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A NOTE ON S-CURVATURE OF RANDERS MEASURE SPACES
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Abstract. In this paper, we give some characterizations on S-curvature in Randers measure
spaces, which shows that only the Busemann-Hausdorff volume form can admit a vanishing
S-curvature.
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1. INTRODUCTION

In Finsler geometry, the S-curvature, which was introduced by Shen [4] , plays a
very important role in the classification of Finsler metrics and the global geometric
analysis.

Let (M,F,dµ) be a Finsler measure space, where dµ = σ(x)dx1 ∧ ·· · ∧ dxn is an
arbitrary volume form. Then the S-curvature is defined by

S(x,y) :=
d
dt
[τ(c(t), ċ(t))]|t=0,

where c(t) is the geodesic with c(0) = x and ċ(0) = y, and τ is the distortion, which
is defined by

τ(x,y) := log

√
det(gi j(x,y))

σ(x)
,

where gi j(x,y) = 1
2

∂2F(x,y)2

∂yi∂y j . Clearly, the S-curvature demonstrates the rate of change
of the distortion along geodesics. In local coordinates, the S-curvature can be written
as

S(x,y) =
∂Gi

∂yi − yi ∂

∂xi logσ(x), (1.1)

where Gi is called the spray coefficients of F .
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Let us take a look at the special case: when F is a Riemannian metric and

dµ = e− f (x)dV, where dV =
√

det(gi j(x))dx1 ∧·· ·∧dxn,

the S-curvature is

S(x,y) =
∂ f (x)

∂xi yi, (1.2)

where f is called the potential function.
Using Ricci curvature, S-curvature and its derivative Ṡ along geodesics, one can

define the Bakry-Emery Ricci curvature (the so called weighted Ricci curvature in
the Finsler setting).

In many literatures, S-curvature is defined with respect to the Busemann-Hausdorff
volume form. See [2] [1] [4] [5] and the references therein. Now we give the corres-
ponding definitions by using an arbitrary volume form as follows.

Definition 1. Let (M,F,dµ) be a Finsler measure space, where dµ = σ(x)dx1 ∧
·· ·∧dxn is an arbitrary volume form.

(1) F is of weakly isotropic S-curvature if the S-curvature

S = (n+1)cF +η,

where c = c(x) is a scalar function and η = ηi(x)yi is a 1-form on M.
(2) F is of almost isotropic S-curvature if dη = 0.
(3) F is of isotropic S-curvature if η = 0.
(4) F is of constant S-curvature if c is a constant and η = 0.
(5) F is of exact S-curvature if c = 0 and η = dϕ for some smooth function on

M.

Notice that in Riemannian manifold (M,g,dV ), the S-curvature is zero, while for
the volume form dµ = e− f (x)dV , M has exact S-curvature (see (1.2)). In the Finsler
situation, F is of exact S-curvature if and only if there is a volume form dµ such that
Sdµ = 0.

In the following, we focus on the Randers case. Let F = α+β be a solution of
Zermelo’s navigation problem, which is expressed by

F =

√
λh2 +W 2

0

λ
− W0

λ
, (1.3)

where h :=
√

hi j(x)yiy j is a Riemannian metric, W0 :=Wi(x)yi and λ := 1−∥Wx∥2
h.

It is shown that, for the Busemann-Hausdorff volume form, F has vanishing S-
curvature if and only if W is a Killing vector field with respect to h (see [5]).

A natural problem is to determine all volume forms such that S-curvature is zero.

In this short note, we study this problem and obtain the following main result.



A NOTE ON S-CURVATURE OF RANDERS MEASURE SPACES 531

Theorem 1. Only (constant multiplications of) the Busemann-Hausdorff volume
form can satisfy S = 0 on Randers spaces.

Remark 1. In [3], Ohta has discussed this problem and obtained that, a Randers
space (M,α+β) admits a measure m with S = 0 if and only if β is a Killing form of
constant length. However, the ”only if” part of Theorem 1.1 in [3] is not necessarily
true.

2. THE PROOF OF THE MAIN RESULT

We first recall some fundamental facts in Randers geometry. For more details,
refer to [2]. Let F be a Randers metric in terms of (h,W ) as (1.3). Let dµBH =
σBH(x)dx1 ∧·· ·∧dxn denote the Busemann-Hausdorff volume form. Then

σBH(x) = σh(x),

where dVh = σh(x)dx1 ∧·· ·∧dxn is the volume form of h.
From (p.35-36, [2]), we see

SBH =
∂Gi

∂yi − yi ∂

∂xi logσBH(x)

=
∂G i

∂yi +
n+1
2F

(2FR0 −R00 −F2R )− yi ∂

∂xi logσh(x)

=
n+1
2F

(2FR0 −R00 −F2R ),

where G i is the spray coefficients of h, and

Ri j :=
1
2
(Wi; j +Wj;i), R00 := Ri jyiy j,

Ri :=Ri jW j, R0 := Riy j, R := RiW i,

where W i := hi jWj, and ”;” denotes the covariant differentiation with respect to h.
To prove the main result, we give two important lemmas in the following.

Lemma 1. [1] Let F = α+β be a Randers metric on an n-dimensional manifold
M with the Busemann-Hausdorff volume form. For any c = c(x) on M, the following
are equivalent:

(1) SBH = (n+1)cF;
(2) SBH = (n+1)cF +η, where η is a 1-form.

Lemma 2. [5] Let F = α+ β be a Randers metric on a manifold M, which is
expressed in terms of a Riemannian metric h and a vector field W by (1.3). Then
F is of isotropic S-curvature with respect to the Busemann-Hausdorff volume form,
SBH = (n+1)cF, if and only if W satisfies

R00 =−2ch2.
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Theorem 2. Let (M,F,dµ) be a Randers measure space, where dµ = σ(x)dx1 ∧
·· · ∧ dxn is an arbitrary volume form, and F is expressed in terms of a Riemannian
metric h and a vector field W by (1.3). Then F is of weakly isotropic S-curvature with
respect to the volume form dµ if and only if W satisfies

R00 =−2ch2.

Proof. Suppose that R00 =−2ch2. Then by Lemma 2, we have

SBH = (n+1)cF. (2.1)

Let dµBH = σBH(x)dx1 ∧ ·· · ∧ dxn be the Busemann-Hausdorff volume form. Then
there is a positive C∞ function ϕ on M such that

σ(x) = ϕ(x)σBH(x).

Thus, from (1.1), we have

S =
∂Gi

∂yi − yi ∂

∂xi logσ(x)

=
∂Gi

∂yi − yi ∂

∂xi logσBH(x)− yi ∂

∂xi logϕ

= SBH − yi ∂

∂xi logϕ. (2.2)

Combing (2.1) with (2.2), it follows that S is weakly isotropic.
Conversely, if S is weakly isotropic, we then can write

S = (n+1)cF +η, (2.3)

where η is a 1-form. Then by (2.2), we obtain

SBH = (n+1)cF +η+ yi ∂

∂xi logϕ. (2.4)

It is obviously to see from (2.4) that SBH is weakly isotropic. By using Lemma 1, it
is equivalent to

SBH = (n+1)cF. (2.5)
Therefore, it holds from Lemma 2 that R00 =−2ch2. □

Corollary 1. Let (M,F,dµ) be a Randers measure space, where dµ = σ(x)dx1 ∧
·· · ∧ dxn is an arbitrary volume form, and F is expressed in terms of a Riemannian
metric h and a vector field W by (1.3). If F is of weakly isotropic S-curvature with
respect to volume form dµ, then dµ is the Busemann-Hausdorff volume form up to a
constant multiplication.

Proof. If F is of weakly isotropic S-curvature with respect to an arbitrary volume
form, then from Theorem 2, we have

R00 =−2ch2.
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Thus, by Lemma 2, we have (2.5). On the other hand, we also have (2.4) from (2.2)
and (2.3). Therefore, combing (2.4) with (2.5), we deduce

η+ yi ∂

∂xi logϕ = 0,

for any η and any y. By the arbitrariness of η and y, we have
∂ϕ

∂xi = 0, ∀i,

which yields ϕ is a constant. This ends the proof. □

Proof of Theorem 1. It follows from Corollary 1 directly. □
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