calculated time.

Table 1. ANN Performances of Classification for Parkinson

ANN-Before Changing ANN-After Changing
TP Rate 1 0.979 1 0.979
FP Rate 0.021 0 0.021 0
Precision 0.993 1 0.993 1
Recall 1 0.979 1 0.979
F- Measure 0.997 0.989 0.997 0.989
ROC Area 0.993 0.993 0.994 0.994
Calculation- Time(S) 0.39 0.39 0.01 0.01
Class Diagnosis Not- Diagnosis Diagnosis Not- Diagnosis

In Table 2, you can find the Naive Bayes classification performance for Parkinson
detection before selection attribute and after that. As table 2 demonstrates while
there is a small change in the time of calculating, the performance of the algorithm
has not been changed. So, the dimensionality reduction had not been affected by
Naive Bayes’ act. Hence, it can be said that Naive Bayes performed better than the
Artificial Neural Network technique.

Table 2. NB Performances of Classification for Parkinson

NB- Before Changing NB-After Changing
TP Rate 0.626 0.938 0.701 0.917
FP Rate 0.063 0.374 0.083 0.299
Precision 0.968 0.45 0.963 0.5
Recall 0.626 0.938 0.701 0.917
F- Measure 0.76 0.608 0.811 0.647
ROC Area 0.871 0.878 0.881 0.881
Calculation- Time(S) 0.019 0.019 0.018 0.018
Class Diagnosis Not- Diagnosis Diagnosis Not- Diagnosis
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The ROC curve demonstrates the equilibration between susceptibility (or TPR)
and specificity (FPR). Those curves are nearby to the top-left corner display better
performance. A random classifier is awaited to have points over the diagonal (FPR
= TPR). Consider that the ROC independent of the class distribution. This makes
it fruitful for evaluating classifiers anticipating scarce cases such as diseases or dis-
asters. Conversely, interpreting performance using accuracy would have preferred
classifiers that regularly predict a negative result for infrequent cases.

FIGURE 1. ANN ROC area before and after attribute selection
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FIGURE 2. The NB ROC- Area for Parkinson disease

The area under the curve (AUC), To compare distinct classifiers, it can be gainful
to outline the performance of each classifier into an individual evaluation. One com-
munal approach is to figure out the area under the ROC curve, which is called AUC.
Although a classifier with a high AUC can sometimes give a worse point in a specific
area than another classifier with a lower AUC, the AUC acts well as a general scale
of predictive accuracy. As it can be seen Figure 1 and Figure 2 illustrate the changes
after the dimension reduction. As it seems from Figures 1 and 2 while in the ANN
algorithm a slight improvement in the AUC area is visible, the AUC area NB has
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become better, and this means reducing the dimensions in the Naive Bayes method
has had a good effect. On the other hand, the ROC curve of ANN totally has been
acted better than the NB ROC curve. But here is the significant thing that should be
noticed is changing the ROC and AUC before and after feature reduction. Therefore,
instead of comparing Figures 1 and 2 with each other, the changes in Figures 1-a to
1-b should be considered and respectively for Figures 2-a to 2-b.

4. CONCLUSION

In this study, Fuzzy- Rough Subset Evaluation algorithm has been used for feature
selection that can select a small set of datasets to prepare a highly precise classifica-
tion of the instances. The proposed dataset normalized by fuzzy Gaussian member-
ship function. The F-Score and Fuzzy-Rough Subset Evaluation are exploited on the
normalized dataset to rank the objects. F-score is utilized to recognize relevant attrib-
utes and FRSE is applied to remove the redundancy among the features. In all feature
selection results in Parkinson’s data, the data selected may or may not be a subset of
disease progression signature. So, the top n attributes are selected for classification in
ANN and NB. The train set validation is used to detect the average classification ac-
curacy. It provides 0.04% average classification accuracy for the ANN method and a
1.01% percentage for NB classifiers. It also gives the highest average AUC accuracy
for NB compared to the ANN algorithms. In summary, the normalization of a data-
set by using the Fuzzy Gaussian membership function can modify the classification
accuracy with the suggested measure. The performance of the Naive Bayes is totally
better than the Artificial Neural Network algorithm. So, the proposed method is ef-
fective and consistent for the detection of Parkinson with a small number of features.

REFERENCES

[1] S. Agatonovic-Kustrin and R. Beresford, “Basic concepts of artificial neural network (ann) mod-
eling and its application in pharmaceutical research,” Journal of pharmaceutical and biomedical
analysis, vol. 22, no. 5, pp. 717–727, 2000, doi: 10.1016/S0731-7085(99)00272-1.
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