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Abstract. Effective sufficient conditions are established for existence of bounded solutions satis-
fying the Nicoletti condition of the systems of linear generalized ordinary differential equations
on the real axis. There are given the method of the construction of such solutions. The sufficient
conditions of the existence of unique solution and of positiveness of that are established as well.
As particular case, there are investigated the problem of existence of bounded solutions.,
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1. STATEMENT OF THE PROBLEM. BASIC NOTATION AND DEFINITIONS

For the linear system of the generalized differential equations

dx = dA(t) · x+d f (t) for t ∈ R, (1.1)
consider the problem on the bounded on R solution

sup{∥x(t)∥ : t ∈ R}<+∞, (1.2)

where A = (aik)
n
i,k=1 ∈ BVloc(R,Rn×n), and f = ( fi)

n
i=1 ∈ BVloc(R,Rn).

The generalized ordinary differential equations was introduced by J. Kurzweil
[11]. To a considerable extent, the interest to the theory has also been stimulated
by the fact that this theory enabled one to investigate ordinary differential, impulsive
differential and difference equations from a unified point of view (see [1–8], [12] and
references therein). So, we can consider the ordinary differential, impulsive differen-
tial and difference equations as equations of the same type.

In this paper effective sufficient conditions are established for the existence of
solutions of problem (1.1), (1.2). Analogous results are contained in [10], [9] (see
also references therein) for the problem for systems of ordinary differential equations.

In the paper the use will be made of the following notation and definitions
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R =]−∞,+∞[, R+ = [0,+∞[; [a,b] and ]a,b[ (a,b ∈ R) are, respectively, closed
and open intervals. I is an arbitrary finite or infinite interval from R. [t] is the integer
part of t ∈ R.

Rn×m is the space of all real n×m matrices X = (xi j)
n,m
i, j=1 with the norm ∥X∥ =

max j=1,...,m
n
∑

i=1
|xi j|. Rn = Rn×1 is the space of all real column n-vectors x = (xi)

n
i=1.

If X ∈ Rn×n, then X−1, det(X) and r(X) are, respectively, the matrix inverse to X ,
the determinant of X and the spectral radius of X ; In is the identity n×n-matrix; δi j
is the Kroneker symbol, i.e. δii = 1 and δi j = 0 for i ̸= j (i, j = 1, . . .).

The inequalities between the matrices are understood componentwise.
b
V
a
(X) is the sum total variation of the components of the matrix-function X :

[a,b]→ Rn×m. If X = (xi j)
n,m
i, j=1 : R→ Rn×m, then V (X)(t) =

(
t
V
0
(xi j)

)n,m

i, j=1
.

X(t−) and X(t+) are, respectively, the left and the right limits of X at the point
t (X(α−) = X(α) if α ∈ I and X(β+) = X(β) if γ ∈ I; if α or β do not belong to I,
then X(t) is defined by continuity outside of I). d1X(t) = X(t)−X(t−), d2X(t) =
X(t+)−X(t). ∥X∥∞ = sup{∥X(t)∥ : t ∈ I}.

BV([a,b];Rn×m) is the set of all matrix-functions X : [a,b] → Rn×m such that
b
V
a
(X) < ∞. BVloc(R;Rn×m) is the set of all matrix-functions X : R → Rn×m whose

restrictions on every closed interval [a,b] belong to BV([a,b],Rn×n).
A matrix-function is said to be continuous, integrable, nondecreasing, etc., if each

of its component is such.
s1,s2,sc and J : BVloc(R;R)→ BVloc(R;R) are the operators defined by

s1(x)(0) = s2(x)(0) = 0,

sc(x)(0) = x(0)

s1(x)(t) = s1(x)(s)+ ∑
s<τ≤t

d1x(τ),

s2(x)(t) = s2(x)(s)+ ∑
s≤τ<t

d2x(τ)

sc(x)(t) = sc(x)(s)+ x(t)− x(s)−
2

∑
j=1

(s j(x)(t)− s j(x)(s)) for s < t;

J(x)(0) = x(0),

J(x)(t) = J(x)(s)+ sc(x)(t)− sc(x)(s)

− ∑
s<τ≤t

ln |1−d1x(τ)|+ ∑
s≤τ<t

ln |1+d2x(τ)| for s < t.
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If g ∈ BV([a,b];R), f : [a,b]→ R and a ≤ s < t ≤ b, then we assume

t∫
s

x(τ)dg(τ) = (L−S)
∫
]s,t[

x(τ)dg(τ)+ f (t)d1g(t)+ f (s)d2g(s).

where (L−S)
∫
]s,t[

f (τ)dg(τ) is the Lebesgue–Stieltjes integral over the open interval

]s, t[. It is known (see, [12]) that if the integral exists, than the right side of the integral

equality equals to the Kurzeil–Stieltjes integral (K − S)
t∫

s
f (τ)dg(τ) and, therefore,

t∫
s

f (τ)dg(τ) = (K −S)
t∫

s
f (τ)dg(τ). If a = b, then we assume

b∫
a

x(t)dg(t) = 0.

a∫
−∞

f (τ)dg(τ) = lim
t→∞

a∫
t

f (τ)dg(τ) and
+∞∫
a

f (τ)dg(τ) = lim
t→+∞

t∫
a

f (τ)dg(τ)

if the last limits exist (finite or infinite).
If G = (gik)

n
i,k=1 ∈ BV([a,b];Rn×n) and x = (xk)

n
k : [a,b]→ Rn, then

∫ b

a
dG(τ) · x(τ) =

(
n

∑
k=1

∫ b

a
xk(τ)dgik(τ)

)n

i

.

We introduce the operator A(X ,Y ) in the following way:
if X ∈ BVloc(R;Rn×n),det(In +(−1) jd jX(t)) ̸= 0 for t ∈ R ( j = 1,2), and Y ∈

BVloc(R;Rn×m), then

A(X ,Y )(0) = On×m,

A(X ,Y )(t) = A(X ,Y )(s)+Y (t)−Y (s)+ ∑
s<τ≤t

d1X(τ)(In −d1X(τ))−1d1Y (τ)

− ∑
s≤τ<t

d2X(τ)(In +d2X(τ))−1 d2Y (τ) (s < t).

Here the use will be made of the following formulas:∫ b

a
f (t)dg(t) =

∫ b

a
f (t)dg(t+)+ f (a)d2g(a)

=
∫ b

a
f (t)dg(t−)+ f (b)d1g(b),∫ t

a
x(τ)dg(τ) =

∫ t−

a
x(τ)dg(τ)+ x(t)d1g(t)

=
∫ t+

a
x(τ)dg(τ)− x(t)d2g(t).
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a
f (t)dg(t)+

∫ b

a
g(t)d f (t) = f (b)g(b)− f (a)g(a)+ ∑

a<t≤b
d1 f (t) ·d1g(t)

− ∑
a≤t<b

d2 f (t) ·d2g(t)

(integration-by-parts formula),∫ b

a
h(t)d ( f (t)g(t)) =

∫ b

a
h(t) f (t)dg(t)+

∫ b

a
h(t)g(t)d f (t)

− ∑
a<t≤b

h(t)d1 f (t) ·d1g(t)

+ ∑
a≤t<b

h(t)d2 f (t) ·d2g(t)

(general integration-by-parts formula),∫ b

a
f (t)ds1(g)(t) = ∑

a<t≤b
f (t)d1g(t),

∫ b

a
f (t)ds2(g)(t)

= ∑
a<t≤b

f (t)d2g(t),

∫ b

a
f (t)d

(∫ s

a
g(s)dh(s)

)
=

∫ b

a
f (t)g(t)dh(t),

d j

(∫ t

a
f (s)dg(s)

)
= f (t)d jg(t) ( j = 1,2).

The proof of above formulas are given in [5, 6, 12] for example.
By a solution of system (1.1) we mean a vector-function x ∈ BVloc(R,Rn) if

x(t) = x(s)+
t∫

s

dA(τ) · x(τ)+ f (t)− f (s)) for s < t, s, t ∈ R.

If α ∈ BVloc(R,R) and t0 ∈ R are such that 1+(−1) jd jα(t) ̸= 0 for t ∈ R, t ̸= t0
( j = 1,2). Then it is known the that (see [7, 8] the initial problem

dξ = ξdα(t), ξ(0) = 1

has the unique solution ξα and it is defined by

ξα(t) =



exp(sc(α)(t)− sc(α)(0)) ∏
0<τ≤t

(1−d1α(τ))−1
∏

0≤τ<t
(1+d2α(τ))

for t > 0,
exp(sc(α)(t)− sc(α)(0)) ∏

t<τ≤0
(1−d1α(τ)) ∏

t≤τ<0
(1+d2α(τ))−1

for t < 0.
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Let γα(t,s)≡ ξα(t)ξ−1
α (s) be the Cauchy function of the problem. Then

γα(t,s) = exp
(
J(α)(t)− J(α)(s)

)
∏

s<τ≤t
sgn
(
1−d1α(τ)

)
× ∏

s≤τ<t
sgn
(
1+d2α(τ)

)
for t > s,

γα(t,s) = γ
−1
α (s, t) for t < s.

Note that the following equality holds (see, [5, 6]

dξ
−1
α (t, t0)≡−ξ

−1
α (t, t0)dA(α,α).(t) (1.3)

Remark 1. Let α ∈ BV([a,b],R) be such that 1+(−1) jd jα(t) > 0 for t ∈ [a,b]
( j = 1,2) and let one of the functions α, J(α) and A(α,α) be nondecreasing (non-
increasing). Then other two functions will be nondecreasing (nonincreasing), as well.

We introduce the operator

ν(ζ)(t) = sup
{

τ ≥ t : ζ(τ)≤ ζ(t+)+1
}

if ξ : R→ R is a nondecreasing function, and

ν(ζ)(t) = inf
{

τ ≤ t : ζ(τ)≤ ζ(t−)+1
}
,

if ζ : R→ R is a nonincreasing function.

2. FORMULATION OF THE RESULTS

For every ti ∈R∪{−∞,+∞} (i = 1, . . . ,n) we put N0(t1, . . . , tn) = {i : ti ∈R}. It is
evident that N0(t1, . . . , tn) = {1, . . . ,n} if ti ∈ R (i = 1, . . . ,n), and N0(t1, . . . , tn) =∅
if ti ∈ {−∞,+∞} (i = 1, . . . ,n).

In the case, where ti =−∞ (ti =+∞), we assume sgn(t−ti)= 1 for t ∈R (sgn(t−
ti) =−1 for t ∈ R).

Theorem 1. Let

1+(−1) jd jaii(t) ̸= 0 for t ∈ R ( j = 1,2; i = 1, . . . ,n) (2.1)

and let there exist ti ∈ R∪{−∞,+∞} (i = 1, . . . ,n) such that

sik = sup
{∣∣∣∣ t∫

ti

|γi(t,τ)|dV
(
A(aii,aik)

)
(τ)

∣∣∣∣ : t ∈ R
}

<+∞(i ̸= k; i,k = 1, . . . ,n), (2.2)

sup
{∣∣∣∣ t∫

ti

|γi(t,τ)|dV
(
A(aii, fi)

)
(τ)

∣∣∣∣ : t ∈ R
}
<+∞ (i = 1, . . . ,n) (2.3)
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and

sup{|γi(t, ti)| : t ∈ R}<+∞ for i ∈ N0(t1, . . . , tn), (2.4)

where γi(t,τ)≡ γaii(t,τ) (i = 1, . . . ,n). Let, moreover, the matrix S = (sik)
n
i,k=1, where

sii = 0 (i = 1, . . . ,n), be such that

r(S)< 1. (2.5)

Then for every ci ∈R (i ∈ N0(t1, . . . , tn)) system (1.1) has at last one a bounded on R
solution satisfying the condition

xi(ti) = ci for i ∈ N0(t1, . . . , tn)). (2.6)

If the case, where N0(t1, . . . , tn) =∅, conditions (2.4) and (2.6) be eliminated and
the theorem has the following form.
Theorem 1′. Let conditions (2.1), (2.2) and (2.3) hold for some ti ∈ {−∞,+∞} (i =
1, . . . ,n), where γi(t,τ)≡ γaii(t,τ) (i = 1, . . . ,n), and the matrix S = (sik)

n
i,k=1, where

sii = 0 (i= 1, . . . ,n), satisfy condition (2.5). Then system (1.1) has at last one solution
bounded on R.

Corollary 1. Let

1+(−1) jd jaii(t)> 0 for t ∈ R, ( j = 1,2; i = 1, . . . ,n) (2.7)

and let there exist ti ∈ R∪{−∞,+∞} (i = 1, . . . ,n) such that conditions (2.2), (2.3),
(2.4) and (2.5) hold, where S = (sik)

n
i,k=1, sii = 0 (i = 1, . . . ,n) and γi(t,τ)≡ γaii(t,τ)

(i = 1, . . . ,n). Let, moreover, the functions

A(aii,aik)(t) sgn(t − ti), A(aii, fi)(t) sgn(t − ti)

(i ̸= k; i,k = 1, . . . ,n) are nondecreasing on R. (2.8)

Then for every ci ∈ R+ (i ∈ N0(t1, . . . , tn)) system (1.1) has at last one nonnegative
and bounded on R solution satisfying condition (2.6).

If N0(t1, . . . , tn) =∅ then Corollary 1 has the following form.
Corollary 1′. Let conditions (2.7) and (2.8) hold and let there exist ti ∈ {−∞,+∞}
(i = 1, . . . ,n) such that conditions (2.2), (2.3) and (2.5) hold, where S = (sik)

n
i,k=1,

sii = 0 (i = 1, . . . ,n) and γi(t,τ) ≡ γaii(t,τ) (i = 1, . . . ,n). Then system (1.1) has at
last one a nonnegative and bounded on R solution.

Theorem 2. Let (2.1) hold and let there exist ti ∈ R∪{−∞,+∞} (i = 1, . . . ,n)
such that conditions (2.2), (2.3), (2.4) and (2.5) hold, where S = (sik)

n
i,k=1, sii = 0

(i = 1, . . . ,n) and γi(t,τ)≡ γaii(t,τ) (i = 1, . . . ,n).‘Let, moreover,

liminf
t→ti

γi(0, t) = 0 f or i ∈ {1, . . . ,n}\N0(t1, . . . , tn). (2.9)
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Then for every ci ∈R (i ∈ N0(t1, . . . , tn)) system (1.1) has the unique and bounded on
R solution (xi)

n
i=1 satisfying condition (2.6) and

n

∑
i=1

|xi(t)− xim(t)| ≤ ρ0α
m for t ∈ R (m = 1,2, . . .)), (2.10)

where ρ0 and α are the positive numbers independent of m, (xim)
n
i=1 (m = 0,1, . . .) is

the sequence of the vector-functions the components of which are defined by

xi0(t)≡ 0, xim(t)≡ ui(t)+
n

∑
k=1,k ̸=i

t∫
ti

γi(t,τ)dA(aii,aikxk m−1)(τ) (2.11)

(i = 1, . . . ,n; m = 1,2, . . .), and the functions ui (i = 1, . . . ,n) are defined due to

ui(t)≡ ciγi(t, ti)+
t∫

ti

γi(t,τ)dA(aii, fi)(τ) for i ∈ N0(t1, . . . , tn), (2.12)

ui(t)≡
t∫

ti

γi(t,τ)dA(aii, fi)(τ) for i ∈ {1, . . . ,n}\N0(t1, . . . , tn). (2.13)

Corollary 2. Let (2.7) hold and let there exist ti ∈ R∪{−∞,+∞} (i = 1, . . . ,n)
such that the functions aii(t)sgn(t − ti) (i = 1, . . . ,n) are non-increasing on R,

lim
t→ti

infaii(t) = +∞ for i ∈ {1, . . . ,n}\N0(t1, . . . , tn), (2.14)

V (A(aii,aik))(t)≤−hik sgn(t − ti)A(aii,aii)(t) (2.15)
for t ∈ R (i ̸= k; i,k = 1, . . . ,n) and

r(H )< 1, (2.16)

where hik (i,k = 1, . . . ,n) are such that H =
(
(1−δik)hik

)n
i,k=1. Let, moreover,

ρi = sup
{∣∣∣∣ν(ζi)(t)∨

t

(
A(aii, fi)

)∣∣∣∣ : t ∈ R
}
< ∞ (i = 1, . . . ,n), (2.17)

where ζi(t)≡ ξaii sgn(t − ti) (i = 1, . . . ,n). Then conclusion of Theorem 2 is true.

Corollary 3. Let there exist the points ti ∈ R∪{−∞,+∞} (i = 1, . . . ,n) and the
functions αi : R→ R (i = 1, . . . ,n) such that αi(t)sgn(t − ti) (i = 1, . . . ,n) are non-
decreasing on R and conditions(

sc(aii)(t)− sc(aii)(s)
)

sgn(t − s)≤ ηii
(
sc(αi)(t)− sc(αi)(s)

)
(2.18)

for (t − s)(s− ti)> 0 (i = 1, . . . ,n),

d1aii(t)≤ ηiid1αi(t)< 1, −1 < d2aii(t)≤ ηiid2αi(t) (i = 1, . . . ,n), (2.19)∣∣sc(aik)(t)− sc(aik)(s)
∣∣ sgn(t − s)≤ ηik

(
sc(αi)(t)− sc(αi)(s)

)
(2.20)
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for (t − s)(s− ti)> 0 (i ̸= k; i,k = 1, . . . ,n) and

|d jaik(t)| ≤ ηik|d jαi(t)| ( j = 1,2; i ̸= k; i,k = 1, . . . ,n) (2.21)

hold on R, where H =
(
(1−δik)ηik|ηii|−1

)n
i,k=1. Let, moreover,

ρi = sup
{∣∣∣∣ν(ϑi)(t)∨

t

(
A(ηiαi, fi)

)∣∣∣∣ : t ∈ R
}
< ∞ (i = 1, . . . ,n), (2.22)

where ϑi(t)≡ ξηiai sgn(t − ti) (i = 1, . . . ,n). Then conclusion of Theorem 2 is true.

Theorem 2′. Let (2.1) hold and let there exist ti ∈ {−∞,+∞} (i = 1, . . . ,n) such that
conditions (2.2), (2.3) and (2.5) hold, where S = (sik)

n
i,k=1, sii = 0 (i = 1, . . . ,n) and

γi(t,τ)≡ γaii(t,τ) (i = 1, . . . ,n).‘Let, moreover,

liminf
t→ti

γi(0, t) = 0 f or i ∈ {1, . . . ,n}.

Then system (1.1) has the unique and bounded on R solution (xi)
n
i=1 and

n

∑
i=1

|xi(t)− xim(t)| ≤ ρ0α
m for t ∈ R (m = 1,2, . . .),

where ρ0 and α are the positive numbers independent of m, (xim)
n
i=1 (m = 0,1, . . .) is

the sequence of the vector-functions the components of which are defined by

xi0(t)≡ 0,

xim(t)≡
t∫

ti

γi(t,τ)dA(aii, fi)(τ)

+
n

∑
k=1,k ̸=i

t∫
ti

γi(t,τ)dA(aii,aikxk m−1)(τ) (i = 1, . . . ,n; m = 1,2, . . .).

Corollary 2′. Let (2.7) hold and let there exist ti ∈ {−∞,+∞} (i = 1, . . . ,n) such
that the functions aii(t)sgn(t − ti) (i = 1, . . . ,n) are non-increasing on R, conditions
(2.15), (2.16), (2.17) and

lim
t→ti

infaii(t) = +∞ for i ∈ {1, . . . ,n} (2.23)

hold, where ζi(t)≡ ξaii sgn(t − ti) (i = 1, . . . ,n), and the numbers hik (i,k = 1, . . . ,n)
are such that H =

(
(1−δik)hik

)n
i,k=1. Then conclusion of Theorem 2′ is true.

Corollary 3′. Let there exist the points ti ∈ {−∞,+∞} (i= 1, . . . ,n) and the functions
αi : R→ R (i = 1, . . . ,n) such that αi(t)sgn(t − ti) (i = 1, . . . ,n) are nondecreasing
on R and conditions (2.16), (2.18) – (2.22) hold on R, where ϑi(t)≡ ξηiai sgn(t − ti)
(i = 1, . . . ,n), and the numbers ηik, ηii < 0 (i,k = 1, . . . ,n) are such that H =

(
(1−

δik)ηik|ηii|−1
)n

i,k=1. Then conclusion of Theorem 2′ is true.
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Corollary 4. Let the conditions of Theorem 2 or Corollary 2 or Corollary 3
are fulfilled. Let, in addition, condition (2.8) hold. Then for every ci ∈ R+ (i ∈
N0(t1, . . . , tn)) system (1.1) has the unique and bounded on R solution satisfying con-
dition (2.6) and it is nonnegative.

Corollary 4′. Let the conditions of Theorem 2′ or Corollary 2′ or Corollary 3′ are
fulfilled. Let, in addition, condition (2.8) hold. Then system (1.1) has the unique and
bounded on R solution and it is nonnegative.

3. PROOF OF THE RESULTS

Proof of Theorem 1. Let ci ∈ R (i ∈ N0(t1, . . . , tn)) be an arbitrary fixed numbers.
Consider the initial problems

du = udaii(t)+d fi(t) for t ∈ R, u(ti) = ci

(i ∈ N0(t1, . . . , tn)). By (2.1) the problem has the unique solution ui ∈ BV(R;R) and
according to modified variation of constant formulae (see [5]) it has form (2.12).

Consider the system of integral equations

xi(t) = ui(t)+
n

∑
k=1,k ̸=i

t∫
ti

γi(t,τ)dA(aii,aikxk)(τ) for t ∈ R (i = 1, . . . ,n). (3.1)

Due to modified variation of constant formulae (see [5]) we conclude that the
vector-function (xi)

n
i=1 is a solution of the system one. Moreover, it is evident the

vector-function (xi)
n
i=1 satisfy condition (2.6).

The solution of the last integral system we will find in the set of functions of
bounded and local bounded variation on the set R, i.e. in BV(R;Rn).

Consider the sequences of the vector-functions (xim)
n
i=1 (m = 0,1, . . .) defined by

xi0(t)= 0, xim(t)= ui(t)+
n

∑
k=1,k ̸=i

t∫
ti

γi(t,τ)dA(aii,aikxk m−1)(τ) for t ∈R (i= 1, . . . ,n).

In view of conditions (2.2) and (2.3), from (2.12) and (2.13) we get

(ui)
n
i=1 ∈ BV(R;Rn). (3.2)

It is clear that (xi)
n
i=1 ∈ BV(R;Rn). Now, if we assume that

(xim−1)
n
i=1 ∈ BV(R;Rn) (3.3)

for some m, then due (2.2) and (3.2), from (3.2) we get (xim)
n
i=1 ∈ BVloc(R;Rn) and

∥xim∥∞ ≤ ∥ui∥∞ +
n

∑
k=1,k ̸=i

sik∥xk m−1∥∞ <+∞ (i = 1, . . . ,n).

Therefore, condition (3.3) holds for every natural m.
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Let us show that the sequence (xim)
m
i=1 (m = 1,2., . . .) be uniformly stable on R.

For this sufficient to show that the functional series
∞

∑
m=1

|xim(t)− xim−1(t)| (i = 1, . . . ,n) (3.4)

are converged uniformly on R.
According (2.2) and (3.3), from (2.11) it follows

(∥xim − xim−1∥∞)
n
i=1 ≤ S (∥xim−1 − xim−2∥∞)

n
i=1 (m = 2,3, . . .)

and, therefore,

(∥xim − xim−1∥∞)
n
i=1 ≤ Sm−1 (∥ui∥∞)

n
i=1 (m = 1,2, . . .).

Due to (2.5) there exist numbers α ∈]r(S),1[ and β > 0 such that

∥Sm−1∥ ≤ βα
m−1 (m = 1,2, . . .).

Therefore,
∥xim − xim−1∥∞ ≤ β0α

m (i = 1, . . . ,n; m = 1,2, . . .),

where β0 = βα−1
∑

n
i=1 ∥ui∥∞.

So that
∞

∑
m=0

β0α
m

is the convergence major numerical series for the functional series (3.4) on R. From
this, due to the Weierstrass theorem the sequence (xim)

n
i=1 (m = 0,1, . . .) is uniformly

convergence on R.
Let

lim
m→+∞

xim(t) = xi(t) for t ∈ R (i = 1, . . . ,n). (3.5)

Then due to Theorem I.4.17 ([12]) we conclude that (xi)
n
i=1 will be a solution of sys-

tem (3.1). Moreover, it is evident that ∥xi∥∞ <+∞ (i = 1, . . . ,n) and by the equality
(3.1) and estimates (2.2) – (2.4) we have (xi)

n
i=1 ∈ BV(R;Rn). □

Proof of Corollary 1. As we proof above, in conditions of Theorem 1, system (1.1)
has the bounded solution on R satisfying condition (2.6) and it is obtained as the uni-
formly limits on R of the sequence of the vector-functions (xim−1)

n
i=1 ∈ BV(R;Rn)

(m = 0,1, . . .) the components of which are defined by (2.11), and ui (i = 1, . . . ,n)
are defined by (2.12) and (2.13).

In view of (2.8), because ci ∈ R+ (i ∈ N0(t1, . . . , tn)), it follows from (2.13) –
(2.11) that xim(t)≥ 0 and, that, xi(t)≥ 0 for t ∈ R (i = 1, . . . ,n). □

Proof of Theorem 2. First we show that the every bounded on R solution (xi)
n
i=1

of system (1.1), satisfying of condition (2.6) will be solution of the system of integral
equations (3.1).
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By (2.9), there exist a sequences tim (i = 1, . . . ,n; m = 1,2, . . .) such that

lim
m→+∞

tim = ti, lim
m→+∞

γi(0, tim) = 0 (i =, . . . ,n). (3.6)

We assume
tim = ti for i ∈ N0(t1, . . . , tn) (m = 1,2, . . .). (3.7)

By modified variation of constant formula and equalities (2.12), (3.7) we have

xi(t) = uim(t)+
n

∑
k=1,k ̸=i

t∫
tim

γi(t,τ)dA(aii,aikxk)(τ) (i = 1, . . . ,n; m = 1,2, . . .) (3.8)

on R, where

uim(t)≡ ui(t) for i ∈ N0(t1, . . . , tn) (m = 1,2, . . .), (3.9)

uim(t)≡ xim(tim)γi(t, tim)+
t∫

tim

γi(t,τ)dA(aii, fi)(τ)

for i ∈ {1, . . . ,n}\N0(t1, . . . , tn) (m = 1,2, . . .). (3.10)

Let i ∈ {1, . . . ,n} \N0(t1, . . . , tn). Then because xi is bounded, by conditions (2.3)
and (3.6) from (2.13) and (3.10) we find

lim
m→+∞

uim(t) = ui(t) for t ∈ R.

On the hand, due (2.2) we get

lim
m→+∞

t∫
tim

γi(t,τ)dA(aii,aikxk)(τ) =

t∫
ti

γi(t,τ)dA(aii,aikxk)(τ) for t ∈ R.

Therefore, from (3.8) we have

xi(t) = ui(t)+
n

∑
k=1,k ̸=i

t∫
ti

γi(t,τ)dA(aii,aikxk)(τ) for t ∈ R.

Due to (3.7) – (3.9) the last equality is true for the case where i ∈ N0(t1, . . . , tn), as
well. So that it is proved that the vector-function (xi)

n
i=1 is the solution of system

(3.1).
In the proof of Theorem 1 we show that system (3.1) has solution (xi)

n
i=1 and

lim
m→+∞

∥xi − xim∥∞ = 0 (i = 1, . . . ,n).

In addition,

∥xim − xim−1∥∞ ≤ β0α
m (i = 1, . . . ,n; m = 1,2, . . .),
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where β0 and α ∈]0,1[ are the numbers independent from m. From this, we get

∥xim+ j − xim∥∞ ≤
m+ j

∑
k=m+1

∥xik − xi k−1∥∞ ≤ β0

m+ j

∑
k=m+1

α
k < β0

α

1−α
α

m

and

∥xi − xim∥∞ ≤ β0
α

1−α
α

m ( j = 1,2; i = 1, . . . ,n; m = 1,2, . . .).

So that estimate (2.10) holds for ρ0 = nβ0α(1−α)−1.
Finally, we show that system (3.1) has the unique solution (xi)

n
i=1. Let (xi)

n
i=1 ∈

BV(R;Rn) and arbitrary solution of the system and let yi(t) ≡ xi(t)− xi(t) (i =
1, . . . ,n). Then

yi(t) =
n

∑
k=1,k ̸=i

t∫
ti

γi(t,τ)dA(aii,aikyk)(τ) for t ∈ R.

By this, in view of (2.2), (∥yi∥∞)
n
i=1 ≤ S(∥yi∥∞)

n
i=1, i.e., (In −S)(∥yi∥∞)

n
i=1 ≤ 0n. So

that, because the matrix S is nonnegative, by condition (2.5) we have (∥yi∥∞)
n
i=1 ≤ 0n

and ∥yi∥∞ = 0 (i = 1, . . . ,n). Consequently, xi(t)≡ xi(t) (i = 1, . . . ,n). □

Proof of Corollary 2. Let ξi(t)≡ ξaii(t), γi(t,τ)≡ ξi(t)ξ−1
i (τ) and νi(t)≡ ν(ζi)(t)

(i = 1, . . . ,n). Due condition (2.7) we have γi(t, ti)> 0 (i = 1, . . . ,n).
Let i ∈ {1, . . . ,n} be fixed. First, consider the case t ≥ ti. Then by (2.15) and

equality (1.3) we find dξ
−1
i (t)≡−ξ

−1
i (t)dA(aii,aii)(t), and∣∣∣∣ t∫

ti

|γi(t,τ)|dV
(
A(aii,aik)

)
(τ)

∣∣∣∣≤−hikξi(t)
t∫

ti

ξ
−1
i (τ)dA(aii,aii)(τ)

= hikξi(t)
t∫

ti

dξ
−1
i (τ)≤ hik (i ̸= k; i,k = 1, . . . ,n). (3.11)

So that condition (2.2) hold. Beside, we have sik ≤ hik (i,k = 1, . . . ,n) and, therefore,
by (2.16) condition (2.5) hold.

If i ∈ N0(t1, . . . , tn), then due Remark 1 the functions βi (i = 1, . . . ,n) are non-
increasing. Hence the functions γi(t, ti) ≡ γaii(t, ti) (i = 1, . . . ,n) are non-increasing
and so estimate (2.4) holds for t ≥ ti.

Let now i ∈ {1, . . . ,n} \N0(t1, . . . , tn) be such that ti = −∞. Due to (2.7) we find
γi(0, t) = exp

(
1−ξi(t)

)
for t < 0. Therefore, by (2.23) we conclude

lim
t→ti

infγi(0, t) = 0.

Consequently, condition (2.9) hold for the case.
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Let us verify (2.3). Let i ∈ {1, . . . ,n}, ti ∈ R∪ {−∞,+∞} and t > ti be fixed.
Then ζi(τ) =−ξi(τ) for τ > ti, ζi(ti) = 0. Then due to the conditions of theorem the
function ζi is nondecreasing on the interval [ti,+∞[.

Ti j = {τ ∈ [ti, t] : j ≤ ζi(τ)< ( j+1)} ( j = 0, . . . ,ki(t)+1),

where ki(t)≡
[
ζi(t)] (the integer part) and let

τi0 = ti, τi j =

{
τi j−1 if Ti j−1 =∅,

supTi j−1 if Ti j−1 ̸=∅ ( j = 1, . . . ,ki(t)+1).

Let us show that
τi j+1 ≤ νi(τi j) ( j = 0, . . . ,ki(t)). (3.12)

Let j ∈ {0, . . . ,ki(t)} be fixed. If Ti j =∅, then (3.12) is evident. Let now Ti j ̸=∅.
It suffices to show that

Ti j ⊂ Qi j, (3.13)
where Qi j =

{
τ ∈ [ti, t] : ζi(τ)< ζi(τi j−1+)+1

}
. It is easy to verify that

ζi(τi j−1+)≥ j. (3.14)

Indeed, otherwise there exists δ > 0 such that ζi(τi j−1+s)< ζi(τi0)+ j for 0 ≤ s ≤ δ.
Next, by the definition of τi j−1, we have ζi(τi0)+( j−1)≤ ζi(τi j−1−) and, therefore,
( j − 1) ≤ ζi(τi j−1 + s) < j for 0 ≤ s ≤ δ. But this contradicts the definition of
τi j−1. So that if τ ∈ Ti j, then from (3.14) and the inequality ζi(τ) < ( j+ 1) we get
ζi(τ)< ζi(τi j−1+)+1 and hence τ ∈ Qi j. Therefore (3.12) is proved.

Due to (3.12) we find

vi(t)≤
t∫

ti

exp
(
ξi(t)−ξi(τ)

)
dbi(τ)≤ exp(ξi(t))

ki(t)+1

∑
j=1

τi j∫
τi j−1

exp(ζi(τ))dbi(τ), (3.15)

where vi(t)≡
∣∣∣∣ t∫

ti
|γi(t,τ)|dbi(τ)

∣∣∣∣ and bi(τ)≡V (A(aii, fi))(τ). On the other hand

τi j∫
τi j−1

exp(ζi(τ))dbi(τ) = lim
ε→0+

τi j−ε∫
τi j−1

exp(ζi(τ))dbi(τ)+ exp(ζi(τi j))d1bi(τi j)

≤ exp(ζi(τi j−))
(
bi(τi j−)−bi(τi j−1)

)
+ exp(ζi(τi j+1−))d1bi(τi j)

≤ exp( j)
(
bi(τi j−)−bi(τi j−1)

)
+ exp( j+1)d1bi(τi j).

Similarly we verify that
t∫

τi ki(t)

exp(ζi(τ))dbi(τ)≤ exp(ζi(t−))
(
bi(t−)−bi(τi ki(t))

)
+ exp(ζi(t))d1bi(t)

≤ exp(ki(t)+1)
(
bi(t−)−bi(τi ki(t))

)
+ exp(ki(t)+2)d1bi(t).
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Taking account the last two estimates, by (3.15) we find

vi(t)≤ exp(−ki(t))
ki(t)+1

∑
j=1

(
exp( j)

(
bi(τi j−)−bi(τi j−1)

)
+ exp( j+1)d1bi(τi j)

)
≤ exp(−ki(t))

(
exp(1)

(
bi(τi1−)−bi(τi0)

)
+

ki(t)+1

∑
j=2

(exp( j)
(
bi(τi j−)−bi(τi j−1−))+ exp(ki(t)+2)d1bi(τi kl(t)+2)

)
.

From this, due to (2.17) and (3.12) we have

vi(t)≤ 2ρi exp(−ki(t))
ki(t)+2

∑
j=1

exp( j)

= 2ρi exp(−ki(t))exp(ki(t)+2)exp(1)(exp(1)−1)−1.

Consequently,
vi(t)≤ ηρ for t ≥ ti. (3.16)

where η = 2exp(3)(exp(1)− 1)−1 and ρ = ∑
n
i=1 ρi. So that, estimate (2.3) hold on

the set (−∞, t]. Similarly we show estimate (2.3) on the set [t,+∞). In the case we
have ζi(τ) =−ξi(τ) for τ < ti, ζi(ti) = 0. and

T̃i j = {τ ∈ [t, ti] : j ≤ ζi(τ)< ( j+1)} ( j = 0, . . . ,ki(t)+1).

The function ζi is non-increasing on (−∞, t].
Similarly, as above, we conclude that the estimates

τ̃i j+1 ≥ νi(̃τi j) ( j = 0, . . . ,ki(t)). (3.17)

holds, where

τ̃i0 = ti, τi j =

{
τ̃i j−1 if T̃i j−1 =∅,

inf T̃i j−1 if T̃i j−1 ̸=∅ ( j = 1, . . . ,ki(t)+1).

Similarly, we verify that (3.16) hold. So the corollary follows from Theorem 2. □

Proof of Corollary 3. First, as in the proof of Corollary 2, due to condition (2.17)
we show that estimates

sup
{∣∣∣∣ t∫

ti

|γηiαii(t,τ)|dV
(
A(ηiαii, fi)

)
(τ)

∣∣∣∣ : t ∈ R
}
<+∞ (i = 1, . . . ,n). (3.18)

Let ξi(t) ≡ ξaii(t) and γi(t,τ) ≡ ξi(t)ξ−1
i (τ) (i = 1, . . . ,n). Due condition (2.19) we

have γi(t, ti)> 0 (i = 1, . . . ,n).
In view of (2.18) and (2.19) it is not difficult to verify that

J(aii)(t)− J(aii)(s)≤ sgn(t − s)
(
J(ηiiαi)(t)− J(ηiiαi)(s)

)
(3.19)
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for (t − s)(s− ti)> 0 (i = 1, . . . ,n).
Let us show the estimates

V
(
A(aii,aik)

)
(t)≤ ηik

ηii
sgn(t − ti)A(ηiiαi,ηiiαi)(t) (i ̸= k; i,k = 1, . . . ,n). (3.20)

hold on R. By definition of the operator A we have

A(aii,aik)(t)−A(aii,aik)(s) = sc(aik)(t)− sc(aik)(s)

+ ∑
s<τ≤t

d1aik(τ)+ ∑
s≤τ<t

d2aik(τ)+ ∑
s<τ≤t

d1aii(τ)(1−d1aii(τ))
−1d1aik(τ)

− ∑
s≤τ<t

d2aii(τ)(1+d2aii(τ))
−1d2aik(τ) = sc(aik)(t)− sc(aik)(s)

+ ∑
s<τ≤t

(1−d1aii(τ))
−1d1aik(τ)+ ∑

s≤τ<t
(1+d2aii(τ))

−1d2aik(τ)

for s < t (i ̸= k; k = 1, . . . ,n). From this, thanks to (2.19), (2.20), (2.21), we find

|A(aii,aik)(t)−A(aii,aik)(s)| ≤ |sc(aik)(t)− sc(aik)(s)|
+ ∑

s<τ≤t
(1−d1aii(τ))

−1|d1aik(τ)|+ ∑
s≤τ<t

(1+d2aii(τ))
−1|d2aik(τ)|

≤ ηik(sc(αi)(t)− sc(αi)(s))+ ∑
s<τ≤t

(1−ηiid1αi(τ))
−1

ηikd1αi(τ)

+ ∑
s≤τ<t

(1+ηiid2αi(τ))
−1

ηikd2αi(τ)

=
ηik

ηii
(A(ηiiαi,ηiiαi)(t)−A(ηiiαi,ηiiαi)(s))

for ti ≤ s < t (i ̸= k; k = 1, . . . ,n). So that estimate (3.20) hold for ti ≤ t. Similarly
we show (3.20) for t ≤ ti as well.

Moreover, using this way we conclude that for t ∈ R we have

V
(
A(aii, fi)

)
(t)≤ sgn(t − ti)A(ηiiαi, fi)(t) (i ̸= k; i,k = 1, . . . ,n). (3.21)

Hence due to (3.18), (3.19) and (3.21) we conclude condition (2.3) and (2.4) hold.
On the other hand, by (1.3), (3.19) and (3.20) we get

d exp
(
− J(ηiiαi)(t)

)
≡−exp

(
− J(ηiiαi)(t)

)
dA(ηiiαi,hiiαi)(t)

and∣∣∣∣ t∫
ti

|γi(t,τ)|dV
(
A(aii,aik)

)
(τ)

∣∣∣∣
≤ ηik

ηii
exp
(
J(ηiiαi)(t)

) t∫
ti

exp
(
− J(ηiiαi)(τ)

)
dA(ηiiαi,ηiiαi)(τ)
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=
ηik

|ηii|
exp
(
J(ηiiαi)(t)

)(
exp
(
− J(ηiiαi)(t)

)
− exp

(
− J(ηiiαi)(ti)

))
≤ ηik

|ηii|
for t ≥ ti (i ̸= k; k = 1, . . . ,n).

Similarly we show the estimate for t ≤ ti as well. So that we have sik ≤ ηik|ηii|−1

(i,k = 1, . . . ,n), where sik is the left hand of estimate (2.2).
Hence, inequality (2.5) follows from (2.16). By (2.21) condition (2.1) holds.
So conditions of Theorem 1 hold. The corollary follows from the theorem. □

Theorem 2′, Corollaries 2′ and 3′ are, respectively, the particular cases of Theorem
2, Corollaries 2 and 3 if we assume N0(t1, . . . , tn) =∅ therein.

Corollaries 4 and 4′ immediately follow from Theorems 2 and 2′ and Corollaries
2, 3 and 2′, 3′.
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