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Abstract. We review Lin’s inequality of numerical range widths and prove that if M = [X; J'Hl.jzl

n
is positive semi-definite then @ (X;; — ¥ X; ;) <M* <I,® ¥ X;;, where M" is the partial
j#i i=1

transpose of M. Some classical results are also discussed in terms of permutations.
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1. INTRODUCTION AND PRELIMINARIES

Let M, (M,,) denote the space of n x n complex matrices with entries in M,,(C).
We write M (M) and M, (M,,,) for the set of Hermitian and positive semi-definite
matrices in M, (M, ), respectively. Let Im(X) := X _X and Re(X) := XX be
the imaginary part and the real part of a matrix X, respectively. If W (X) denotes the
field of values of X then W (Re(X)) =R(W (X)) and W (Im(X)) =3 (W (X)) see [14].
A positive semi-definite matrix A is denoted by A > 0 and a norm ||. || over the space
of matrices is a symmetric norm if ||[UAV || = ||A|| for all A and all unitaries U and V.

For a matrix M = [X; ;] € M,(M,,) we denote M* the matrix [X;";] where each
block is replaced by its adjoint. We define Tr (M) := Y| X;;, Tro(M) := [Tr(X; ;)]
for Tr (M) (resp. Try(M)) is an m x m matrix (resp. an n X n complex matrix). The
matrix M is positive partial transpose (P.P.T.) if M > 0 and M* > 0. The matrix I, (or
I) is the identity matrix of dimension m and a O block-entry is an all zero submatrix.
We finally denote A;(M) and G;(M), i = 1,...,n the eigenvalues and the singular
values of M, respectively, arranged in decreasing order.

We need the following notations used latter in the article:

For X € M, the vertical width ®,(X) and the width ®(X) of X are the smallest
possible real numbers v and w such that W (X) is contained in a vertical strip of width
v and in a strip (rectangle) of width w, respectively. In particular, ®(X) < ®,(X) and
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we may write
min |b — d = 0,(X).
(a,b)eR? |W (X)C{xeC;a<R(x)<b}

Notice that if the width of W(A) is , then one can find a 8 € [0,w] such that
rl, < Re(e®A) < (r+ )i,

for some r € R and ® = , (¢™®A).

If S; = {M,1 <k <i,M€M,} of cardinality i, we let {S;} denote the set of
matrices {M; +...£M;} and an element in {S;} is denoted by Sl[»c]. We denote by
@,({S;}) the 21~!-tuple of , (5" for each 5%

Finally if M := [X; j]} ;| € M,(M,;,) with blocks X; ; we write M = [u[x27]], where
M[x;c]l] is the complex number belonging to block X; ; on its line k and column /. For
k,l: 1...mandi,j: 1...none has
]

wrlEll =l s bl = -

The matrix M defined in M,,(M,,) by M[xf]l] = y[x¢7] is known to be congruent to
M, that is, there exist a permutation %, such that T,gM Py = M, see [3, Theorem 7]
and [9, Theorem 2.4] with (M)* = (M™)T.

We sketch Py as follows: An index in [1,mn] is denoted by 1, upon completing
M by m x m zero blocks or extending each block by 0's we consider the completed
matrix My € M, (M,) with max(m,n) = r. Take the transposition 7 permuting for
every s, 0 <s<r—2andsr+2+s<i1<sr+r,1< (1—sr—)r+1+4s, TMyT =
M. Applying block swapping (Proposition 1.1) one can show that there is some

permutation P such that
r(M 0\, (M 0
d (0 o)P_<0 0)°

Assume that M is invertible then so is M, writing P by blocks P = <I; :) we see

that LT ML = M which implies that L is invertible and thus a permutation matrix. By
a continuity argument we can take Py = L, see [5] and the references therein for
further reading.

plex matrices written by blocks. For C = [C; j] € M{(M,1), where C; j = <A.’j 0 )

there is a permutation P such that PTCP = (g g) .
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Proof. A (u,v,r) block swap B, is a permutation matrix (here of dimension s(p+
1,000

)) of the form 8 0 g 8) Says>2fori=1...s— 1, take P = [['_] By Where
0001

u; =ip,vi =1iq and r; = p. O

2. MAIN RESULTS

If M= (;(4 ; ;;) € M¥ (M) (not necessarily > 0) with positive semi-definite
diagonal blocks then it is easy to see that |A,(M)| < A;(M) (to see this consider the
eigenvalues of )?* g)) In particular if M <1® S then || M|, < ||S||,, where

||.||; is the spectral norm. This is not true for n > 2 with n = 4 taking for example

03-10

(31 932 ?), where A4 ~ —4.1 and A ~ 3.22. In fact if M is an entry wise non-
0010

negative matrix we know by Perron-Frobenius theorem that |A,,(M)| < A;(M).

2.1. Lin’s Inequality
In [1] the following norm inequality is proved:

A X
X" B

M| < |[A+ B+ ok,

Theorem 2.1. [/] Let M = ( ) € M; (ML,y,). Then for all symmetric norms

where W is the width of a strip containing the numerical range of X.

The previous theorem has been generalized in [12] for 2 x 2 block matrices. In
[11] a generalization to any number of blocks was presented, here we refine Lin’s
idea mainly from Theorem’s 2.1 proof (the base case):

Xy
o : Xy
As M is positive, we may write M = . (X1 X ... Xn) for some X; €
X,
n
Y xix;
i=1 %
Identifying the n -tuple X to the set {X;,1 <i<n} we have (by a direct induction)

Mypnxm so that M;; = X;/X; and |[M||, = (||.|l¢ are Ky-Fan k-norms).

XX = 2’1 o (Lo (X[0) (x101)*), applying Ky-Fan k-norms triangular inequality
we get
1
1Ml = 5= Y (xhxl <3 Z (xoly* ‘k. 2.1)
o k o
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Theorem 2.2. [//] Let M = [X; ;] € M (M,,,) and let S; = {X,i+1 <k <n}
fori=1,....n—1. Then for all symmetric norms
n—1

0 _
ZXi,i + Z Vil

i=1 i=1

M| <

)

where ; is the average of ®,({S;}).

Proof. The proof follows from [ 1] or one can use (2.1), each term in the ¢ sum
is a positive semi-definite matrix that can be written as

n n—1
Y X Xi+ ) tRe(X (£Xiy1 - £X,)),
i=1 i=1

we can bound each term of the second sum by scalar identities and splitting the quant-
ities we get the result by a counting argument for Ky-Fan k-norms. Ky-Fan domin-
ance theorem completes the proof ([14] -Sec 10.7-). The same last step can be seen
in [1, Theorem 2.1’s proof]. O

Corollary 2.3. Let M = [X; j| € M (M,,). Then for all symmetric norms

n

Y Xii+ Y viln
i=1 i

i=2

1M]] <

)

where v; (i=2,...,n) is the average of ®,({S;}) and S; = {X;;,1 <k <i—1}.
Proof. Consider the matrix LM L in Theorem 2.2 with L the anti-diagonal per-

0 - Iy
mutation matrix for blocks <L = ( Lo >> O
Ly ~ 0

Corollary 2.4. Let M = [X; j| € M\ (M,,) such that for i < j, ri jl, < Re(X; ;) <
I’,'Jlm + Sw‘]m. Then HM” <

n
‘ Y Xii+ (Xicj0ij)n H for all symmetric norms.
i=1 :

Proof. The proof follows from Theorem 2.2 by writing each X; ; = Re(X; ;) +
iIm(X; ;) for i < j in the average expression and bounding the real parts we get the
stated inequality. O

The case Re(X; j) = 0.1, (skew-Hermitian blocks) is the main result of [13]. We
also point out that in Theorem 2.1 of [1 1] the author replaced (by a miss-justification
when n > 2 as per our private communication) vertical widths by smallest widths ®
and proposed the same replacement in Corollary 2.4 as Question 2.5.

2.2. Around Hiroshima majorization

In this section we prove some classical results concerning matrices in M (M),
related to some permutations and P.P.T. matrices. The approach is close (dual) to that
in [4].
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Corollary 2.5. [4] Let M € M (M,,) such that M* < Try(M") @ I,. Then there
exist a permutation Py with:
N = PLM Py < PL(Try(MY) @ 1,) Py = Iy, @ Ty (N) (2.2)
for N € ME (M), Try (N) = Try(M®) is an n x n matrix. Furthermore if M > 0 then
N*>0.

Remark 2.6. Set M € M,(M,,), U unitary and U*MU € M, (M,,). Define the
block m x m permutation matrix Py € M,,(M,,,) having zero or identity m x m blocks;
if U = Py is a transposition block matrix then it is easy to see that (PyMPy)* =
PyM*Py; and thus upon composition for any block m X m permutation matrix Py,
Py (PLMPy)*PL = M".

Let M € M#(M,,) such that M* > 0 and U unitary, for U*MU € M (M,,) the
matrix (U*MU )" may not be positive semi-definite in general; consider M = UNU* €

010000
100000
M (M) in Example 2.12 with U = | 332999 ), however this is true if n =m
000010
000001 £ cos() o)
. X e'>cos(0)] sin(0)/
and U = Py, this is also true for M € Mg(Mm) and U* = <_eiC Sin(0)! cos(G)I)

([r2D.
From Quantum Physics theory we know that if M is PP.T. then M < I, ® Tr| (M)

and M < Try(M) ® I, see for example [7,8] and more recently [2,4]. Here we present
a different proof as follows:
Lemma 2.7. If M = [X; ;] € M} (M,,) then
n n
@(Xi,i - ZXj,j) <M <IL® ZXU‘
i=1 J# i=1
Proof. We prove the right side inequality as the lower bound has a similar proof by
- A X A X . _ 1 .
noticing that (X* B) >0« (—X* B > >0. Wewrite E =1, ®i§1Xl’l —-M
Xj 0 —X; j) .
—Xij Xek())
here the matrix Ej ; with k < j refers to the mn x mn block matrix having all blocks
zero except —X; ; and —X,i j taken on the same position as X ; and X,:i j in E, respect-

as the sum of positive semi-definite matrices of the form Ej ; = <

ively, X; (k) and Xp x(j), where X; ;(k) is the block X; ; on the kth diagonal entry of E

(as of Ey ;). Since M > 0, up to the congruence <O

7 0 > each Ej ; is a principal
block submatrix of M and E =} ; Ex ; > 0.

g

Remark 2.8. Let M = [X; ;] € M\ (M,,) one can check following the previous
proof that M < @7, nX; ;.



306 A. MHANNA

The last lemma and corollary imply the following:
Corollary 2.9. [4] If M = [X; j] € M} (M,,) then M* < Trp(M") ® .
In [6]-Theorem 1- the following (Hiroshima majorization) is proved:

Theorem 2.10. [6] Let M = [X; ;| € M (M,,) such that M < Try(M) ®1,,. Then
forallk € [1,mn] :

k

3 (M) < ¥ AT (M)).

i=1 i=1

Corollary 2.11. Let M = [X; ;] € M¥ (M,,) such that

=~

0<M<L®) X (2.3)
i=1

1

Then for all k € [1,m] :

iﬁi(M) < iﬁi (iXi,z)

i=1 i=1 i=1

equivalently ||M|| < for all symmetric norms.

n
‘21 Xi,i

=

n
Upon completing Y’ X;; by zeros we can take k; 1 < k < mn to get the last inequal-
i=1
ity from Ky-Fan dominance theorem. In [10] another direct proof of Corollary 2.11
is given with the fact that Corollary 2.11 and Theorem 2.10 are equivalent (see Co-

rollary 2.5).

Example 2.12. It is well known that a matrix in M7 (M) (n > 2) satisfying (2.3)

m

400200

rony - (333844

need not be P.P.T. as for example N € M (Mp) = 200100
010010

000000

The next corollary can be proved from the double inequality of Lemma 2.7.
Corollary 2.13. If M € M} (M,,) then |M*||, < ||Tri(M)||,.

The positive condition in Corollary 2.11 seems necessary as this example shows:

1 0 0 2
045 0 O

Example 2.14. We have M = 0 0 09 ol€ My, (My) and 61 (M) +062(M) =
2 0 0 1

454+3>74
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For a matrix D = [D; ;] € M| (M) with all blocks diagonal, it is easily seen that D
is PP.T. as D* = D (D is D with conjugate entries). Upon considering the rearrange-
ment of D taking P DPp, we see that each diagonal entry of Try (D) is the sum of n
eigenvalues of D which implies: ||D|| < ||Tr;(D)|| for all symmetric norms.

Corollary 2.15. [/5] Let M = [X; j] € M} (ML,,). Then M < mTry(M) ® I,

Proof. Take Mg, = ByMPy = [X] jl € M (M), applying Remark 2.8 Mg, <
", mX],, reversing the rearrangement M < mD where D = [D; ;] € M} (M,,) and

i,i°
D; j is the (main) diagonal of X; ;. Since D is PP.T. we get the result from Corol-
lary 2.9. g
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