Miskolc Mathematical Notes

ON EXISTENCE OF BOUNDED SOLUTIONS ON REAL AXIS \mathbb{R} OF LINEAR SYSTEMS OF GENERALIZED ORDINARY DIFFERENTIAL EQUATIONS

MALKHAZ ASHORDIA

Received 19 February, 2021

Abstract

Effective sufficient conditions are established for existence of bounded solutions satisfying the Nicoletti condition of the systems of linear generalized ordinary differential equations on the real axis. There are given the method of the construction of such solutions. The sufficient conditions of the existence of unique solution and of positiveness of that are established as well. As particular case, there are investigated the problem of existence of bounded solutions.,

2010 Mathematics Subject Classification: 34K06; 34K10
Keywords: Systems of linear generalized differential equations, the modified Lebesgue-Stiltjes (Kurzweil-Stiltjes) integral, boundary solutions with the Nicoletii multi-point boundary value problem, construction of solutions, positiveness, the effective solvability conditions.

1. Statement of the problem. Basic notation and definitions

For the linear system of the generalized differential equations

$$
\begin{equation*}
d x=d A(t) \cdot x+d f(t) \quad \text { for } \quad t \in \mathbb{R}, \tag{1.1}
\end{equation*}
$$

consider the problem on the bounded on \mathbb{R} solution

$$
\begin{equation*}
\sup \{\|x(t)\|: t \in \mathbb{R}\}<+\infty \tag{1.2}
\end{equation*}
$$

where $A=\left(a_{i k}\right)_{i, k=1}^{n} \in \mathrm{BV}_{l o c}\left(\mathbb{R}, \mathbb{R}^{n \times n}\right)$, and $f=\left(f_{i}\right)_{i=1}^{n} \in \mathrm{BV}_{l o c}\left(\mathbb{R}, \mathbb{R}^{n}\right)$.
The generalized ordinary differential equations was introduced by J. Kurzweil [11]. To a considerable extent, the interest to the theory has also been stimulated by the fact that this theory enabled one to investigate ordinary differential, impulsive differential and difference equations from a unified point of view (see [1-8], [12] and references therein). So, we can consider the ordinary differential, impulsive differential and difference equations as equations of the same type.

In this paper effective sufficient conditions are established for the existence of solutions of problem (1.1), (1.2). Analogous results are contained in [10], [9] (see also references therein) for the problem for systems of ordinary differential equations.

In the paper the use will be made of the following notation and definitions
$\mathbb{R}=]-\infty,+\infty\left[, \mathbb{R}_{+}=[0,+\infty[;[a, b]\right.$ and $] a, b[(a, b \in \mathbb{R})$ are, respectively, closed and open intervals. I is an arbitrary finite or infinite interval from \mathbb{R}. $[t]$ is the integer part of $t \in \mathbb{R}$.
$\mathbb{R}^{n \times m}$ is the space of all real $n \times m$ matrices $X=\left(x_{i j}\right)_{i, j=1}^{n, m}$ with the norm $\|X\|=$ $\max _{j=1, \ldots, m} \sum_{i=1}^{n}\left|x_{i j}\right| \cdot \mathbb{R}^{n}=\mathbb{R}^{n \times 1}$ is the space of all real column n-vectors $x=\left(x_{i}\right)_{i=1}^{n}$.

If $X \in \mathbb{R}^{n \times n}$, then $X^{-1}, \operatorname{det}(X)$ and $r(X)$ are, respectively, the matrix inverse to X, the determinant of X and the spectral radius of $X ; I_{n}$ is the identity $n \times n$-matrix; $\delta_{i j}$ is the Kroneker symbol, i.e. $\delta_{i i}=1$ and $\delta_{i j}=0$ for $i \neq j(i, j=1, \ldots)$.

The inequalities between the matrices are understood componentwise.
${ }_{a}^{b}(X)$ is the sum total variation of the components of the matrix-function X :
$[a, b] \rightarrow \mathbb{R}^{n \times m}$. If $X=\left(x_{i j}\right)_{i, j=1}^{n, m}: \mathbb{R} \rightarrow \mathbb{R}^{n \times m}$, then $V(X)(t)=\left(\underset{V_{0}^{t}}{\underset{0}{\mathrm{~V}}\left(x_{i j}\right)}\right)_{i, j=1}^{n, m}$.
$X(t-)$ and $X(t+)$ are, respectively, the left and the right limits of X at the point $t(X(\alpha-)=X(\alpha)$ if $\alpha \in I$ and $X(\beta+)=X(\beta)$ if $\gamma \in I$; if α or β do not belong to I, then $X(t)$ is defined by continuity outside of $I) . d_{1} X(t)=X(t)-X(t-), d_{2} X(t)=$ $X(t+)-X(t) .\|X\|_{\infty}=\sup \{\|X(t)\|: t \in I\}$.
$\mathrm{BV}\left([a, b] ; \mathbb{R}^{n \times m}\right)$ is the set of all matrix-functions $X:[a, b] \rightarrow \mathbb{R}^{n \times m}$ such that $\stackrel{b}{\mathrm{~V}}(X)<\infty . \mathrm{BV}_{l o c}\left(\mathbb{R} ; \mathbb{R}^{n \times m}\right)$ is the set of all matrix-functions $X: \mathbb{R} \rightarrow \mathbb{R}^{n \times m}$ whose restrictions on every closed interval $[a, b]$ belong to $\mathrm{BV}\left([a, b], \mathbb{R}^{n \times n}\right)$.

A matrix-function is said to be continuous, integrable, nondecreasing, etc., if each of its component is such.
s_{1}, s_{2}, s_{c} and $J: \mathrm{BV}_{l o c}(\mathbb{R} ; \mathbb{R}) \rightarrow \mathrm{BV}_{l o c}(\mathbb{R} ; \mathbb{R})$ are the operators defined by

$$
\begin{aligned}
& s_{1}(x)(0)=s_{2}(x)(0)=0, \\
& s_{c}(x)(0)=x(0) \\
& s_{1}(x)(t)=s_{1}(x)(s)+\sum_{s<\tau \leq t} d_{1} x(\tau), \\
& s_{2}(x)(t)= s_{2}(x)(s)+\sum_{s \leq \tau<t} d_{2} x(\tau) \\
& s_{c}(x)(t)= s_{c}(x)(s)+x(t)-x(s)-\sum_{j=1}^{2}\left(s_{j}(x)(t)-s_{j}(x)(s)\right) \text { for } s<t ; \\
& J(x)(0)= x(0), \\
& J(x)(t)= J(x)(s)+s_{c}(x)(t)-s_{c}(x)(s) \\
& \quad-\sum_{s<\tau \leq t} \ln \left|1-d_{1} x(\tau)\right|+\sum_{s \leq \tau<t} \ln \left|1+d_{2} x(\tau)\right| \text { for } s<t .
\end{aligned}
$$

If $g \in \operatorname{BV}([a, b] ; \mathbb{R}), f:[a, b] \rightarrow \mathbb{R}$ and $a \leq s<t \leq b$, then we assume

$$
\int_{s}^{t} x(\tau) d g(\tau)=(L-S) \int_{] s, t[} x(\tau) d g(\tau)+f(t) d_{1} g(t)+f(s) d_{2} g(s)
$$

where $(L-S) \int_{] s, t[} f(\tau) d g(\tau)$ is the Lebesgue-Stieltjes integral over the open interval $] s, t[$. It is known (see, [12]) that if the integral exists, than the right side of the integral equality equals to the Kurzeil-Stieltjes integral $(K-S) \int_{S}^{t} f(\tau) d g(\tau)$ and, therefore, $\int_{s}^{t} f(\tau) d g(\tau)=(K-S) \int_{s}^{t} f(\tau) d g(\tau)$. If $a=b$, then we assume $\int_{a}^{b} x(t) d g(t)=0$.

$$
\int_{-\infty}^{a} f(\tau) d g(\tau)=\lim _{t \rightarrow \infty} \int_{t}^{a} f(\tau) d g(\tau) \text { and } \int_{a}^{+\infty} f(\tau) d g(\tau)=\lim _{t \rightarrow+\infty} \int_{a}^{t} f(\tau) d g(\tau)
$$

if the last limits exist (finite or infinite).
If $G=\left(g_{i k}\right)_{i, k=1}^{n} \in \operatorname{BV}\left([a, b] ; \mathbb{R}^{n \times n}\right)$ and $x=\left(x_{k}\right)_{k}^{n}:[a, b] \rightarrow \mathbb{R}^{n}$, then

$$
\int_{a}^{b} d G(\tau) \cdot x(\tau)=\left(\sum_{k=1}^{n} \int_{a}^{b} x_{k}(\tau) d g_{i k}(\tau)\right)_{i}^{n}
$$

We introduce the operator $\mathcal{A}(X, Y)$ in the following way:
if $X \in \mathrm{BV}_{l o c}\left(\mathbb{R} ; \mathbb{R}^{n \times n}\right), \operatorname{det}\left(I_{n}+(-1)^{j} d_{j} X(t)\right) \neq 0$ for $t \in \mathbb{R}(j=1,2)$, and $Y \in$ $\mathrm{BV}_{l o c}\left(\mathbb{R} ; \mathbb{R}^{n \times m}\right)$, then

$$
\begin{aligned}
\mathcal{A}(X, Y)(0)= & O_{n \times m} \\
\mathcal{A}(X, Y)(t)= & \mathcal{A}(X, Y)(s)+Y(t)-Y(s)+\sum_{s<\tau \leq t} d_{1} X(\tau)\left(I_{n}-d_{1} X(\tau)\right)^{-1} d_{1} Y(\tau) \\
& \quad-\sum_{s \leq \tau<t} d_{2} X(\tau)\left(I_{n}+d_{2} X(\tau)\right)^{-1} d_{2} Y(\tau)(s<t)
\end{aligned}
$$

Here the use will be made of the following formulas:

$$
\begin{aligned}
\int_{a}^{b} f(t) d g(t) & =\int_{a}^{b} f(t) d g(t+)+f(a) d_{2} g(a) \\
& =\int_{a}^{b} f(t) d g(t-)+f(b) d_{1} g(b) \\
\int_{a}^{t} x(\tau) d g(\tau) & =\int_{a}^{t-} x(\tau) d g(\tau)+x(t) d_{1} g(t) \\
& =\int_{a}^{t+} x(\tau) d g(\tau)-x(t) d_{2} g(t)
\end{aligned}
$$

$$
\begin{aligned}
& \int_{a}^{b} f(t) d g(t)+\int_{a}^{b} g(t) d f(t)= f(b) g(b)-f(a) g(a)+\sum_{a<t \leq b} d_{1} f(t) \cdot d_{1} g(t) \\
&-\sum_{a \leq t<b} d_{2} f(t) \cdot d_{2} g(t) \\
& \quad \text { (integration-by-parts formula), } \\
& \int_{a}^{b} h(t) d(f(t) g(t))= \int_{a}^{b} h(t) f(t) d g(t)+\int_{a}^{b} h(t) g(t) d f(t) \\
&-\sum_{a<t \leq b} h(t) d_{1} f(t) \cdot d_{1} g(t) \\
&+\sum_{a \leq t<b} h(t) d_{2} f(t) \cdot d_{2} g(t)
\end{aligned}
$$

(general integration-by-parts formula),

$$
\begin{aligned}
\int_{a}^{b} f(t) d s_{1}(g)(t) & =\sum_{a<t \leq b} f(t) d_{1} g(t), \int_{a}^{b} f(t) d s_{2}(g)(t) \\
& =\sum_{a<t \leq b} f(t) d_{2} g(t), \\
\int_{a}^{b} f(t) d\left(\int_{a}^{s} g(s) d h(s)\right) & =\int_{a}^{b} f(t) g(t) d h(t), \\
d_{j}\left(\int_{a}^{t} f(s) d g(s)\right) & =f(t) d_{j} g(t)(j=1,2) .
\end{aligned}
$$

The proof of above formulas are given in $[5,6,12]$ for example.
By a solution of system (1.1) we mean a vector-function $x \in \mathrm{BV}_{l o c}\left(\mathbb{R}, \mathbb{R}^{n}\right)$ if

$$
\left.x(t)=x(s)+\int_{s}^{t} d A(\tau) \cdot x(\tau)+f(t)-f(s)\right) \text { for } s<t, s, t \in \mathbb{R}
$$

If $\alpha \in \mathrm{BV}_{\text {loc }}(\mathbb{R}, \mathbb{R})$ and $t_{0} \in \mathbb{R}$ are such that $1+(-1)^{j} d_{j} \alpha(t) \neq 0$ for $t \in \mathbb{R}, t \neq t_{0}$ $(j=1,2)$. Then it is known the that (see $[7,8]$ the initial problem

$$
d \xi=\xi d \alpha(t), \xi(0)=1
$$

has the unique solution ξ_{α} and it is defined by

$$
\xi_{\alpha}(t)=\left\{\begin{array}{l}
\exp \left(s_{c}(\alpha)(t)-s_{c}(\alpha)(0)\right) \prod_{0<\tau \leq t}\left(1-d_{1} \alpha(\tau)\right)^{-1} \prod_{0 \leq \tau<t}\left(1+d_{2} \alpha(\tau)\right) \\
\exp \left(s_{c}(\alpha)(t)-s_{c}(\alpha)(0)\right) \prod_{t<\tau \leq 0}\left(1-d_{1} \alpha(\tau)\right) \prod_{t \leq \tau<0}\left(1+d_{2} \alpha(\tau)\right)^{-1} \\
\text { for } t>0
\end{array}\right.
$$

Let $\gamma_{\alpha}(t, s) \equiv \xi_{\alpha}(t) \xi_{\alpha}^{-1}(s)$ be the Cauchy function of the problem. Then

$$
\begin{aligned}
& \gamma_{\alpha}(t, s)= \exp (J(\alpha)(t)-J(\alpha)(s)) \prod_{s<\tau \leq t} \operatorname{sgn}\left(1-d_{1} \alpha(\tau)\right) \\
& \times \prod_{s \leq \tau<t} \operatorname{sgn}\left(1+d_{2} \alpha(\tau)\right) \text { for } t>s \\
& \gamma_{\alpha}(t, s)=\gamma_{\alpha}^{-1}(s, t) \text { for } t<s
\end{aligned}
$$

Note that the following equality holds (see, [5, 6]

$$
\begin{equation*}
d \xi_{\alpha}^{-1}\left(t, t_{0}\right) \equiv-\xi_{\alpha}^{-1}\left(t, t_{0}\right) d \mathcal{A}(\alpha, \alpha) .(t) \tag{1.3}
\end{equation*}
$$

Remark 1. Let $\alpha \in \operatorname{BV}([a, b], \mathbb{R})$ be such that $1+(-1)^{j} d_{j} \alpha(t)>0$ for $t \in[a, b]$ $(j=1,2)$ and let one of the functions $\alpha, J(\alpha)$ and $\mathcal{A}(\alpha, \alpha)$ be nondecreasing (nonincreasing). Then other two functions will be nondecreasing (nonincreasing), as well.

We introduce the operator

$$
v(\zeta)(t)=\sup \{\tau \geq t: \zeta(\tau) \leq \zeta(t+)+1\}
$$

if $\xi: \mathbb{R} \rightarrow \mathbb{R}$ is a nondecreasing function, and

$$
v(\zeta)(t)=\inf \{\tau \leq t: \zeta(\tau) \leq \zeta(t-)+1\}
$$

if $\zeta: \mathbb{R} \rightarrow \mathbb{R}$ is a nonincreasing function.

2. FORMULATION OF THE RESULTS

For every $t_{i} \in \mathbb{R} \cup\{-\infty,+\infty\}(i=1, \ldots, n)$ we put $\mathcal{N}_{0}\left(t_{1}, \ldots, t_{n}\right)=\left\{i: t_{i} \in \mathbb{R}\right\}$. It is evident that $\mathcal{N}_{0}\left(t_{1}, \ldots, t_{n}\right)=\{1, \ldots, n\}$ if $t_{i} \in \mathbb{R}(i=1, \ldots, n)$, and $\mathcal{N}_{0}\left(t_{1}, \ldots, t_{n}\right)=\varnothing$ if $t_{i} \in\{-\infty,+\infty\}(i=1, \ldots, n)$.

In the case, where $t_{i}=-\infty\left(t_{i}=+\infty\right)$, we assume $\operatorname{sgn}\left(t-t_{i}\right)=1$ for $t \in \mathbb{R}(\operatorname{sgn}(t-$ $\left.t_{i}\right)=-1$ for $t \in \mathbb{R}$).

Theorem 1. Let

$$
\begin{equation*}
1+(-1)^{j} d_{j} a_{i i}(t) \neq 0 \text { for } t \in \mathbb{R}(j=1,2 ; i=1, \ldots, n) \tag{2.1}
\end{equation*}
$$

and let there exist $t_{i} \in \mathbb{R} \cup\{-\infty,+\infty\}(i=1, \ldots, n)$ such that

$$
\begin{align*}
& s_{i k}=\sup \left\{\left|\int_{t_{i}}^{t}\right| \gamma_{i}(t, \tau)\left|d V\left(\mathcal{A}\left(a_{i i}, a_{i k}\right)\right)(\tau)\right|: t \in \mathbb{R}\right\} \\
&<+\infty(i \neq k ; i, k=1, \ldots, n) \tag{2.2}\\
& \quad \sup \left\{\left|\int_{t_{i}}^{t}\right| \gamma_{i}(t, \tau)\left|d V\left(\mathcal{A}\left(a_{i i}, f_{i}\right)\right)(\tau)\right|: t \in \mathbb{R}\right\}<+\infty(i=1, \ldots, n) \tag{2.3}
\end{align*}
$$

and

$$
\begin{equation*}
\sup \left\{\left|\gamma_{i}\left(t, t_{i}\right)\right|: t \in \mathbb{R}\right\}<+\infty \text { for } i \in \mathcal{N}_{0}\left(t_{1}, \ldots, t_{n}\right) \tag{2.4}
\end{equation*}
$$

where $\gamma_{i}(t, \tau) \equiv \gamma_{a_{i i}}(t, \tau)(i=1, \ldots, n)$. Let, moreover, the matrix $S=\left(s_{i k}\right)_{i, k=1}^{n}$, where $s_{i i}=0(i=1, \ldots, n)$, be such that

$$
\begin{equation*}
r(S)<1 \tag{2.5}
\end{equation*}
$$

Then for every $c_{i} \in \mathbb{R}\left(i \in \mathcal{N}_{0}\left(t_{1}, \ldots, t_{n}\right)\right)$ system (1.1) has at last one a bounded on \mathbb{R} solution satisfying the condition

$$
\begin{equation*}
\left.x_{i}\left(t_{i}\right)=c_{i} \text { for } i \in \mathcal{N}_{0}\left(t_{1}, \ldots, t_{n}\right)\right) \tag{2.6}
\end{equation*}
$$

If the case, where $\mathcal{N}\left(t_{1}, \ldots, t_{n}\right)=\varnothing$, conditions (2.4) and (2.6) be eliminated and the theorem has the following form.
Theorem $\mathbf{1}^{\prime}$. Let conditions (2.1), (2.2) and (2.3) hold for some $t_{i} \in\{-\infty,+\infty\}(i=$ $1, \ldots, n)$, where $\gamma_{i}(t, \tau) \equiv \gamma_{a_{i i}}(t, \tau)(i=1, \ldots, n)$, and the matrix $S=\left(s_{i k}\right)_{i, k=1}^{n}$, where $s_{i i}=0(i=1, \ldots, n)$, satisfy condition (2.5). Then system (1.1) has at last one solution bounded on \mathbb{R}.

Corollary 1. Let

$$
\begin{equation*}
1+(-1)^{j} d_{j} a_{i i}(t)>0 \text { for } t \in \mathbb{R}, \quad(j=1,2 ; i=1, \ldots, n) \tag{2.7}
\end{equation*}
$$

and let there exist $t_{i} \in \mathbb{R} \cup\{-\infty,+\infty\}(i=1, \ldots, n)$ such that conditions (2.2), (2.3), (2.4) and (2.5) hold, where $S=\left(s_{i k}\right)_{i, k=1}^{n}, s_{i i}=0(i=1, \ldots, n)$ and $\gamma_{i}(t, \tau) \equiv \gamma_{a_{i i}}(t, \tau)$ ($i=1, \ldots, n$). Let, moreover, the functions

$$
\begin{align*}
& \mathcal{A}\left(a_{i i}, a_{i k}\right)(t) \operatorname{sgn}\left(t-t_{i}\right), \mathcal{A}\left(a_{i i}, f_{i}\right)(t) \operatorname{sgn}\left(t-t_{i}\right) \\
& (i \neq k ; i, k=1, \ldots, n) \text { are nondecreasing on } \mathbb{R} . \tag{2.8}
\end{align*}
$$

Then for every $c_{i} \in \mathbb{R}_{+}\left(i \in \mathfrak{N}_{0}\left(t_{1}, \ldots, t_{n}\right)\right)$ system (1.1) has at last one nonnegative and bounded on \mathbb{R} solution satisfying condition (2.6).

If $\mathcal{N}_{0}\left(t_{1}, \ldots, t_{n}\right)=\varnothing$ then Corollary 1 has the following form.
Corollary 1^{\prime}. Let conditions (2.7) and (2.8) hold and let there exist $t_{i} \in\{-\infty,+\infty\}$ $(i=1, \ldots, n)$ such that conditions (2.2), (2.3) and (2.5) hold, where $S=\left(s_{i k}\right)_{i, k=1}^{n}$, $s_{i i}=0(i=1, \ldots, n)$ and $\gamma_{i}(t, \tau) \equiv \gamma_{a_{i i}}(t, \tau)(i=1, \ldots, n)$. Then system (1.1) has at last one a nonnegative and bounded on \mathbb{R} solution.

Theorem 2. Let (2.1) hold and let there exist $t_{i} \in \mathbb{R} \cup\{-\infty,+\infty\}(i=1, \ldots, n)$ such that conditions (2.2), (2.3), (2.4) and (2.5) hold, where $S=\left(s_{i k}\right)_{i, k=1}^{n}, s_{i i}=0$ $(i=1, \ldots, n)$ and $\gamma_{i}(t, \tau) \equiv \gamma_{a_{i i}}(t, \tau)(i=1, \ldots, n)$. 'Let, moreover,

$$
\begin{equation*}
\liminf _{t \rightarrow t_{i}} \gamma_{i}(0, t)=0 \text { for } i \in\{1, \ldots, n\} \backslash \mathcal{N}_{0}\left(t_{1}, \ldots, t_{n}\right) \tag{2.9}
\end{equation*}
$$

Then for every $c_{i} \in \mathbb{R}\left(i \in \mathfrak{N}_{0}\left(t_{1}, \ldots, t_{n}\right)\right)$ system (1.1) has the unique and bounded on \mathbb{R} solution $\left(x_{i}\right)_{i=1}^{n}$ satisfying condition (2.6) and

$$
\begin{equation*}
\left.\sum_{i=1}^{n}\left|x_{i}(t)-x_{i m}(t)\right| \leq \rho_{0} \alpha^{m} \text { for } t \in \mathbb{R}(m=1,2, \ldots)\right) \tag{2.10}
\end{equation*}
$$

where ρ_{0} and α are the positive numbers independent of $m,\left(x_{i m}\right)_{i=1}^{n}(m=0,1, \ldots)$ is the sequence of the vector-functions the components of which are defined by

$$
\begin{equation*}
x_{i 0}(t) \equiv 0, x_{i m}(t) \equiv u_{i}(t)+\sum_{k=1, k \neq i}^{n} \int_{t_{i}}^{t} \gamma_{i}(t, \tau) d \mathcal{A}\left(a_{i i}, a_{i k} x_{k m-1}\right)(\tau) \tag{2.11}
\end{equation*}
$$

$(i=1, \ldots, n ; m=1,2, \ldots)$, and the functions $u_{i}(i=1, \ldots, n)$ are defined due to

$$
\begin{align*}
& u_{i}(t) \equiv c_{i} \gamma_{i}\left(t, t_{i}\right)+\int_{t_{i}}^{t} \gamma_{i}(t, \tau) d \mathcal{A}\left(a_{i i}, f_{i}\right)(\tau) \text { for } i \in \mathcal{N}_{0}\left(t_{1}, \ldots, t_{n}\right) \tag{2.12}\\
& u_{i}(t) \equiv \int_{t_{i}}^{t} \gamma_{i}(t, \tau) d \mathcal{A}\left(a_{i i}, f_{i}\right)(\tau) \text { for } i \in\{1, \ldots, n\} \backslash \mathcal{N}_{0}\left(t_{1}, \ldots, t_{n}\right) \tag{2.13}
\end{align*}
$$

Corollary 2. Let (2.7) hold and let there exist $t_{i} \in \mathbb{R} \cup\{-\infty,+\infty\}(i=1, \ldots, n)$ such that the functions $a_{i i}(t) \operatorname{sgn}\left(t-t_{i}\right)(i=1, \ldots, n)$ are non-increasing on \mathbb{R},

$$
\begin{gather*}
\liminf _{t \rightarrow t_{i}} a_{i i}(t)=+\infty \text { for } i \in\{1, \ldots, n\} \backslash \mathcal{N}_{0}\left(t_{1}, \ldots, t_{n}\right), \tag{2.14}\\
V\left(\mathcal{A}\left(a_{i i}, a_{i k}\right)\right)(t) \leq-h_{i k} \operatorname{sgn}\left(t-t_{i}\right) \mathcal{A}\left(a_{i i}, a_{i i}\right)(t) \tag{2.15}
\end{gather*}
$$

for $t \in \mathbb{R}(i \neq k ; i, k=1, \ldots, n)$ and

$$
\begin{equation*}
r(\mathcal{H})<1 \tag{2.16}
\end{equation*}
$$

where $h_{i k}(i, k=1, \ldots, n)$ are such that $\mathcal{H}=\left(\left(1-\delta_{i k}\right) h_{i k}\right)_{i, k=1}^{n}$. Let, moreover,

$$
\begin{equation*}
\rho_{i}=\sup \left\{\left|\bigvee_{t}^{v\left(\zeta_{i}\right)(t)}\left(\mathcal{A}\left(a_{i i}, f_{i}\right)\right)\right|: t \in \mathbb{R}\right\}<\infty(i=1, \ldots, n) \tag{2.17}
\end{equation*}
$$

where $\zeta_{i}(t) \equiv \xi_{a_{i i}} \operatorname{sgn}\left(t-t_{i}\right)(i=1, \ldots, n)$. Then conclusion of Theorem 2 is true.
Corollary 3. Let there exist the points $t_{i} \in \mathbb{R} \cup\{-\infty,+\infty\}(i=1, \ldots, n)$ and the functions $\alpha_{i}: \mathbb{R} \rightarrow \mathbb{R}(i=1, \ldots, n)$ such that $\alpha_{i}(t) \operatorname{sgn}\left(t-t_{i}\right)(i=1, \ldots, n)$ are nondecreasing on \mathbb{R} and conditions

$$
\begin{array}{r}
\quad\left(s_{c}\left(a_{i i}\right)(t)-s_{c}\left(a_{i i}\right)(s)\right) \operatorname{sgn}(t-s) \leq \eta_{i i}\left(s_{c}\left(\alpha_{i}\right)(t)-s_{c}\left(\alpha_{i}\right)(s)\right) \\
\text { for }(t-s)\left(s-t_{i}\right)>0(i=1, \ldots, n), \\
d_{1} a_{i i}(t) \leq \eta_{i i} d_{1} \alpha_{i}(t)<1,-1<d_{2} a_{i i}(t) \leq \eta_{i i} d_{2} \alpha_{i}(t)(i=1, \ldots, n), \\
\left|s_{c}\left(a_{i k}\right)(t)-s_{c}\left(a_{i k}\right)(s)\right| \operatorname{sgn}(t-s) \leq \eta_{i k}\left(s_{c}\left(\alpha_{i}\right)(t)-s_{c}\left(\alpha_{i}\right)(s)\right) \tag{2.20}
\end{array}
$$

for $(t-s)\left(s-t_{i}\right)>0(i \neq k ; i, k=1, \ldots, n)$ and

$$
\begin{equation*}
\left|d_{j} a_{i k}(t)\right| \leq \eta_{i k}\left|d_{j} \alpha_{i}(t)\right|(j=1,2 ; i \neq k ; i, k=1, \ldots, n) \tag{2.21}
\end{equation*}
$$

hold on \mathbb{R}, where $\mathcal{H}=\left(\left(1-\delta_{i k}\right) \eta_{i k}\left|\eta_{i i}\right|^{-1}\right)_{i, k=1}^{n}$. Let, moreover,

$$
\begin{equation*}
\rho_{i}=\sup \left\{\left|\bigvee_{t}^{v\left(\vartheta_{i}\right)(t)}\left(\mathcal{A}\left(\eta_{i} \alpha_{i}, f_{i}\right)\right)\right|: t \in \mathbb{R}\right\}<\infty(i=1, \ldots, n) \tag{2.22}
\end{equation*}
$$

where $\vartheta_{i}(t) \equiv \xi_{\eta_{i} a_{i}} \operatorname{sgn}\left(t-t_{i}\right)(i=1, \ldots, n)$. Then conclusion of Theorem 2 is true.
Theorem 2'. Let (2.1) hold and let there exist $t_{i} \in\{-\infty,+\infty\}(i=1, \ldots, n)$ such that conditions (2.2), (2.3) and (2.5) hold, where $S=\left(s_{i k}\right)_{i, k=1}^{n}, s_{i i}=0(i=1, \ldots, n)$ and $\gamma_{i}(t, \tau) \equiv \gamma_{a_{i i}}(t, \tau)(i=1, \ldots, n)$. 'Let, moreover,

$$
\liminf _{t \rightarrow t_{i}} \gamma_{i}(0, t)=0 \text { for } i \in\{1, \ldots, n\}
$$

Then system (1.1) has the unique and bounded on \mathbb{R} solution $\left(x_{i}\right)_{i=1}^{n}$ and

$$
\sum_{i=1}^{n}\left|x_{i}(t)-x_{i m}(t)\right| \leq \rho_{0} \alpha^{m} \text { for } t \in \mathbb{R} \quad(m=1,2, \ldots)
$$

where ρ_{0} and α are the positive numbers independent of $m,\left(x_{i m}\right)_{i=1}^{n}(m=0,1, \ldots)$ is the sequence of the vector-functions the components of which are defined by

$$
\begin{aligned}
& x_{i 0}(t) \equiv 0 \\
& x_{i m}(t) \equiv \int_{t_{i}}^{t} \gamma_{i}(t, \tau) d \mathcal{A}\left(a_{i i}, f_{i}\right)(\tau) \\
& \quad+\sum_{k=1, k \neq i}^{n} \int_{t_{i}}^{t} \gamma_{i}(t, \tau) d \mathcal{A}\left(a_{i i}, a_{i k} x_{k m-1}\right)(\tau)(i=1, \ldots, n ; m=1,2, \ldots)
\end{aligned}
$$

Corollary 2^{\prime}. Let (2.7) hold and let there exist $t_{i} \in\{-\infty,+\infty\}(i=1, \ldots, n)$ such that the functions $a_{i i}(t) \operatorname{sgn}\left(t-t_{i}\right)(i=1, \ldots, n)$ are non-increasing on \mathbb{R}, conditions (2.15), (2.16), (2.17) and

$$
\begin{equation*}
\liminf _{t \rightarrow t_{i}} a_{i i}(t)=+\infty \text { for } i \in\{1, \ldots, n\} \tag{2.23}
\end{equation*}
$$

hold, where $\zeta_{i}(t) \equiv \xi_{a_{i i}} \operatorname{sgn}\left(t-t_{i}\right)(i=1, \ldots, n)$, and the numbers $h_{i k}(i, k=1, \ldots, n)$ are such that $\mathcal{H}=\left(\left(1-\delta_{i k}\right) h_{i k}\right)_{i, k=1}^{n}$. Then conclusion of Theorem 2^{\prime} is true.
Corollary 3^{\prime}. Let there exist the points $t_{i} \in\{-\infty,+\infty\}(i=1, \ldots, n)$ and the functions $\alpha_{i}: \mathbb{R} \rightarrow \mathbb{R}(i=1, \ldots, n)$ such that $\alpha_{i}(t) \operatorname{sgn}\left(t-t_{i}\right)(i=1, \ldots, n)$ are nondecreasing on \mathbb{R} and conditions (2.16), (2.18) - (2.22) hold on \mathbb{R}, where $\vartheta_{i}(t) \equiv \xi_{\eta_{i} a_{i}} \operatorname{sgn}\left(t-t_{i}\right)$ $(i=1, \ldots, n)$, and the numbers $\eta_{i k}, \eta_{i i}<0(i, k=1, \ldots, n)$ are such that $\mathcal{H}=((1-$ $\left.\left.\delta_{i k}\right) \eta_{i k}\left|\eta_{i i}\right|^{-1}\right)_{i, k=1}^{n}$. Then conclusion of Theorem 2^{\prime} is true.

Corollary 4. Let the conditions of Theorem 2 or Corollary 2 or Corollary 3 are fulfilled. Let, in addition, condition (2.8) hold. Then for every $c_{i} \in \mathbb{R}_{+}(i \in$ $\left.\mathcal{N}_{0}\left(t_{1}, \ldots, t_{n}\right)\right)$ system (1.1) has the unique and bounded on \mathbb{R} solution satisfying condition (2.6) and it is nonnegative.

Corollary 4'. Let the conditions of Theorem 2^{\prime} or Corollary 2' or Corollary $3^{\prime \prime}$ are fulfilled. Let, in addition, condition (2.8) hold. Then system (1.1) has the unique and bounded on \mathbb{R} solution and it is nonnegative.

3. Proof of the results

Proof of Theorem 1. Let $c_{i} \in \mathbb{R}\left(i \in \mathcal{N}_{0}\left(t_{1}, \ldots, t_{n}\right)\right)$ be an arbitrary fixed numbers. Consider the initial problems

$$
d u=u d a_{i i}(t)+d f_{i}(t) \text { for } t \in \mathbb{R}, u\left(t_{i}\right)=c_{i}
$$

$\left(i \in \mathcal{N}_{0}\left(t_{1}, \ldots, t_{n}\right)\right)$. $\mathrm{By}(2.1)$ the problem has the unique solution $u_{i} \in \mathrm{BV}(\mathbb{R} ; \mathbb{R})$ and according to modified variation of constant formulae (see [5]) it has form (2.12).

Consider the system of integral equations

$$
\begin{equation*}
x_{i}(t)=u_{i}(t)+\sum_{k=1, k \neq i}^{n} \int_{t_{i}}^{t} \gamma_{i}(t, \tau) d \mathcal{A}\left(a_{i i}, a_{i k} x_{k}\right)(\tau) \text { for } t \in \mathbb{R}(i=1, \ldots, n) \text {. } \tag{3.1}
\end{equation*}
$$

Due to modified variation of constant formulae (see [5]) we conclude that the vector-function $\left(x_{i_{i}}\right)_{i=1}^{n}$ is a solution of the system one. Moreover, it is evident the vector-function $\left(x_{i}\right)_{i=1}^{n}$ satisfy condition (2.6).

The solution of the last integral system we will find in the set of functions of bounded and local bounded variation on the set \mathbb{R}, i.e. in $\mathrm{BV}\left(\mathbb{R} ; \mathbb{R}^{n}\right)$.

Consider the sequences of the vector-functions $\left(x_{i m}\right)_{i=1}^{n}(m=0,1, \ldots)$ defined by $x_{i 0}(t)=0, x_{i m}(t)=u_{i}(t)+\sum_{k=1, k \neq i_{t_{i}}}^{n} \int_{i}^{t} \gamma_{i}(t, \tau) d \mathcal{A}\left(a_{i i}, a_{i k} x_{k m-1}\right)(\tau)$ for $t \in \mathbb{R}(i=1, \ldots, n)$.

In view of conditions (2.2) and (2.3), from (2.12) and (2.13) we get

$$
\begin{equation*}
\left(u_{i}\right)_{i=1}^{n} \in \operatorname{BV}\left(\mathbb{R} ; \mathbb{R}^{n}\right) . \tag{3.2}
\end{equation*}
$$

It is clear that $\left(x_{i}\right)_{i=1}^{n} \in \operatorname{BV}\left(\mathbb{R} ; \mathbb{R}^{n}\right)$. Now, if we assume that

$$
\begin{equation*}
\left(x_{i m-1}\right)_{i=1}^{n} \in \operatorname{BV}\left(\mathbb{R} ; \mathbb{R}^{n}\right) \tag{3.3}
\end{equation*}
$$

for some m, then due (2.2) and (3.2), from (3.2) we get $\left(x_{i m}\right)_{i=1}^{n} \in \mathrm{BV}_{\text {loc }}\left(\mathbb{R} ; \mathbb{R}^{n}\right)$ and

$$
\left\|x_{i m}\right\|_{\infty} \leq\left\|u_{i}\right\|_{\infty}+\sum_{k=1, k \neq i}^{n} s_{i k}\left\|x_{k m-1}\right\|_{\infty}<+\infty(i=1, \ldots, n) .
$$

Therefore, condition (3.3) holds for every natural m.

Let us show that the sequence $\left(x_{i m}\right)_{i=1}^{m}(m=1,2 ., \ldots)$ be uniformly stable on \mathbb{R}. For this sufficient to show that the functional series

$$
\begin{equation*}
\sum_{m=1}^{\infty}\left|x_{i m}(t)-x_{i m-1}(t)\right|(i=1, \ldots, n) \tag{3.4}
\end{equation*}
$$

are converged uniformly on \mathbb{R}.
According (2.2) and (3.3), from (2.11) it follows

$$
\left(\left\|x_{i m}-x_{i m-1}\right\|_{\infty}\right)_{i=1}^{n} \leq S\left(\left\|x_{i m-1}-x_{i m-2}\right\|_{\infty}\right)_{i=1}^{n}(m=2,3, \ldots)
$$

and, therefore,

$$
\left(\left\|x_{i m}-x_{i m-1}\right\|_{\infty}\right)_{i=1}^{n} \leq S^{m-1}\left(\left\|u_{i}\right\|_{\infty}\right)_{i=1}^{n}(m=1,2, \ldots)
$$

Due to (2.5) there exist numbers $\alpha \in] r(S), 1[$ and $\beta>0$ such that

$$
\left\|S^{m-1}\right\| \leq \beta \alpha^{m-1} \quad(m=1,2, \ldots)
$$

Therefore,

$$
\left\|x_{i m}-x_{i m-1}\right\|_{\infty} \leq \beta_{0} \alpha^{m}(i=1, \ldots, n ; m=1,2, \ldots)
$$

where $\beta_{0}=\beta \alpha^{-1} \sum_{i=1}^{n}\left\|u_{i}\right\|_{\infty}$.
So that

$$
\sum_{m=0}^{\infty} \beta_{0} \alpha^{m}
$$

is the convergence major numerical series for the functional series (3.4) on \mathbb{R}. From this, due to the Weierstrass theorem the sequence $\left(x_{i m}\right)_{i=1}^{n}(m=0,1, \ldots)$ is uniformly convergence on \mathbb{R}.

Let

$$
\begin{equation*}
\lim _{m \rightarrow+\infty} x_{i m}(t)=x_{i}(t) \text { for } t \in \mathbb{R}(i=1, \ldots, n) \tag{3.5}
\end{equation*}
$$

Then due to Theorem I.4.17 ([12]) we conclude that $\left(x_{i}\right)_{i=1}^{n}$ will be a solution of system (3.1). Moreover, it is evident that $\left\|x_{i}\right\|_{\infty}<+\infty(i=1, \ldots, n)$ and by the equality (3.1) and estimates (2.2) - (2.4) we have $\left(x_{i}\right)_{i=1}^{n} \in \operatorname{BV}\left(\mathbb{R} ; \mathbb{R}^{n}\right)$.

Proof of Corollary 1. As we proof above, in conditions of Theorem 1, system (1.1) has the bounded solution on \mathbb{R} satisfying condition (2.6) and it is obtained as the uniformly limits on \mathbb{R} of the sequence of the vector-functions $\left(x_{i m-1}\right)_{i=1}^{n} \in \mathrm{BV}\left(\mathbb{R} ; \mathbb{R}^{n}\right)$ $(m=0,1, \ldots)$ the components of which are defined by (2.11), and $u_{i}(i=1, \ldots, n)$ are defined by (2.12) and (2.13).

In view of (2.8), because $c_{i} \in \mathbb{R}_{+}\left(i \in \mathcal{N}_{0}\left(t_{1}, \ldots, t_{n}\right)\right)$, it follows from (2.13) (2.11) that $x_{i m}(t) \geq 0$ and, that, $x_{i}(t) \geq 0$ for $t \in \mathbb{R}(i=1, \ldots, n)$.

Proof of Theorem 2. First we show that the every bounded on \mathbb{R} solution $\left(x_{i}\right)_{i=1}^{n}$ of system (1.1), satisfying of condition (2.6) will be solution of the system of integral equations (3.1).

By (2.9), there exist a sequences $t_{\text {im }}(i=1, \ldots, n ; m=1,2, \ldots)$ such that

$$
\begin{equation*}
\lim _{m \rightarrow+\infty} t_{i m}=t_{i}, \lim _{m \rightarrow+\infty} \gamma_{i}\left(0, t_{i m}\right)=0(i=, \ldots, n) \tag{3.6}
\end{equation*}
$$

We assume

$$
\begin{equation*}
t_{i m}=t_{i} \text { for } i \in \mathcal{N}_{0}\left(t_{1}, \ldots, t_{n}\right)(m=1,2, \ldots) \tag{3.7}
\end{equation*}
$$

By modified variation of constant formula and equalities (2.12), (3.7) we have

$$
\begin{equation*}
x_{i}(t)=u_{i m}(t)+\sum_{k=1, k \neq i_{i m}}^{n} \int_{t_{i m}}^{t} \gamma_{i}(t, \tau) d \mathcal{A}\left(a_{i i}, a_{i k} x_{k}\right)(\tau)(i=1, \ldots, n ; m=1,2, \ldots) \tag{3.8}
\end{equation*}
$$

on \mathbb{R}, where

$$
\begin{align*}
u_{i m}(t) & \equiv u_{i}(t) \text { for } i \in \mathcal{N}\left(t_{1}, \ldots, t_{n}\right) \quad(m=1,2, \ldots) \tag{3.9}\\
u_{i m}(t) & \equiv x_{i m}\left(t_{i m}\right) \gamma_{i}\left(t, t_{i m}\right)+\int_{t_{i m}}^{t} \gamma_{i}(t, \tau) d \mathcal{A}\left(a_{i i}, f_{i}\right)(\tau) \\
& \text { for } i \in\{1, \ldots, n\} \backslash \mathcal{N}_{0}\left(t_{1}, \ldots, t_{n}\right) \quad(m=1,2, \ldots) \tag{3.10}
\end{align*}
$$

Let $i \in\{1, \ldots, n\} \backslash \mathcal{N}_{0}\left(t_{1}, \ldots, t_{n}\right)$. Then because x_{i} is bounded, by conditions (2.3) and (3.6) from (2.13) and (3.10) we find

$$
\lim _{m \rightarrow+\infty} u_{i m}(t)=u_{i}(t) \text { for } t \in \mathbb{R}
$$

On the hand, due (2.2) we get

$$
\lim _{m \rightarrow+\infty} \int_{t_{i m}}^{t} \gamma_{i}(t, \tau) d \mathcal{A}\left(a_{i i}, a_{i k} x_{k}\right)(\tau)=\int_{t_{i}}^{t} \gamma_{i}(t, \tau) d \mathcal{A}\left(a_{i i}, a_{i k} x_{k}\right)(\tau) \text { for } t \in \mathbb{R}
$$

Therefore, from (3.8) we have

$$
x_{i}(t)=u_{i}(t)+\sum_{k=1, k \neq i}^{n} \int_{t_{i}}^{t} \gamma_{i}(t, \tau) d \mathcal{A}\left(a_{i i}, a_{i k} x_{k}\right)(\tau) \text { for } t \in \mathbb{R}
$$

Due to (3.7) - (3.9) the last equality is true for the case where $i \in \mathcal{N}_{0}\left(t_{1}, \ldots, t_{n}\right)$, as well. So that it is proved that the vector-function $\left(x_{i}\right)_{i=1}^{n}$ is the solution of system (3.1).

In the proof of Theorem 1 we show that system (3.1) has solution $\left(x_{i}\right)_{i=1}^{n}$ and

$$
\lim _{m \rightarrow+\infty}\left\|x_{i}-x_{i m}\right\|_{\infty}=0(i=1, \ldots, n)
$$

In addition,

$$
\left\|x_{i m}-x_{i m-1}\right\|_{\infty} \leq \beta_{0} \alpha^{m}(i=1, \ldots, n ; m=1,2, \ldots)
$$

where β_{0} and $\left.\alpha \in\right] 0,1[$ are the numbers independent from m. From this, we get

$$
\left\|x_{i m+j}-x_{i m}\right\|_{\infty} \leq \sum_{k=m+1}^{m+j}\left\|x_{i k}-x_{i k-1}\right\|_{\infty} \leq \beta_{0} \sum_{k=m+1}^{m+j} \alpha^{k}<\beta_{0} \frac{\alpha}{1-\alpha} \alpha^{m}
$$

and

$$
\left\|x_{i}-x_{i m}\right\|_{\infty} \leq \beta_{0} \frac{\alpha}{1-\alpha} \alpha^{m}(j=1,2 ; i=1, \ldots, n ; m=1,2, \ldots)
$$

So that estimate (2.10) holds for $\rho_{0}=n \beta_{0} \alpha(1-\alpha)^{-1}$.
Finally, we show that system (3.1) has the unique solution $\left(x_{i}\right)_{i=1}^{n}$. Let $\left(\bar{x}_{i}\right)_{i=1}^{n} \in$ $\operatorname{BV}\left(\mathbb{R} ; \mathbb{R}^{n}\right)$ and arbitrary solution of the system and let $y_{i}(t) \equiv \bar{x}_{i}(t)-x_{i}(t) \quad(i=$ $1, \ldots, n)$. Then

$$
y_{i}(t)=\sum_{k=1, k \neq i}^{n} \int_{t_{i}}^{t} \gamma_{i}(t, \tau) d \mathcal{A}\left(a_{i i}, a_{i k} y_{k}\right)(\tau) \text { for } t \in \mathbb{R}
$$

By this, in view of (2.2), $\left(\left\|y_{i}\right\|_{\infty}\right)_{i=1}^{n} \leq S\left(\left\|y_{i}\right\|_{\infty}\right)_{i=1}^{n}$, i.e., $\left(I_{n}-S\right)\left(\left\|y_{i}\right\|_{\infty}\right)_{i=1}^{n} \leq 0_{n}$. So that, because the matrix S is nonnegative, by condition (2.5) we have $\left(\left\|y_{i}\right\|_{\infty}\right)_{i=1}^{n} \leq 0_{n}$ and $\left\|y_{i}\right\|_{\infty}=0(i=1, \ldots, n)$. Consequently, $\bar{x}_{i}(t) \equiv x_{i}(t)(i=1, \ldots, n)$.

Proof of Corollary 2. Let $\xi_{i}(t) \equiv \xi_{a_{i i}}(t), \gamma_{i}(t, \tau) \equiv \xi_{i}(t) \xi_{i}^{-1}(\tau)$ and $v_{i}(t) \equiv v\left(\zeta_{i}\right)(t)$ $(i=1, \ldots, n)$. Due condition (2.7) we have $\gamma_{i}\left(t, t_{i}\right)>0(i=1, \ldots, n)$.

Let $i \in\{1, \ldots, n\}$ be fixed. First, consider the case $t \geq t_{i}$. Then by (2.15) and equality (1.3) we find $d \xi_{i}^{-1}(t) \equiv-\xi_{i}^{-1}(t) d \mathcal{A}\left(a_{i i}, a_{i i}\right)(t)$, and

$$
\begin{gather*}
\left|\int_{t_{i}}^{t}\right| \gamma_{i}(t, \tau)\left|d V\left(\mathcal{A}\left(a_{i i}, a_{i k}\right)\right)(\tau)\right| \leq-h_{i k} \xi_{i}(t) \int_{t_{i}}^{t} \xi_{i}^{-1}(\tau) d \mathcal{A}\left(a_{i i}, a_{i i}\right)(\tau) \\
=h_{i k} \xi_{i}(t) \int_{t_{i}}^{t} d \xi_{i}^{-1}(\tau) \leq h_{i k}(i \neq k ; i, k=1, \ldots, n) \tag{3.11}
\end{gather*}
$$

So that condition (2.2) hold. Beside, we have $s_{i k} \leq h_{i k}(i, k=1, \ldots, n)$ and, therefore, by (2.16) condition (2.5) hold.

If $i \in \mathcal{N}_{0}\left(t_{1}, \ldots, t_{n}\right)$, then due Remark 1 the functions $\beta_{i}(i=1, \ldots, n)$ are nonincreasing. Hence the functions $\gamma_{i}\left(t, t_{i}\right) \equiv \gamma_{a_{i i}}\left(t, t_{i}\right)(i=1, \ldots, n)$ are non-increasing and so estimate (2.4) holds for $t \geq t_{i}$.

Let now $i \in\{1, \ldots, n\} \backslash \mathcal{N}_{0}\left(t_{1}, \ldots, t_{n}\right)$ be such that $t_{i}=-\infty$. Due to (2.7) we find $\gamma_{i}(0, t)=\exp \left(1-\xi_{i}(t)\right)$ for $t<0$. Therefore, by (2.23) we conclude

$$
\liminf _{t \rightarrow t_{i}} \gamma_{i}(0, t)=0
$$

Consequently, condition (2.9) hold for the case.

Let us verify (2.3). Let $i \in\{1, \ldots, n\}, t_{i} \in \mathbb{R} \cup\{-\infty,+\infty\}$ and $t>t_{i}$ be fixed. Then $\zeta_{i}(\tau)=-\xi_{i}(\tau)$ for $\tau>t_{i}, \zeta_{i}\left(t_{i}\right)=0$. Then due to the conditions of theorem the function ζ_{i} is nondecreasing on the interval $\left[t_{i},+\infty[\right.$.

$$
T_{i j}=\left\{\tau \in\left[t_{i}, t\right]: j \leq \zeta_{i}(\tau)<(j+1)\right\} \quad\left(j=0, \ldots, k_{i}(t)+1\right)
$$

where $k_{i}(t) \equiv\left[\zeta_{i}(t)\right]$ (the integer part) and let

$$
\tau_{i 0}=t_{i}, \quad \tau_{i j}=\left\{\begin{array}{l}
\tau_{i j-1} \text { if } T_{i j-1}=\varnothing \\
\sup T_{i j-1} \text { if } T_{i j-1} \neq \varnothing\left(j=1, \ldots, k_{i}(t)+1\right)
\end{array}\right.
$$

Let us show that

$$
\begin{equation*}
\tau_{i j+1} \leq v_{i}\left(\tau_{i j}\right)\left(j=0, \ldots, k_{i}(t)\right) \tag{3.12}
\end{equation*}
$$

Let $j \in\left\{0, \ldots, k_{i}(t)\right\}$ be fixed. If $T_{i j}=\varnothing$, then (3.12) is evident. Let now $T_{i j} \neq \varnothing$. It suffices to show that

$$
\begin{equation*}
T_{i j} \subset Q_{i j} \tag{3.13}
\end{equation*}
$$

where $Q_{i j}=\left\{\tau \in\left[t_{i}, t\right]: \zeta_{i}(\tau)<\zeta_{i}\left(\tau_{i j-1}+\right)+1\right\}$. It is easy to verify that

$$
\begin{equation*}
\zeta_{i}\left(\tau_{i j-1}+\right) \geq j \tag{3.14}
\end{equation*}
$$

Indeed, otherwise there exists $\delta>0$ such that $\zeta_{i}\left(\tau_{i j-1}+s\right)<\zeta_{i}\left(\tau_{i 0}\right)+j$ for $0 \leq s \leq \delta$. Next, by the definition of $\tau_{i j-1}$, we have $\zeta_{i}\left(\tau_{i 0}\right)+(j-1) \leq \zeta_{i}\left(\tau_{i j-1}-\right)$ and, therefore, $(j-1) \leq \zeta_{i}\left(\tau_{i j-1}+s\right)<j$ for $0 \leq s \leq \delta$. But this contradicts the definition of $\tau_{i j-1}$. So that if $\tau \in T_{i j}$, then from (3.14) and the inequality $\zeta_{i}(\tau)<(j+1)$ we get $\zeta_{i}(\tau)<\zeta_{i}\left(\tau_{i j-1}+\right)+1$ and hence $\tau \in Q_{i j}$. Therefore (3.12) is proved.

Due to (3.12) we find

$$
\begin{equation*}
v_{i}(t) \leq \int_{t_{i}}^{t} \exp \left(\xi_{i}(t)-\xi_{i}(\tau)\right) d b_{i}(\tau) \leq \exp \left(\xi_{i}(t)\right) \sum_{j=1}^{k_{i}(t)+1} \int_{\tau_{i j-1}}^{\tau_{i j}} \exp \left(\zeta_{i}(\tau)\right) d b_{i}(\tau) \tag{3.15}
\end{equation*}
$$

where $v_{i}(t) \equiv\left|\int_{t_{i}}^{t}\right| \gamma_{i}(t, \tau)\left|d b_{i}(\tau)\right|$ and $b_{i}(\tau) \equiv V\left(\mathcal{A}\left(a_{i i}, f_{i}\right)\right)(\tau)$. On the other hand

$$
\begin{aligned}
& \int_{\tau_{i j-1}}^{\tau_{i j}} \exp \left(\zeta_{i}(\tau)\right) d b_{i}(\tau)=\lim _{\varepsilon \rightarrow 0+} \int_{\tau_{i j-1}}^{\tau_{i j}-\varepsilon} \exp \left(\zeta_{i}(\tau)\right) d b_{i}(\tau)+\exp \left(\zeta_{i}\left(\tau_{i j}\right)\right) d_{1} b_{i}\left(\tau_{i j}\right) \\
& \quad \leq \exp \left(\zeta_{i}\left(\tau_{i j}-\right)\right)\left(b_{i}\left(\tau_{i j}-\right)-b_{i}\left(\tau_{i j-1}\right)\right)+\exp \left(\zeta_{i}\left(\tau_{i j+1}-\right)\right) d_{1} b_{i}\left(\tau_{i j}\right) \\
& \quad \leq \exp (j)\left(b_{i}\left(\tau_{i j}-\right)-b_{i}\left(\tau_{i j-1}\right)\right)+\exp (j+1) d_{1} b_{i}\left(\tau_{i j}\right)
\end{aligned}
$$

Similarly we verify that

$$
\begin{aligned}
& \int_{\tau_{i k_{i}(t)}}^{t} \exp \left(\zeta_{i}(\tau)\right) d b_{i}(\tau) \leq \exp \left(\zeta_{i}(t-)\right)\left(b_{i}(t-)-b_{i}\left(\tau_{i k_{i}(t)}\right)\right)+\exp \left(\zeta_{i}(t)\right) d_{1} b_{i}(t) \\
& \quad \leq \exp \left(k_{i}(t)+1\right)\left(b_{i}(t-)-b_{i}\left(\tau_{i k_{i}(t)}\right)\right)+\exp \left(k_{i}(t)+2\right) d_{1} b_{i}(t)
\end{aligned}
$$

Taking account the last two estimates, by (3.15) we find

$$
\begin{aligned}
v_{i}(t) \leq & \exp \left(-k_{i}(t)\right) \sum_{j=1}^{k_{i}(t)+1}\left(\exp (j)\left(b_{i}\left(\tau_{i j}-\right)-b_{i}\left(\tau_{i j-1}\right)\right)+\exp (j+1) d_{1} b_{i}\left(\tau_{i j}\right)\right) \\
& \leq \exp \left(-k_{i}(t)\right)\left(\exp (1)\left(b_{i}\left(\tau_{i 1}-\right)-b_{i}\left(\tau_{i 0}\right)\right)\right. \\
& \quad+\sum_{j=2}^{k_{i}(t)+1}\left(\exp (j)\left(b_{i}\left(\tau_{i j}-\right)-b_{i}\left(\tau_{i j-1}-\right)\right)+\exp \left(k_{i}(t)+2\right) d_{1} b_{i}\left(\tau_{i k_{l}(t)+2}\right)\right)
\end{aligned}
$$

From this, due to (2.17) and (3.12) we have

$$
\begin{aligned}
v_{i}(t) & \leq 2 \rho_{i} \exp \left(-k_{i}(t)\right) \sum_{j=1}^{k_{i}(t)+2} \exp (j) \\
& =2 \rho_{i} \exp \left(-k_{i}(t)\right) \exp \left(k_{i}(t)+2\right) \exp (1)(\exp (1)-1)^{-1}
\end{aligned}
$$

Consequently,

$$
\begin{equation*}
v_{i}(t) \leq \eta \rho \text { for } t \geq t_{i} \tag{3.16}
\end{equation*}
$$

where $\eta=2 \exp (3)(\exp (1)-1)^{-1}$ and $\rho=\sum_{i=1}^{n} \rho_{i}$. So that, estimate (2.3) hold on the set $(-\infty, t]$. Similarly we show estimate (2.3) on the set $[t,+\infty)$. In the case we have $\zeta_{i}(\tau)=-\xi_{i}(\tau)$ for $\tau<t_{i}, \zeta_{i}\left(t_{i}\right)=0$. and

$$
\widetilde{T}_{i j}=\left\{\tau \in\left[t, t_{i}\right]: j \leq \zeta_{i}(\tau)<(j+1)\right\}\left(j=0, \ldots, k_{i}(t)+1\right)
$$

The function ζ_{i} is non-increasing on $(-\infty, t]$.
Similarly, as above, we conclude that the estimates

$$
\begin{equation*}
\tilde{\tau}_{i j+1} \geq v_{i}\left(\widetilde{\tau}_{i j}\right)\left(j=0, \ldots, k_{i}(t)\right) \tag{3.17}
\end{equation*}
$$

holds, where

$$
\tilde{\tau}_{i 0}=t_{i}, \quad \tau_{i j}=\left\{\begin{array}{l}
\widetilde{\tau}_{i j-1} \text { if } \widetilde{T}_{i j-1}=\varnothing \\
\inf \widetilde{T}_{i j-1} \text { if } \widetilde{T}_{i j-1} \neq \varnothing\left(j=1, \ldots, k_{i}(t)+1\right)
\end{array}\right.
$$

Similarly, we verify that (3.16) hold. So the corollary follows from Theorem 2.
Proof of Corollary 3. First, as in the proof of Corollary 2, due to condition (2.17) we show that estimates

$$
\begin{equation*}
\sup \left\{\left|\int_{t_{i}}^{t}\right| \gamma_{\eta_{i} \alpha_{i i}}(t, \tau)\left|d V\left(\mathcal{A}\left(\eta_{i} \alpha_{i i}, f_{i}\right)\right)(\tau)\right|: t \in \mathbb{R}\right\}<+\infty(i=1, \ldots, n) \tag{3.18}
\end{equation*}
$$

Let $\xi_{i}(t) \equiv \xi_{a_{i i}}(t)$ and $\gamma_{i}(t, \tau) \equiv \xi_{i}(t) \xi_{i}^{-1}(\tau)(i=1, \ldots, n)$. Due condition (2.19) we have $\gamma_{i}\left(t, t_{i}\right)>0(i=1, \ldots, n)$.

In view of (2.18) and (2.19) it is not difficult to verify that

$$
\begin{equation*}
J\left(a_{i i}\right)(t)-J\left(a_{i i}\right)(s) \leq \operatorname{sgn}(t-s)\left(J\left(\eta_{i i} \alpha_{i}\right)(t)-J\left(\eta_{i i} \alpha_{i}\right)(s)\right) \tag{3.19}
\end{equation*}
$$

for $(t-s)\left(s-t_{i}\right)>0(i=1, \ldots, n)$.
Let us show the estimates

$$
\begin{equation*}
V\left(\mathcal{A}\left(a_{i i}, a_{i k}\right)\right)(t) \leq \frac{\eta_{i k}}{\eta_{i i}} \operatorname{sgn}\left(t-t_{i}\right) \mathcal{A}\left(\eta_{i i} \alpha_{i}, \eta_{i i} \alpha_{i}\right)(t)(i \neq k ; i, k=1, \ldots, n) \tag{3.20}
\end{equation*}
$$

hold on \mathbb{R}. By definition of the operator \mathcal{A} we have

$$
\begin{aligned}
\mathcal{A}\left(a_{i i}, a_{i k}\right)(t) & -\mathcal{A}\left(a_{i i}, a_{i k}\right)(s)=s_{c}\left(a_{i k}\right)(t)-s_{c}\left(a_{i k}\right)(s) \\
& +\sum_{s<\tau \leq t} d_{1} a_{i k}(\tau)+\sum_{s \leq \tau<t} d_{2} a_{i k}(\tau)+\sum_{s<\tau \leq t} d_{1} a_{i i}(\tau)\left(1-d_{1} a_{i i}(\tau)\right)^{-1} d_{1} a_{i k}(\tau) \\
& -\sum_{s \leq \tau<t} d_{2} a_{i i}(\tau)\left(1+d_{2} a_{i i}(\tau)\right)^{-1} d_{2} a_{i k}(\tau)=s_{c}\left(a_{i k}\right)(t)-s_{c}\left(a_{i k}\right)(s) \\
& +\sum_{s<\tau \leq t}\left(1-d_{1} a_{i i}(\tau)\right)^{-1} d_{1} a_{i k}(\tau)+\sum_{s \leq \tau<t}\left(1+d_{2} a_{i i}(\tau)\right)^{-1} d_{2} a_{i k}(\tau)
\end{aligned}
$$

for $s<t \quad(i \neq k ; k=1, \ldots, n)$. From this, thanks to (2.19), (2.20), (2.21), we find

$$
\begin{aligned}
\mid \mathcal{A}\left(a_{i i}, a_{i k}\right)(t)- & \mathcal{A}\left(a_{i i}, a_{i k}\right)(s)\left|\leq\left|s_{c}\left(a_{i k}\right)(t)-s_{c}\left(a_{i k}\right)(s)\right|\right. \\
& \quad+\sum_{s<\tau \leq t}\left(1-d_{1} a_{i i}(\tau)\right)^{-1}\left|d_{1} a_{i k}(\tau)\right|+\sum_{s \leq \tau<t}\left(1+d_{2} a_{i i}(\tau)\right)^{-1}\left|d_{2} a_{i k}(\tau)\right| \\
\leq & \eta_{i k}\left(s_{c}\left(\alpha_{i}\right)(t)-s_{c}\left(\alpha_{i}\right)(s)\right)+\sum_{s<\tau \leq t}\left(1-\eta_{i i} d_{1} \alpha_{i}(\tau)\right)^{-1} \eta_{i k} d_{1} \alpha_{i}(\tau) \\
& \quad+\sum_{s \leq \tau<t}\left(1+\eta_{i i} d_{2} \alpha_{i}(\tau)\right)^{-1} \eta_{i k} d_{2} \alpha_{i}(\tau) \\
= & \frac{\eta_{i k}}{\eta_{i i}}\left(\mathcal{A}\left(\eta_{i i} \alpha_{i}, \eta_{i i} \alpha_{i}\right)(t)-\mathcal{A}\left(\eta_{i i} \alpha_{i}, \eta_{i i} \alpha_{i}\right)(s)\right)
\end{aligned}
$$

for $t_{i} \leq s<t \quad(i \neq k ; k=1, \ldots, n)$. So that estimate (3.20) hold for $t_{i} \leq t$. Similarly we show (3.20) for $t \leq t_{i}$ as well.

Moreover, using this way we conclude that for $t \in \mathbb{R}$ we have

$$
\begin{equation*}
V\left(\mathcal{A}\left(a_{i i}, f_{i}\right)\right)(t) \leq \operatorname{sgn}\left(t-t_{i}\right) \mathcal{A}\left(\eta_{i i} \alpha_{i}, f_{i}\right)(t) \quad(i \neq k ; i, k=1, \ldots, n) \tag{3.21}
\end{equation*}
$$

Hence due to (3.18), (3.19) and (3.21) we conclude condition (2.3) and (2.4) hold.
On the other hand, by (1.3), (3.19) and (3.20) we get

$$
d \exp \left(-J\left(\eta_{i i} \alpha_{i}\right)(t)\right) \equiv-\exp \left(-J\left(\eta_{i i} \alpha_{i}\right)(t)\right) d \mathcal{A}\left(\eta_{i i} \alpha_{i}, h_{i i} \alpha_{i}\right)(t)
$$

and

$$
\begin{aligned}
& \left|\int_{t_{i}}^{t}\right| \gamma_{i}(t, \tau)\left|d V\left(\mathcal{A}\left(a_{i i}, a_{i k}\right)\right)(\tau)\right| \\
& \quad \leq \frac{\eta_{i k}}{\eta_{i i}} \exp \left(J\left(\eta_{i i} \alpha_{i}\right)(t)\right) \int_{t_{i}}^{t} \exp \left(-J\left(\eta_{i i} \alpha_{i}\right)(\tau)\right) d \mathcal{A}\left(\eta_{i i} \alpha_{i}, \eta_{i i} \alpha_{i}\right)(\tau)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\eta_{i k}}{\left|\eta_{i i}\right|} \exp \left(J\left(\eta_{i i} \alpha_{i}\right)(t)\right)\left(\exp \left(-J\left(\eta_{i i} \alpha_{i}\right)(t)\right)-\exp \left(-J\left(\eta_{i i} \alpha_{i}\right)\left(t_{i}\right)\right)\right) \\
& \leq \frac{\eta_{i k}}{\left|\eta_{i i}\right|} \text { for } t \geq t_{i}(i \neq k ; k=1, \ldots, n) .
\end{aligned}
$$

Similarly we show the estimate for $t \leq t_{i}$ as well. So that we have $s_{i k} \leq \eta_{i k}\left|\eta_{i i}\right|^{-1}$ $(i, k=1, \ldots, n)$, where $s_{i k}$ is the left hand of estimate (2.2).

Hence, inequality (2.5) follows from (2.16). By (2.21) condition (2.1) holds.
So conditions of Theorem 1 hold. The corollary follows from the theorem.
Theorem 2^{\prime}, Corollaries 2^{\prime} and 3^{\prime} are, respectively, the particular cases of Theorem 2, Corollaries 2 and 3 if we assume $\mathcal{N}_{0}\left(t_{1}, \ldots, t_{n}\right)=\varnothing$ therein. Corollaries 4 and 4^{\prime} immediately follow from Theorems 2 and 2^{\prime} and Corollaries 2,3 and $2^{\prime}, 3^{\prime}$.

References

[1] M. Ashordia, "On the stability of solution of the multipoint boundary value problem for the system of generalized ordinary differential equations." Mem. Differential Equations Math. Phys., vol. 6, pp. 1-57, 1995.
[2] M. Ashordia, "Conditions of existence and uniqueness of solutions of the multipoint boundary value problem for a system of generalized ordinary differential equations." Georgian Math. J., vol. 5, no. 1, pp. 1-24, 1998.
[3] M. Ashordia, "On the general and multipoint boundary value problems for linear systems of generalized ordinary differential equations, linear impulse and linear difference systems." Mem. Differential Equations Math. Phys., vol. 36, pp. 1-80, 2005.
[4] M. Ashordia, "On the general and multipoint boundary value problems for linear systems of generalized ordinary differential equations, linear impulse and linear difference systems." Mem. Differential Equations Math. Phys., vol. 36, pp. 1-80, 2005.
[5] M. Ashordia, "The Initial Problem for Linear Systems of Generalized Ordinary Differential Equations, Linear Impulsive and Ordinary Differential Systems. Numerical Solvability." Mem. Differential Equations Math. Phys., vol. 78, pp. 1-162, 2019.
[6] M. Ashordia, "The General Boundary Value Problems for Linear Systems of Generalized Ordinary Differential Equations, Linear Impulsive Differential and Ordinary Differential Systems. Numerical Solvability," Mem. Differential Equations Math. Phys., vol. 81, pp. 1-184, 2020.
[7] J. Groh, "A nonlinear Volterra-Stieltjes integral equation and a Gronwall inequality in one dimension," Illinois J. Math., vol. 24, no. 2, pp. 244-263, 1980.
[8] T. H. Hildebrandt, "On systems of linear differentio-Stieltjes-integral equations," Illinois J. Math., vol. 3, pp. 352-373, 1959.
[9] I. Kiguradze, The initial value problem and boundary value problems for systems of ordinary differential equations. Vol. I. Linear theory. Tbilisi: Metsniereba, 1997.
[10] I. T. Kiguradze, "On the singular problem of Nicoletti. (English. Russian original)," Dokl. Akad. Nauk SSSR, vol. 186, no. 4, pp. 769-772, 1969.
[11] J. Kurzweil, "Generalized ordinary differential equations and continuous dependence on a parameter," Czech. Math. J., vol. 82, no. 7, pp. 418-449, 1957.
[12] Schwabik, M. Tvrdý, and O. Vejvoda,, Differential and integral equations: Boundary value problems and adjoints Differential equations with impulse effects. Praha: D. Reidel Publishing Company, 1979.

Author's address

Malkhaz Ashordia

I. Javakhishvili Tbilisi State University, A. Razmadze Mathematical Institute of, 6 Tamarashvili St., 0177 Tbilisi, Georgia

E-mail address: ashord@rmi.ge , malkhaz.ashordia@tsu.ge

