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Abstract. In this paper, a new class of multi-agent systems with addictive and multiplicative
measurement noises under Markovian switching topologies is introduced. Some sufficient con-
ditions of average consensus to the systems are also established under consideration. First, based
on the continuous-time Markov chain with finite modes, the time-varying topologies of the con-
sidering system is figured. Then, the mean square average consensus for the multi-agent systems
with a time-varying gain under the time-varying topologies and the Markov chain is studied. Fi-
nally, the example and simulation results are given to illustrate the effectiveness of the obtained
theoretical results.
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1. INTRODUCTION

The mathematical models subjected to the phenomenon of uncertain environment
for collective behavior have been widely introduced and analyzed (see e.g., [9,16,17],
and its special cases, flocking[1, 2] and consensus [5–7, 10, 11, 15–18]). Noises are
ubiquitous stochastic phenomena in the real world which are usually modeled as ad-
ditive noise [5, 7,16] or multiplicative noises [1,6,11]. Recetnly, Li et al. considered
the addictive noise [7] and multiplicative noises [6] for continuous-time models un-
der fixed topologies, respectively. Besides, random link failures often happen in the
various systems which motives to study the dynamics with stochastic switching. The
average consensus for a linear system with Markov switching topologies has been
developed by Matei et al.[10]. After that it was extended to a more general linear
system in [15]. Under the assumption that the systems have addictive noises, the suf-
ficient conditions for average consensus were proposed by Zhang et al. [16]. Then,
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Li et al. proposed the weaker necessary and sufficient conditions to obtain weaker
consensus results. Since the measurements of multiple sensors are often influenced
by compound noises[3], Wang et al.[13, 14] gave measurement models with com-
pound noises and constant control gains, and Zong et al.[17] studied a first-order
consensus problem with addictive and multiplicative noises to seek consensus. If the
topology is fixed, the necessary and sufficient conditions for mean square weak and
strong consensus were developed with a time-varying gain by Zong et al.[17]. Fur-
thermore, when time-varying topologies were considered in the systems, they also
obtained sufficient conditions for weak consensus and average consensus. However,
the time-varying topologies were not figured explicitly and no numerical simulations
were presented. This is the main motivation of the paper.

To fill this gap, the goal of this paper is to establish the asymptotic consensus for a
class of first-order continuous-time multi-agent systems with addictive and multiplic-
ative noises under Markovian random graphs. Towards the asymptotic consensus, we
transform the dynamics of agents into a stochastic error systems. In order to decrease
the errors, we combine with stochastic analysis and the tools of symmetrized graph in
the theory of stochastic Lyapunov to systemically form a good expression for the ease
of analysis. To ensure the connectivity of the network to some extent, we assume that
the graph resulting from the union of graphs which are switched by ergodic Markov
chain is contained into a spanning tree. Under the assumption, we can show that the
error systems in the mean square sense tend to zero as time goes on making sure that
all agents may asymptotically agree on their states. Moreover, we prove that the state
of each agent converges to the average of initial states under some convergence and
robust conditions.

The paper is organized as follows. In Section 2, we recall some related concepts
and basic results on graphs and matrices, and present the setup and formulation of
the continuous-time systems under consideration. Section 3 is devoted to state our
main convergence theorem for average consensus. In Section 4, the example and
simulation results are given to illustrate the effectiveness of the obtained theoretical
results. Section 5 gives a brief summary of the paper.

2. PRELIMINARY AND PROBLEM FORMULATION

In this section, we will give some related preliminaries and formulate the con-
sidered problem in this work.

Notation 1. In this paper, unless otherwise specified, the following symbols will
be used in next sections. For any positive integers N, IN and eN,i represents N-by-N
identity matrix and its ith column, RN denotes the N dimensional Euclidean space,
Rm×n denotes the set of all m× n real matrices and 1N denotes the N dimensional
column vector with all ones. For any given vector x or matrix X , ∥x∥ denotes the
Euclid norm and ∥X∥F denotes the Frobenius norm, Ex denotes the mathematical
expectation of x and Varx denotes the variance of x. For any given matrices A ∈Rn×n
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and B ∈ Rm×m, AT denotes the transpose of A, A⊗B denotes the Kronecker product.
Set A⊕B = (Im⊗A)+(B⊗ In)∈Rmn×mn. The Kronecker product has the properties:
(A⊗B)T = AT ⊗BT and (A⊗B)(C⊗D) = (AC)⊗ (BD).

2.1. Preliminary

The generator matrix of a continuous-time Markov chain {θ(t)}t≥0 is denoted by
Γ = (γi j)s×s, so that for a sufficiently small h > 0, the probability of mode k jumps to
mode l is determined by the generator matrix

P{θ(t +h) = l|θ(t) = k}=
{

γklh+o(h), k ̸= l
1+ γkkh+o(h), k = l ,

where o(h) is a high-order infinitesimal with respect to infinitesimal h, and γlk ≥ 0 is
the transition rate from state l to state k if k ̸= l. Let λkk = −∑k ̸=l λkl . From [9], for
almost every sample path of θ(t) in any finite interval of R+ := [0,+∞), we know
there are finite simple jumps.

Throughout this paper, we associate to a dynamic system with a communication
graph within N agents. Let the set of nodes V = {1,2, . . . ,N} be the set of agents with
node i representing the ith agent. The interactive communication topology among the
agents is modeled by a time-dependent and weighted digraph G(t) = (V ,E(t),A(t))
with no self-loops and E(t)⊆ V ×V . An ordered pair ( j, i) belongs to the edge set
E(t), which means that the ith agent can receive information from the jth agent dir-
ectly at t. If (k1,k2),(k2,k3), . . . ,(km−1,km) ∈ E(t), then there is a directed path from
node k1 to km at t. The weighted adjacency matrix is defined by A(t) = [ai j(t)] ∈
RN×N . For any i, j ∈ V ,ai j(t) ≥ 0, and ai j(t) > 0, i.e.,( j, i) ∈ E , the graph corres-
ponding to a given adjacency matrix A(t) is denoted by GA(t). The Laplacian matrix
is given by L(t) = D(t)− A(t), where D(t) = diag(∑N

j=1 ai j(t), i = 1, . . . ,N). A
graph G is called to be balanced digraph, if ∑

N
j=1 a ji(t) = ∑

N
j=1 ai j(t), i = 1,2, . . . ,N.

It is clear that an undirected graph is a balanced digraph. If there exists a directed
path from some agent of the systems to the rest of agents, then we say that the digraph
G contains a spanning tree.

Definition 1. Let S= {1,2, . . . ,s} be the index set of modes corresponding to all
possible network topologies, and let {A(i) ∈ RN×N , i ∈ S} be a set of matrices with
respect to a set of graphs {GA(i), i = 1, . . . ,s}. We say that the graph GA corresponds
to the set A if it is given by the union of graphs, i.e.,

GA ≜
⋃
i∈S

GA(i) =

(
V ,

⋃
i∈S

Ei,A

)
,

where A = ∑
s
i=1 A(i).
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Lemma 1. [7] If the fixed graph G = {V ,E ,A} is undirected, then the corres-
ponding Laplacian matrix L is symmetric with N real eigenvalues, and the eigenval-
ues are in an ascending order:

0 = v1 ≤ v2 ≤ . . .≤ vN ,

and

min
x ̸=0,1T x=0

xT Lx
∥x∥2 = v2.

We call that v2(L) is the algebraic connectivity of G . Moreover, if G is connected,
then v2 > 0.

2.2. Problem formulation

We consider the consensus problem for the multi-agent systems with the following
distributed control coordination:

ẋi(t) = c(t)
N

∑
j=1

ai j(t)(y ji(t)− xi(t)), t ≥ 0, i = 1,2, . . . ,N, (2.1)

where xi(t) ∈ R, and c(t) : [0,+∞) → [0,+∞) is a time-varying gain. The com-
munication information from jth agent to ith agent is measured by addictive and
multiplicative noises as the form:

y ji(t) = x j(t)+α jiϖ1 ji(t)+ f ji(x j(t)− xi(t))ϖ2 ji(t), (2.2)

where α ji ≥ 0 in the additive noisy intensity, f ji(·) : R → R+ is the multiplicative
noisy intensity function, {ϖn ji(t), i, j = 1,2, . . . ,N}, n = 1,2 are the noise processes.
In this work, α jiϖ1 ji(t)+ f ji(x j(t)−xi(t))ϖ2 ji(t) is the noise term including two case:

• α jiϖ1 ji(t) are addictive and independent of the agents’ states;
• f ji(x j(t)− xi(t))ϖ2 ji(t) are multiplicative depending on the relative states.

Remark 1. The measurements and information transmission are often disturbed
by addictive and multiplicative noises [12]. Generally speaking, x j(t)− xi(t) is an
ideal measurement and cannot be obtained accurately, because noises appear every-
where. Li et al. considered the addictive noise [7] and multiplicative noises [6] for
continuous-time models under fixed topologies, respectively. Zong et al. [17] studied
the consensus problem for multi-agent systems with addictive noise and fixed topo-
logy under weaker sufficient conditions obtained by [7]. Li et al. [5] generalized the
addictive results to a Markovian switching topologies case. Since the measurements
to multiple sensors are often influenced by compound noises [3], Wang et al. [13,14]
proposed measurement models with compound noises and constant control gains, and
Zong et al. [17] also considered a first-order consensus problem with addictive and
multiplicative noises and designed a time-varying control gain to seek consensus.
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Assumption 1. The noise processes {ϖn ji(t), i, j = 1,2, . . . ,N}, n = 1,2 satisfying∫ t
0 ϖn ji(s)ds = wn ji(t), t ≥ 0 and {wn ji(t), i, j = 1,2, . . . ,N} are scalar independent

Brownian motions.

From Assumption 1, (2.1) and (2.2), the dynamic behavior of the ith agent is given
by

dxi(t) = c(t)
N

∑
j=1

ai j(t)(x j(t)− xi(t))dt + c(t)
N

∑
j=1

ai j(t)α jidw1 ji(t)

+ c(t)
N

∑
j=1

ai j(t) f ji (x j(t)− xi(t))dw2 ji(t), (2.3)

where f ji(·) : R→ R is the noise intensity function.
Let ηi(t)T be the first row of A(t), Σi(t) = ηT

i (t)diag(α1i,α2i, . . . ,αNi), α(t) =
diag(Σ1(t), . . . ,ΣN(t))N×N2 and dW1 = (dw111 . . .dw1N1 . . . . . .dw11N . . .dw1NN)

T .
Then, (2.3) can be rewritten as

dx(t) =−c(t)L(t)x(t)dt + c(t)α(t)dW1(t)

+ c(t)
N

∑
i=1

N

∑
j=1

ai j(t)eN,i f ji (x j(t)− xi(t))dw2 ji(t), (2.4)

where x(t) = (x1(t), . . . ,xN(t))T .
Next, we give the definition of consensus as follows.

Definition 2. The agents reach asymptotically unbiased mean square average con-
sensus(AUMSAC), if there is a random vector x∗ ∈R such that E[x∗] = 1

N ∑
N
j=1 x j(0),

E[x∗]2 < ∞, and lim
t→∞

E∥x(t)− x∗1N∥2 = 0.

Remark 2. Definition 2 follows from [18], and we use the mean square consensus
to figure such asymptotical behavior.

3. CONSENSUS ANALYSIS

In the section, we are going to give several sufficient conditions for asymptotically
unbiased mean square average-consensus to the multi-agent systems. To this end, we
make the following assumptions.

Assumption 2. All digraphs GA(k),k ∈ S are assumed to be balanced and the
union graph of all available digraphs contains a spanning tree.

Assumption 3. The homogeneous, finite-state Markov chain {θ(t)}t≥0 is right
continuous-time, and ergodic with generator matrix Γ = (γi j)s×s satisfies ∑

s
j ̸=i γi j =

∑
s
j ̸=i γ ji and initial probability distribution has {qi, i ∈ S},S= {1,2, . . . ,s}.

Assumption 4. c(t)≥ 0,
∫

∞

0 c(t) = ∞,
∫

∞

0 c2(t)< ∞.
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Assumption 5. The initial data x(0) satisfies E∥x(0)∥2 < ∞. Besides, x(0),
{θ(t)}t≥0, {ϖn ji(t), i, j = 1,2, . . . ,N} are independent.

Remark 3. The Assumptions above are sufficient for seeking consensus of the
considered systems in this work.

(1) Assumption 2 is often used to analysis the dynamics for systems with switch-
ing topologies (see [5]).

(2) Assumption 3 makes the generator matrix Γ to be doubly stochastic and to
correspond to a balanced digraph[10]. Besides Q := ΓT+Γ

2 is irreducible and
negative semidefinite.

(3) The two integrals in Assumption 4 are convergence condition and robust con-
dition, respectively (see [7]). And it is easy to find that c(t)→ 0, t → ∞.

Theorem 1. Suppose that Assumptions 1,2,3,4 hold. If f ji(x) = β jix,0 ≤ β ji ≤
κβ, i, j = 1,2, . . . ,N and ai j(k) = 1 or 0, i, j = 1, . . . ,N, k ∈ S, then the multi-agent
systems achieve unbiased mean square average consensus under the distributed con-
trol coordination (2.1) with measurements (2.2), that is,

lim
t→∞

∥x(t)− x∗1N∥2 = 0,

where

x∗ =
1
N

1T
Nx(0)+

1
N

∫
∞

0
c(t)1T

Nα
(θ(t))dW1(t)+

1
N

N

∑
i, j=1

∫
∞

0
c(t)β ji1T

NS(θ(t))i j x(t)dw2 ji(t).

Proof. Since f ji(x) = β jix, i, j = 1,2, . . . ,N, let S(t)i j = (si j(t))N×N be an N-th-order
square matrix with si j(t) = ai j(t),sii(t) = −ai j(t) and the rest elements being zero,
i, j = 1,2, . . . ,N. Then, (2.4) can be rewritten as

dx(t) =−c(t)L(t)x(t)dt + c(t)α(t)dW1(t)+ c(t)
N

∑
i=1

N

∑
j=1

β jiS
(t)
i j x(t)dw2 ji(t). (3.1)

Let δ(t) = (IN − JN)x(t) and JN = (1/N)1N1T
N . Note that (IN − JN)L(t) = L(t) =

L(t)(IN − JN),

dδ(t) =−c(t)L(t)δ(t)dt + c(t)(IN − JN)α
(t)dW1(t)

+ c(t)
N

∑
i=1

N

∑
j=1

β ji (IN − JN)S(t)i j δ(t)dw2 ji(t),

we integrate both sides to the equality d[δ(t)δ(t)T χ{θ(t)=k}] = χ{θ(t)=k}dδ(t)δT (t)+
δ(t)δT (t)dχ{θ(t)=k}, to yield

δ(t)δ(t)T
χ{θ(t)=k} = δ

T (0)δ(0)χ{θ(0)=k}+
∫ t

0
χ{θ(s)=k}dδ(s)δT (s)

+
∫ t

0
δ(s)δT (s)dχ{θ(s)}.
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Hence, we obtain

E[δT
δχ{θ(t)=k}] = E[δT (0)δ(0)χ{θ(0)=k}]+

∫ t

0
Eχ{θ(s)=k}dδ(s)δT (s)

+
∫ t

0
Eδ(s)δT (s)dχ{θ(s)}.

Denote Vk(t) = E[δ(t)δT (t)χ{θ(t)=k}], we use Ito’s formula and Lemma 4.2 in [4] to
obtain

dVk(t)
dt

=
dE[δ(t)δT (t)χ{θ(t)=k}]

dt
=−c(t)

(
Vk(t)L(k)T +L(k)Vk(t)

)
+ c2(t)(IN − JN)α

(k)
α
(k)T (IN − JN)pk(t)

+ c2(t) ∑
i, j=1

β
2
ji(IN − JN)S

(k)
i j Vk(t)S

(k)T
i j (IN − JN)

T +∑
l=1

γlkVl(t). (3.2)

But, V (t) =
s
∑

k=1
Vk(t) deduces V (t) = E(δ(t)δ(t)T ). Let V̂ (t) = [V1(t) . . .Vs(t)] ∈

RN×Ns, and ψ(V )(V ∈ RN×N) be an N2 dimensional vector obtained by “stacking”
V ’s columns, that is,

ψ(V ) =

 V (:,1)
...

V (:,N)

 , and then, ψ(V̂ (t)) =

 ψ(V1(t))
...

ψ(Vs(t))

 .

Hence,

dψ(Vk(t))
dt

=−c(t)ψ
(
Vk(t)L(k)T +L(k)Vk(t)

)
+∑

l=1
γlkψ(Vl(t))

+ c2(t)ψ
(
(IN − JN)α

(k)
α
(k)T (IN − JN)pk(t)

)
+ c2(t) ∑

i, j=1
β

2
jiψ

(
(IN − JN)S

(k)
i j Vk(t)S

(k)T
i j (IN − JN)

T
)

=−c(t)(L(k)⊕L(k))ψ(Vk(t))+(ΓT
k ⊗ IN2)ψ(V̂ (t))+ c2(t)ψ(Zk(t))

+ c2(t) ∑
i, j=1

β
2
ji

(
(IN − JNS(k)i j ⊗ (IN − JN)S

(k)
i j ))

)
ψ(Vk(t)), (3.3)

where Zk(t) = (IN − JN)α
(k)α(k)T (IN − JN)pk(t). Let Z(t) = [Z1(t) . . .Zs(t)], L̄ =

diag(L(k)⊕L(k),k = 1, . . . ,s) , H = diag( ∑
i, j=1

β2
ji((IN −JN)S

(k)
i j ⊗(IN −JN)S

(k)
i j ),k =

1, . . . ,s), and ψ(V̂ (0)) = (q1ψ(V (0))T , . . . ,qsψ(V (0))T )T . Using the above notation,
we have

dψ(V̂ (t))T ψ(V̂ (t))
dt

= 2ψ(V̂ (t))T (−c(t)L̄ +Γ
T ⊗ IN2

)
ψ(V̂ (t)) (3.4)



172 X. HUANG, Y. LIU, AND J. HUANG

+2c2(t)ψ(V̂ (t))T
ψ(Z(t))+2c2(t)ψ(V̂ (t))T

ψ(V̂ (t)).

Let L := diag(L(k)⊕ L(k),k = 1,2, . . . ,s). Applying Assumption 2, we know that
L(k) = LT (k)+L(k)

2 is symmetric. From Assumption 3, we can see that Q = ΓT+Γ

2 is
irreducible, since {θ(t)}t≥0 is ergodic and Γ is double stochastic. Therefore, (3.4)
could be rewritten as

dψ(V̂ (t))T ψ(V̂ (t))
dt

= 2ψ(V̂ (t))T (−c(t)L+Q⊗ IN2)ψ(V̂ (t)) (3.5)

+2c2(t)ψ(V̂ (t))T
ψ(Z(t))+2c2(t)ψ(V̂ (t))T

ψ(V̂ (t)).

From Assumptions 2, 3 and Lemma 3.13 in [10], we know that matrix (−c(t)L +Q⊗
IN2) has an eigenvalue zero with algebraic multiplicity one, and the matrix can be
viewed as the Laplacian matrix corresponding to a strongly undirect graph with the
second smallest eigenvalue v2 > 0, due to Lemma 1. From Assumption 4, there exists
t0 such that c(t)≤ min{1, v2

1+κH
}, t ≥ t0, where κH = max{0,λmax(H)} and λmax(H)

is the maximum eigenvalue of H. The latter combined with Assumption 3 finds that
for t ≥ t0 it holds

dψ(V̂ (t))T ψ(V̂ (t))
dt

≤ 2ψ(V̂ (t))T (−c(t)L+Q⊗ IN2)ψ(V̂ (t))+2c2(t)λmax(H)∥ψ(V̂ (t))∥2

+ c2(t)
(
∥ψ(V̂ (t))∥2 +∥ψ(Z(t))∥2)

≤
(
−2v2c(t)+ c2(t)+2λmax(H)c2(t)

)
∥ψ(V̂ (t))∥2 + c2(t)∥ψ(Z(t))∥2

≤−v2c(t)∥ψ(V̂ (t))∥2 + c2(t)∥ψ(Z(t))∥2. (3.6)

In (3.6), we use the comparison principle of differential equations, and the becomes

∥ψ(V̂ (t))∥2 ≤ ∥ψ(V̂ (t0))∥2I1(t)+ I2(t),

where

I1(t) = e−v2
∫ t

t0
c(s)ds

, I2(t) =
∫ t

t0
e−v2

∫ t
s c(u)duc2(s)∥ψ(Z(s))∥2ds.

Applying Assumptions 4, 5 and v2 > 0 implies

lim
t→∞

∥ψ(V̂ (t0))∥2I1(t) = lim
t→∞

∥ψ(V̂ (t0))∥2e−v2
∫ t

t0
c(s)ds

= 0.

From Assumption 3, we know that the Markov chain {θ(t)}t≥0 is ergodic. So, there
exists a stationary distribution {πk > 0,k = 1, . . . ,s}. Let Z̄ = [Z1 . . .Zs] with Zk =

(IN −JN)α
(k)α(k)T (IN −JN)πk,k ∈ S. Then, for any given ε1 > 0, there is t1 > 0 such

that ∣∣∥ψ(Z(s))∥2 −∥ψ(Z̄(s))∥2∣∣< ε1, t ≥ t1. (3.7)
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From Assumption 4, for any given ε2 > 0, there exists t2 > 0 such that
∫

∞

t2 c2(t)dt <
ε2, t ≥ t2. Set t3 = max{t1, t2}. We estimate I2 to get

I2(t) =
∫ t3

t0
e−v2

∫ t
s c(u)duc2(s)∥ψ(Z(s))∥2ds+

∫ t

t3
e−v2

∫ t
s c(u)duc2(s)∥ψ(Z(s))∥2ds

≤ e−v2
∫ t

t3
c(u)du

∫ t3

t0
c2(s)∥ψ(Z(s))∥2ds+

∫ t

t3
c2(s)∥ψ(Z(s))∥2ds

≤ e−v2
∫ t

t3
c(u)du

∫ t3

t0
c2(s)∥ψ(Z(s))∥2ds+

(
∥ψ(Z̄)∥2 + ε1

)∫ t

t3
c2(s)ds

≤ e−v2
∫ t

t3
c(u)du

∫ t3

t0
c2(s)∥ψ(Z(s))∥2ds+

(
∥ψ(Z̄)∥2 + ε1

)
ε2

→
(
∥ψ(Z̄)∥2 + ε1

)
ε2, t → ∞. (3.8)

Since ε2 is arbitrary, we have I2(t)→ 0, t → ∞. Therefore, we conclude that
limt→∞ ∥ψ(V̂ (t))∥ = 0. This leads to limt→∞ ∥V (t))∥F = 0. Because of E∥δ(t)∥2 =
tr(V (t)), we get limt→∞E∥δ(t)∥2 = 0. Hence, there exists κ1 > 0 such that E∥δ(t)∥2 ≤
κ1, ∀t ≥ 0.

We use (3.1) and Assumption 2 again to obtain

d(JNx(t)− JNx(0)) = c(t)JNα
(θ(t))dW1(t)+ c(t)

N

∑
i=1

N

∑
j=1

β jiJNS(θ(t))i j x(t)dw2 ji(t).

Integrating the equality above, we have

JNx(t) = JNx(0)+
∫ t

0
c(s)JNα

(θ(s))dW1(s)+
∫ t

0
c(s)

N

∑
i=1

N

∑
j=1

β jiJNS(θ(s))i j δ(s)dw2 ji(s).

Let

x∗=
1
N

1T
Nx(0)+

1
N

∫
∞

0
c(s)1T

Nα
(s)dW1(s)+

1
N

∫
∞

0
c(s)

N

∑
i=1

N

∑
j=1

β ji1T
NS(θ(s))i j δ(s)dw2 ji(s).

From Lemma 5.4 in [8], we obtain

E∥JNx(t)− x∗1N∥2

= E

∥∥∥∥∥
∫

∞

t
c(s)JNα

(θ(s))dW1(s)+
∫

∞

t
c(s)

N

∑
i=1

N

∑
j=1

β jiJNS(θ(s))i j δ(s)dw2 ji(s)

∥∥∥∥∥
2

= E
∥∥∥∥∫ ∞

t
c(s)JNα

(θ(s))dW1(s)
∥∥∥∥2

+E

∥∥∥∥∥
∫

∞

t
c(s)

N

∑
i=1

N

∑
j=1

β jiJNS(θ(s))i j δ(s)dw2 ji(s)

∥∥∥∥∥
2

= E
∫

∞

t
∥JNα

(θ(s))∥2
Fc2(s)ds+

N

∑
i, j=1

β
2
jiE

∫
∞

t
∥JNS(θ(s))i j δ(s)∥2c2(s)ds

:= I3(t)+ I4(t).
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We apply Assumptions 2, 4 and I3(t) to find

I3(t)≤ max
1≤k≤s

∥JNα
(k)∥2

F

∫
∞

t
c2(s)ds = o(1), t → ∞, (3.9)

and

I4(t) =
N

∑
i, j=1

β
2
jiE

∫
∞

t
∥JNS(θ(s))i j δ(s)∥2c2(s)ds

=
N

∑
i, j=1

β
2
jiE

∫
∞

t
∥ai j(θ(s))(δ j(s)−δi(s))1N∥2c2(s)ds

=
N

∑
i, j=1

β
2
jiE

∫
∞

t
a2

i j(θ(s))(δ j(s)−δi(s)2Nc2(s)ds

≤ Nκ
2
β

∫
∞

t
E

N

∑
i, j=1

(δ j(s)−δi(s)2c2(s)ds

= Nκ
2
β

∫
∞

t
NE∥δ(s)∥2c2(s)ds

≤ N2
κ1κ

2
β

∫
∞

t
c2(s)ds = o(1), t → ∞. (3.10)

Taking account of (3.9) and (3.10), we have

lim
t→∞

E∥JNx(t)− x∗1N∥2 = 0.

Hence,

E[x∗] =
1
N

1T
Nx(0), Var[x∗]< ∞.

Consequently, by using limt→∞E∥δ(t)∥2 = 0, we complete the proof of the theorem.
□

Remark 4. If the considered system in this work is noiseless and c(t)≡ 1, it gen-
erates to a linear system with Markov switching topologies whose average consensus
has been developed by Matei et al. [10], and the consensus results of [10] were exten-
ded to a more general linear systems in [15]. Under assumptions that the systems has
only addictive noises working in a stochastic switching topologies, Zhang et al.[16]
obtained the sufficient conditions for average consensus. Unlike the consensus results
in [16], Li et al. ([7]) proposed weaker necessary and sufficient conditions to obtain
weaker consensus results under a fixed topology. If the topology is fixed, then the
systems (2.1) with information measurement (2.2) degenerate to a general stochastic
differential equations with compound noises, the necessary conditions and sufficient
conditions for mean square weak and strong consensus were developed with a weaker
time-varying gain comparing to Assumption 4 by Zong et al. [17]. Furthermore,
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FIGURE 1. All the possible topologies

when a regular time-varying topologies were considered in the systems, they pro-
posed sufficient conditions for weak consensus and average consensus.

4. SIMULATIONS

In this section, in order to analyze the influence of noises and switching topologies
to the dynamics of the coupled system (2.1) with information measurement (2.2),
we now consider a dynamic of (2.1) with four agents where three different directed
graphs are as follows: Obviously, the corresponding topology graphs are balanced
and the union graph of the three topology graphs has a spanning tree. If the switching
topologies are compelled by a Markov chain in which the generator is chosen as

Γ =

 −2 1 1
1 −2 1
1 1 −2

 ,

then we know that it will jump between the three topologies and reach every mode in
the given time. Given x(0) = (8,1,−6,3). Let α11 = α12 = α13 = α14 = α21 = α41 =
0.1, β12 = β13 = β31 = 1, and c(t) = 1

1+t . The dynamic curve of the four agents (see
Figure 3) shows a sample path of the consensus seeking process corresponding to a
ergodic Markov chain in Figure 2. This also illustrates the average consensus which
is achieved and consistent with Theorem 1

FIGURE 2. Ergodic Markov chain
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FIGURE 3. dynamic curve of all agents

5. CONCLUSION

We have investigated considered stochastic consensus of the first-order continuous-
time multi-agent systems with addictive and multiplicative noises under time-varying
switching topologies. To analysis the time-varying topologies, the time-varying to-
pologies is figured by using a continuous-time Markov chain with finite modes which
corresponds to different directed graphs in the topological structure of the systems.
Besides, for each fixed mode, the noise effecting on an agent is measured under
the compound noises in the fixed topology corresponding the mode with fixed noise
intensities. By investigating the connectivity of the directed and balanced graphs,
conditions on the time-vary control gain and the irreducible Markov chain, we ob-
tain a time-asymptotic mean square average consensus for the considered systems. A
simulation example is operated to demonstrate our theoretical results.
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