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Abstract. In this paper, we study a coupled system of nonlinear Liouville-Caputo fractional
differential equations equipped with a new set of nonlocal boundary conditions involving an ar-
bitrary strip together with two sets of nonlocal multi-points on either part of the strip on the given
domain. We emphasize that the boundary conditions considered in this study are formulated with
respect to the sum and difference of the unknown functions. We apply the well-known tools of
the fixed point theory to derive the main results. Examples are presented for the illustration of
the obtained results.
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1. INTRODUCTION

Fractional calculus has evolved as an important area of research in view of its
diverse applications in a variety of applied fields. Examples include immunology
[8], chaotic systems [21], ecology [12], virology [7], economic model [20], neural
networks [0], etc. A salient feature distinguishing fractional-order differential and
integral operators from the classical ones is their nonlocal nature, which can trace
the past history of the phenomena and processes under investigation. In the recent
years, many researchers contributed to the development of fractional calculus, for
example, see [3], [4], [5], [9], [1 11, [13], [22] and the references cited therein. One
can also find a substantial material dealing with coupled systems of fractional differ-
ential equations in the recent literature, for instance see [1], [2], [10], [14] and the
references cited therein.

In survey-cum-expository review articles [15—18], Srivastava described some re-
cent developments on the subject of fractional calculus and its applications. In the
survey [15], some recent developments involving different types of the Mittag-Leffler
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type functions associated with generalized Riemann-Liouville and other related frac-
tional derivative operators are reviewed. The article [16] contains a brief elementary
and introductory overview of the theory and applications of the integral and derivative
operators of fractional calculus. In [17], an overview of the fractional-calculus oper-
ators based on the general Fox-Wright function and its specialized forms is presented,
while [18] deals with some variations of the operators of fractional calculus, related
special functions and integral transformations.

In this paper, we consider a Liouville-Caputo type coupled system of nonlinear
fractional differential equations supplemented with a new set of boundary conditions
given by

= —(v+o)(T), a.n

where 2°D§ and LCDE . denote the Liouville-Caputo fractional derivative operators
ofordera,B e (0,1],0<0;<n<{<§;<T,i=1,....m, j=1,...,n,and a;, b;, A
are nonnegative constants, @, : [0, 7] x R> — R are continuous functions. The first
condition in (1.1) is anti-periodic one with respect to the sum of unknown functions
v and ®, while the second condition describes that the contribution of the difference
of the unknown functions v and ® on an arbitrary strip (1n,&) within the given domain
[0, T] differs from the sum of such contributions due to arbitrary positions at 6;,i =
1,...,mand §;,j=1,...,n (off the strip (n,§)) by a constant.

The present work is motivated by a recent article [2] in which the authors studied

the system in (1.1) with boundary conditions of the form:

¢
(V4 0)(0) = —(v +@)(T), /n (v—)(s)ds = A,

Here our objective is to enhance and generalize the study established in [2] by intro-
ducing more general nonlocal boundary conditions describing the changes within the
given domain.

In the next section, we provide the related definitions of fractional integral and
derivatives, and prove an auxiliary lemma. Our main results, presented in Section 3,
rely on Schaefer like fixed point theorem and contraction mapping principle.

2. PRELIMINARIES
Let us commence this section with some definitions.

Definition 1. ([13]). For a function v € L;[a,b], —o0 < a < b < +oo, we define the
Riemann-Liouville fractional integral I5v of order p > 0 existing almost everywhere
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on [a,b] as
t

1P (f) = r(lp) / (=1 v (v)dr,

where I' denotes the Euler gamma function.

Definition 2. [13]. The Riemann-Liouville fractional derivative DJv of order
p € (p—1,p],p € N existing almost everywhere on [a,b] is defined as

d? 1 d?

DI () = gl 0 = o= / (t—1)"" Py (t)dr,

a
where v,0?) € L;[a,b).
The Liouville-Caputo fractional derivative LCDPy of order pe(p—1,p],pENis
defined as

(t—a)P~!
(p—1! |
Remark 1. [13]. The Liouville-Caputo fractional derivative ““Div of order p €

(p—1,p],p € N for a function v € AC?[a, b], existing almost everywhere on [a, b], is
defined as

1Dy (1) = D8 v (1) =0 (a) =0/ (@) ;“) D (g)

t
1
LCDPy(r) = IP~PulP) (1 :7/ 1 —1)P 1 PP ()4,
(z) (t) Tlr—p) (t—1) (t)

a

In the follow lemma, we solve a linear variant of the problem (1.1).

Lemma 1. Let F,G € C[0,T]. Then the solution of the following linear coupled
boundary value problem:

Kprw()=F(t), 0<a<1, t€][0,T],
Lpbw(r) =G(t), 0<B<1, t€[0,T],
(V+0)(0) = —(v+w)(T), 2.1

¢ m "
/n (v — @)(s)ds — ;ai(v—m)(ci) L bi(v-0)(3) =4,

J

is given by
t(t—g a—1
V(1) = /0 %F(s)ds 2.2)
1A 1, T(T—s)*! T(T—s)P1
+2{A_2(/0 F((X)F(s)ds—l—/o WG(S)dS)
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S i [ G

Ay (o) B)
pEE( I WF(x)dx— I ("l‘r_(’[;))ﬁlc(x)dx)
o) = [ g }(séil G(s)ds 23)

§/ s (s—x)%! s (s—x)B-
+/1\/n </0 ( F(O)c) F(x)dx—/o ( F(é) G(x)dx)ds
_ Z";n—la"(/oci WF(x)dx—/oGi WG(x)dx)

A I'(a) I'(B)
Yioi1bj (8 (8 —x)*! 8 (§; —x)B-1
_7JA1 j(/o 711“(0() F(x)dx—/o 7JF(B) G(x)dx)},
where . .
A=C-n—-Y a—) b;#0, (2.4)
i=1 j=1

Proof. Applying the operators I* and I® on both sides of fractional differential
equations in (2.1), respectively (for details, see [13]), we obtain

v(t) = /O gt ;g&jlhl(s)ds—l—cl, (2.5)
{(r — )P
o(f) = /O (t r(é) lhz(s)a’s—i—cz, (2.6)

where c1,cp € R. Using (2.5) and (2.6) in the boundary conditions of the problem
(2.1), we get
(T —s5)*! (T —s)P!

cltce=— ! </OT I‘((JL)F(S)dS+/0T WG(S)CZS), (2.7)
‘(

2
S/ s (s—x)%! s —x)B-!
CI—CQZII\{A—/T] (/0 ( F(o)c) F(x)dx—/0 F(é) G(x)dx)ds
+
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3 8 (8 —x)*! B (8; —x)P~!
+j221bj (/0 WF(X)dx— /0 WG@)W) . (28)
Solving (2.7) and (2.8) for ¢ and ¢, yields

o3 TR v [ T o
S/ s (s—x)* ! s (s —x)P-1
_% [ ( /O (M)L)F(x)dx— /O (F(S)G(x)dx)ds
" a; i —x)% ! % (6; —x)P~!
+ZIA1</0 (GF@L)) (x)dx—/o (GF(B))G(X)dX)

Yizi1bj 35 (8 —x)*! 8 (8; — )P
+ Tl ( /0 (r(a)F(")d"_ /0 (F(B))G(x)dx>},

2 {[{4 5(/ F(s)ds+ OT WG(s)ds)
i s (g— x)B—1
K/ / F(x)dx—/o (F([;)G(x)dx>ds
m a; ,—X(x 1 G =X p-1
Z’Al (/0 (G (oc)) F(x)dxf/o (GF(B))G(x)dx)

Y b & —x)o! 8 (8, —x)P-!
_%</0 (J@L)) (x)dx—/o (Jl_‘(B))G(x)dx>}.

Substituting the values of c¢; and ¢, in (2.5) and (2.6) yields the solution (2.2) and
(2.3). By direct computation, one can prove the converse of this lemma. The proof is
finished. U

3. MAIN RESULTS

Let X = C([0,T],R) x C([0,T],R) be the Banach space equipped with the norm
1(v, @)[| = VIl + lol] = sup,cfo 7y [V(1)[ + sup,e o7y [@(z)], for (v,®) € X. In order
to transform the problem (1.1) into a fixed point problem, we define an operator
IT: X — X viaLemma I as

I(v,m)(t) := (I} (v,0)(2), [T (v,0) (1)), (3.1)

T (v, 0) (1) = F(la) /0 ()% 9(s, v(s), 0(s))ds (3.2)

—s a—1
¥ ;{i - % (/T (Tmz)cp(s,v(s),m(s))ds
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_ Bl
+/oT (TF([3)) II’(S»V(S),co(s))azs)

iy () et otas

s (s—x)P-1
_/0 ( F(B)) Wx,v@)@(x))dx)ds

m a; Gi i—X ol
([ v

Oi X B—1
_/0 (GIF(B)) W(x,u(X),v(x))dx>

Yiibj [ (8;—x)*!
Al (/0 ()

_/5,- (8, —X)Blw(x,v(x),m(x))dx>}
0

+

o(x,v(x),0(x))dx

I'(B)

and

- s a—1
+;{1{4 B % (/OT (Tr(oz) (s, v(s),m(s))ds
(T —s)P!
I'(B)

1 /S s (s—x)“*l
N /ﬂ ( 0 O(x,v(x), ®(x))dx

A I(0)
s (s—x B—1
/0 ( r(é) W(X>V(X),0)(x))dx>ds

" a; Oi l._xocfl
=3 (] (Gr(a>)

~

(s, v(s), OJ(S))ds)

@ (x,v(x), 0(x))dx

i (5 — x)B-1
_/0 (Glr([;) w(x,\'(x),m(x))dx)

"1 bj 8 (& — x)* !
ZJAI b/(/o (Sjr,(a))

8 (§; —x)B-!
_/0 (6]1“([3)) \If(x,v(x),m(x))dx>}.

Q(x,v(x),0(x))dx

(3.3)
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In the sequel, we need the following assumptions.

(H;) There exist continuous functions u;,k; € C([0,T],R™),i = 1,2,3, such that,
Y(t,v,0) €[0,T] x R?,

lo(t,v,®)| < i (t) +p2(t) V] +u3(t)|0f;
lw(t,v,0)] <x(t) + k() |V + K3 (2) @]
(Hy) There exist C;,K; > 0,i= 1,2, such that, V¢ € [0,T],v;,®; € R,i = 1,2,
lo(t,vi,01) —@(t,v2, )| < Ci|[vi — V2| + G20 — ]|,
(W(#,v1,01) —W(t,v2,02)| < Ki[[vi — V2| + Ka |0 — |-

For the sake of computational convenience, we set the notation:

_ T 1 ch+l_noc+l m Gfx
A1_4F(Oc+1)+2!A\[ far2) & Tar 1) S
+j:21 jl"(oc—i—l)}’
Th 1 (Bt —qprt P
A= G 35
R R (e M G-)
n SB
+Y bt |
L)

and

" i
Mo :min{l - [nmn(mwnjﬂ)) +||‘<2”(2A2+r<1?+1> )

- [IIH3||(2A1 st ||K3\|(2A2+F(BTL))] }

Our first existence result for the problem (1.1) is based on the following fixed point
theorem [19].

9

Lemma 2. Let ‘E be a Banach space and F : E — ‘E be a completely continuous
operator. If the set S = {x € E|x = uFx,0 < u < 1} is bounded, then the operator F
has a fixed point in ‘E.

Theorem 1. Suppose that the assumption (Hy) holds. Then there exists at least
one solution for the problem (1.1) on [0,T] if

o

(2] <2A1 + m)

7B
+||K2”(2A2+m) < 1, (36)
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T(X
INo+1) )
where A; (i = 1,2) are given by (3.4)-(3.5).

el (281 + + [l | (240 +

7B
) <"

Proof. Observe that continuity of functions ¢ and y implies that the operator IT :
X — X is continuous. Let Q7 C X be bounded. Then we can find positive constants
Ly and Ly, such that

|(p(t,V(t),(D(l))’ < L(P7 ’\P(t,\/(t),(})(t))‘ < L‘lf? V(V,O)) € Q;.

So, for any (v,®) € Q1 € [0,T], we get

o
A

I1 | <Lo| =———+A LyAy + ——

T (v,0)(0)] < Lo (i A1) + Lo+ 5700

T (v, 0)(1)] < LoAr +L (TB+A)—|—A

B A S VAN

Thus
ITI(v, 0)]| = [T (v, 0) || + [Tz (v, @)

T 7B A
<Lyl =—+2A Lyl =———+2A —
= (P(F((x+1)+ 1)+ ‘V(r([s+1)+ 2)+|A|’

which implies that the operator IT is uniformly bounded.
Next it will be shown that IT maps bounded sets into equicontinuous sets of X. For
t1,t € [0,T], t; <1y, and (v,®) € Q, we have

T (v, 0)(22) = T (v, ©)(11)|

o ([ =9 = =9 (s.v(5) ()

+/tlt2(t2 —s)O!—l(P(S,V(s)’(o(s))ds>

<1 (2(z2—z1)°°+tg—t§*
- C(a+1)

) — O whent; — 1,

independently of (u,v) € Q. Likewise

2(t2—t1)|3+t§—t?> o

rp+1)

when t; — 1, independently of (v,®) € Q7. Thus it follows by the Arzeld-Ascoli
theorem that the operator I1: X — X is completely continuous.

T2 (v,0) (1) ~ TTa(v,0) ()| < Ly (
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Next,we consider the set U = {(v,®) € X |u = Al1(v,®),0 < A < 1} and prove that
it is bounded. Let (v,®) € U, then (v,®) = AMlI(v,®),0 <A < 1. For any ¢ € [0,T],
we have
v(t) = M (v,0)(r), 0(t) = Al (v,0)(7).
As in the previous step, using A; (i = 1,2) given by (3.4)-(3.5), we find that

o

VO =N 0)0)] < (a1 + o V1 + sl (g +)

il + [Vl + |[x3]|||o]] A
+ (I + eVl + sl 42+ 57

o) = AT, 0) (0] < (]l + | IV]+ s o] ) &

TP A
— 1A —_—.
+ (Irall+ Iellvl+ Isllol) (5 +42) + 5ia

In consequence, we get

o

T
_ 2A
F(a+1)>+||l<1||< )+

[l (20 ) + el (224 ) [

o

+ [l (281 + o)+ ol (282 + )l

By the condition (3.6), it follows that

H:UIH (2A1—|— (Oc+1 ) —I—HK1||<2A2+ (B+1)) +ﬁ
My ’
which implies that the set U is bounded. In consequence, we deduce that the operator

IT has at least one fixed point by the conclusion of Lemma 2, which is a solution of
the problem (1.1). ]

TP A

V|| + o] < |ju <2A1+ 7)+7
(VI + @] < [|e]] TR+1)/ " Al

(v, 0)]| <

The statement of Theorem 1 reduces to the the following special form by fixing
/12(1‘) 2/13(1‘) =0and Kz(l‘) = K3(l‘) =0init.

Corollary 1. Let ¢,y : J x R? — R be continuous functions such that |@(t,v,®)| <
ui (), w(t,v,0)| <xi(t), V(t,v,0) € [0,T] x R?, where uy,x; € C([0,T],R*). Then
the problem (1.1) has at least one solution on [0,T].

Corollary 2. If u;(t) = Ai, xi(t) = €;,i = 1,2,3, then the condition (H,) becomes:
(H]) there exist real constants A;,€; > 0, (i = 1,2) such that

90V, ) <M+ Aalv| +Asfo] V(t,v,0) € [0,7] x B

W(ev,0)| <& +ealv] +eslol V(,v,0) € [0,T] xR
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and (3.6) takes the form:

o

T
—— 2A
1))4-82( 2+

A2 (2A1 + o+

7B
) <

7B
7F(B+1)) <1

In the following result, we prove the uniqueness of solutions to the problem (1.1)
via Banach contraction mapping principle.

o

T
71)> +€3<2A2+

As <2A1 Tt

Theorem 2. If the assumption (H,) holds, then the problem (1.1) has a unique
solution on [0, T] provided that

a T8
(FrorT
INo+1) r+1)
where C =max{C1,C>}, K =max{K;,K>} and A;, i = 1,2 are defined by (3.4)-(3.5).

+2A1> n 7(( +2A2> <1, 3.7)

Proof. Fix
o i
M, (71-(T 0 —‘rZA]) +M2(7F([€+l) +2A2> + ‘Aﬂ

1= (e +280) + % (i +220) )

where M = sup, (o 71 9(2,0,0)], and M> = sup,c [ 71 [W(2,0,0)|. Then we show that
I1B, C B,, where I1: X — X is defined by (3.1) and B, = {(v,®) € X : || (v,0)|| < r}.
By the assumption (H)), for (v,®) € B,, t € [0,T], we have

0(2,v(1), 0())] < |@(,v(2),0(1)) — 0(,0,0)[ +[9(z,0,0)| < C(IV]| + [|ool|) + M

and

r>

)

(W(e,v(1), (1) < (VI +[]]) +Mo.
In consequence, for (v, ®) € B,, we obtain

o

04 0) ()] < gy (CUVI+ ol +011)
+§ @|+;(F(§f';1)(c<uv||+rm>+Ml)
b (KOVI+ o +0)
o (S (vl o) + )

CBH _nﬁ +1
gy (IVI+lob )
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Y ai of
i Al (F(oH_l)(C(HV||+HOJH)+M1)

U;iw(xmwwwmn+Mg)

Zl}zlbj 5?‘
* |A| <F(OH- 1) (C(HVH +[lof) +M1>

+

&P
+r®iw(xwwwwmw+Mﬁﬂ,

which, on taking the norm for € [0, T, leads to
o

\MMwmﬂg(c(nj+n+m)+xAquw+mm

o

A
L A) Mahy +
F((x+1)+ 1) +MxAr +

M( .
+ M 2\A|

In the same way, for (v,®) € B,, one can obtain

p
IMh(v.0)] < (€814 % (g +82) ) (VI + o)

+MiA + 2<F(B+1)+ 2)+2\A|'
Therefore, for any (v,®) € B,, we have
ITI(v; @) = [T (v, ) || + [T (v, )
T TP
< - -
< ((rrmy +2o) + K (e +20) ) M+l
7B

o
INo+1)
which shows that IT maps B, into itself.

A
+2A2) +— <

+M1< Al

41

Now show that the operator IT is a contraction. For (Vi,), (V2,0) € X, t €

[0,T], we have

ITT; (i, 01) (1) — i (v2, 02) ()|

t _socfl
§~/O %‘(P(S,Vl(s),wl(s))_(P(sv\)Z(S)’wz(s))lds

—g)o-l
+;{;</OT %’@(S’Vl(s)’ml(s)) —(p(s,Vz(S),O)z(S))}dS
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+ /
|A| n \Jo

s (s —x)P-1
+/ ( ) |\|,(x,vl(x),m1(x))—w(x,vz(x),mz(x));dx)ds
1

!\v $,V1(5),01(5)) = W(s, v2(s),02(s)) | ds

\(P (x,v1(x), @1(5)) — @(s,v2(x), 02 () [ dx

I'(B)
Z’/\lal (/()Gi (Gll—_‘()(;)) - ‘(P(X,Vl (X),O)] (S)) - (p(s7v2(x),0)2(X))‘dX

)t
+ /0 GIF(B)) W(x,v](x),w](x))—W<X7V2(x%°’2<x))‘dx)

" bj d; j—x o—1
+ZJ’A1‘ ( /O ( F(OC)) |0(x, V1 (x), @1 (5)) — (s, V2 (x), 2 (x)) | dx

i (§; —x)B1
+/06 (Sjr( “l’ x, Vi (x), @1 (x)) _W(X’VZ(X)’mZ(x))‘dx)}

o

< {c(r(;l) +41) +7(A2}(HV|| + o),

and

T (i, 01)(7) — Hz(Vz ) (1)]

S/O ‘ F(S) [W(s,vi(s),01(s)) = W(s,va(s), ma(s))|ds
—_ )l
Q{;(/OT T (5,v1(5),01(5)) — 05,va(s),0a(s)) s

F(oc)
+/

w $,V1(5), @1(5)) = W(5,V2(s), @2 (s))|ds

o(s,vi(s),0(s)) — (p(s,vz(s),(oz(s))|dx

+/ s \wsvl) 1(5)) (s, (s), 0(s))|dx ) ds

a; G —1
+Z“;\l| </0 (i — = x)* |l @(x,vi(x), 01 (x)) — @(s, V2 (x), 02(x))]| dx

o)

+/ G’_x e x), 01 (x)) = Y(s. V2 (2), 02 (1)) |dx)
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Yi—i1bj % (8;—x)*"!
A (/0 (o)

8 (&, — x)B-1
+[) (51)’\p(xyl(x),wl(x))—W(S,Vz(x)aﬂb(x))‘dx)}

|@(x, vi(x),01(x)) = @(s, Va(x), 02(x)) |dx

I'(B)

B
< {CA1 + K<F([3T—|—1) +2) }(HVII + o).

In view of the foregoing inequalities, it follows that
[TI(v1, 01) =T1(v2, ) || = [[TT; (Vi, @1) =TT (V2, @) | + T2 (V1 01) = TTo(V2, @) |

a B
< {C(F(oil) +2A1) +?C<F(BT+1)+2A2)}II(V1 — V2,01 — )],

which, by (3.7), implies that II is a contraction mapping. Hence the conclusion of
contraction mapping principle applies and Il has a unique fixed point, which is a
unique solution of the problem (1.1). This finishes the proof. 0

Example 1. Consider the following problem
D! 2v(1) = o(r,v(1),0(1)), 1 €10,2],
LD RPo(t) = y(1,v(1), (1), 1 €0,2],
(V+0)(0) = —(v+)(2),
Ll v =) (s)ds — (v—0)(1/4) = 1/5(v—w)(1/3) —4(v—0)(7/4) = 1,
(3.8)
whereoo=1/2,3=2/3,n=3/4,0=3/2,a1=1,a0=1/5,b1 =4,61=1/4,6,=
1/3,6,=7/4,A=1,T =2, and ¢(t,v,®) and y(z,v, ) will be fixed later.

Using the given values, it is found that
A=—4.45 A1 =0.7477415389,A, = 0.7168620998,

where A, A and A, are respectively given by (2.4), (3.4) and (3.5). In order to illus-
trate Theorem 1, we consider

cost . o
o(t,v,0) = W<31nv+§—l—e t) 3.9

and
—t

w(t,v,0) = 2\/%(|v|(2|+v||v|) Fisino+ 1).

Clearly ¢ and y are continuous and satisfy the condition (H;) with

e 'cost cost cost

1= ) = gt =g
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—t —t

e te
K=K =——-—\ K3 = ———.
LT T 036411 2V36 41
Also
2A ¢ 2A r? 0.4592148800
T S 1Y L Y
and
2A L 2A 7P 0.3626132487 < 1
e T e (28 o ) o ‘1
el (2 + gy ) + Il (282 + 5

Clearly the assumptions of Theorem 1 are satisfied. Therefore, the problem (3.8)
with @(z,v,®) and y(7,v,®) given by (3.9) has at least one solution on [0,2].
Now we explain Theorem 2 by taking

tan 'V+ o 1 V| ,
t = —— and = . (3.10
9(1,v,0) 50012 y(r, v, 0) 25(1+12) <2+M —I—smco) (3.10)

Observe that ¢ and y are continuous and satisfy the condition (H;) with C; = C, =
1/30 = C and K; = 1/50, K, = 1/25 and so, X = 1/25. Also

(T TP
(F(OH—]) r'p+1)
Clearly the hypothesis of Theorem 2 is satisfied and hence its conclusion applies to
the problem (3.8) with @(¢,v,®) and y(¢,v,®) given by (3.10).

+MQ+K( +mgzummmn@<L
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