

SOME NORM INEQUALITIES FOR SOME POSITIVE BLOCK MATRICES

ANTOINE MHANNA

Received 10 April, 2021

Abstract. We review Lin's inequality of numerical range widths and prove that if $M = [X_{i,j}]_{i,j=1}^n$ is positive semi-definite then $\bigoplus_{i=1}^n (X_{i,i} - \sum_{j \neq i} X_{j,j}) \le M^{\tau} \le I_n \otimes \sum_{i=1}^n X_{i,i}$, where M^{τ} is the partial transpose of M. Some classical results are also discussed in terms of permutations.

2010 *Mathematics Subject Classification:* positive block matrix; partial transpose; symmetric norm; permutations.

Keywords: 15A60; 15A42; 15B99; 05A18.

1. INTRODUCTION AND PRELIMINARIES

Let $\mathbb{M}_n(\mathbb{M}_m)$ denote the space of $n \times n$ complex matrices with entries in $\mathbb{M}_m(\mathbb{C})$. We write $\mathbb{M}_n^H(\mathbb{M}_m)$ and $\mathbb{M}_n^+(\mathbb{M}_m)$ for the set of Hermitian and positive semi-definite matrices in $\mathbb{M}_n(\mathbb{M}_m)$, respectively. Let $Im(X) := \frac{X - X^*}{2i}$ and $Re(X) := \frac{X + X^*}{2}$ be the imaginary part and the real part of a matrix X, respectively. If W(X) denotes the field of values of X then $W(Re(X)) = \Re(W(X))$ and $W(Im(X)) = \Im(W(X))$ see [14]. A positive semi-definite matrix A is denoted by $A \ge 0$ and a norm $\|.\|$ over the space of matrices is a symmetric norm if $\|UAV\| = \|A\|$ for all A and all unitaries U and V.

For a matrix $M = [X_{i,j}] \in \mathbb{M}_n(\mathbb{M}_m)$ we denote M^{τ} the matrix $[X_{i,j}^*]$ where each block is replaced by its adjoint. We define $\operatorname{Tr}_1(M) := \sum_{i=1}^n X_{i,i}$, $\operatorname{Tr}_2(M) := [\operatorname{Tr}(X_{i,j})]$ for $\operatorname{Tr}_1(M)$ (resp. $\operatorname{Tr}_2(M)$) is an $m \times m$ matrix (resp. an $n \times n$ complex matrix). The matrix M is positive partial transpose (P.P.T.) if $M \ge 0$ and $M^{\tau} \ge 0$. The matrix I_m (or I) is the identity matrix of dimension m and a 0 block-entry is an all zero submatrix. We finally denote $\lambda_i(M)$ and $\sigma_i(M)$, $i = 1, \ldots, n$ the eigenvalues and the singular values of M, respectively, arranged in decreasing order.

We need the following notations used latter in the article:

For $X \in \mathbb{M}_n$, the vertical width $\omega_v(X)$ and the width $\omega(X)$ of X are the smallest possible real numbers v and w such that W(X) is contained in a vertical strip of width v and in a strip (rectangle) of width w, respectively. In particular, $\omega(X) \le \omega_v(X)$ and

© 2023 Miskolc University Press

we may write

$$\min_{(a,b)\in\mathbb{R}^2} \frac{\min|b-a|}{|W(X)\subset\{x\in\mathbb{C};a\leq\Re(x)\leq b\}} = \omega_{\nu}(X).$$

Notice that if the width of W(A) is ω , then one can find a $\theta \in [0,\pi]$ such that

$$rI_m \leq Re(e^{i\Theta}A) \leq (r+\omega)I_m$$

for some $r \in \mathbb{R}$ and $\omega = \omega_v(e^{i\theta}A)$.

If $S_i = \{M_k, 1 \le k \le i, M_k \in \mathbb{M}_m\}$ of cardinality *i*, we let $\{S_i\}$ denote the set of matrices $\{M_1 \pm \ldots \pm M_i\}$ and an element in $\{S_i\}$ is denoted by $S_i^{[\sigma]}$. We denote by $\omega_v(\{S_i\})$ the 2^{i-1} -tuple of $\omega_v(S_i^{[\sigma]})$ for each $S_i^{[\sigma]}$.

Finally if $M := [X_{i,j}]_{i,j=1}^n \in \mathbb{M}_n(\mathbb{M}_m)$ with blocks $X_{i,j}$ we write $M = [M_m[x_{k,l}^{i,j}]]$, where $M_m[x_{k,l}^{i,j}]$ is the complex number belonging to block $X_{i,j}$ on its line k and column l. For $k, l: 1 \dots m$ and $i, j: 1 \dots n$ one has

$$_{M^{T}}[x_{k,l}^{i,j}] = {}_{M}[x_{l,k}^{j,i}] \quad ; \quad {}_{M^{\tau}}[x_{k,l}^{i,j}] = {}_{M}[\overline{x_{l,k}^{i,j}}].$$

The matrix \tilde{M} defined in $\mathbb{M}_m(\mathbb{M}_n)$ by $_{\tilde{M}}[x_{i,j}^{k,l}] = {}_{M}[x_{k,l}^{i,j}]$ is known to be congruent to M, that is, there exist a permutation \mathcal{P}_M such that $\mathcal{P}_M^T M \mathcal{P}_M = \tilde{M}$, see [3, Theorem 7] and [9, Theorem 2.4] with $(\widetilde{M})^{\tau} = (M^{\tau})^T$.

We sketch \mathcal{P}_M as follows: An index in [1,mn] is denoted by ι , upon completing M by $m \times m$ zero blocks or extending each block by 0's we consider the completed matrix $M_0 \in \mathbb{M}_r(\mathbb{M}_r)$ with $\max(m,n) = r$. Take the transposition T permuting for every $s, 0 \le s \le r-2$ and $sr+2+s \le \iota \le sr+r, \iota \leftrightarrow (\iota - sr - 1)r + 1 + s, TM_0T = \widetilde{M}_0$. Applying block swapping (Proposition 1.1) one can show that there is some permutation P such that

$$P^T \begin{pmatrix} M & 0 \\ 0 & 0 \end{pmatrix} P = \begin{pmatrix} \tilde{M} & 0 \\ 0 & 0 \end{pmatrix}.$$

Assume that *M* is invertible then so is \tilde{M} , writing *P* by blocks $P = \begin{pmatrix} L & \star \\ \star & \star \end{pmatrix}$ we see that $L^T M L = \tilde{M}$ which implies that *L* is invertible and thus a permutation matrix. By a continuity argument we can take $\mathcal{P}_M = L$, see [5] and the references therein for further reading.

Proposition 1.1. Let $A = [A_{i,j}] \in \mathbb{M}_s(\mathbb{M}_p)$ and let $B = [B_{i,j}] \in \mathbb{M}_s(\mathbb{M}_q)$ two complex matrices written by blocks. For $C = [C_{i,j}] \in \mathbb{M}_s(\mathbb{M}_{p+q})$, where $C_{i,j} = \begin{pmatrix} A_{i,j} & 0 \\ 0 & B_{i,j} \end{pmatrix}$ there is a permutation P such that $P^T C P = \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}$.

Proof. A (u, v, r) block swap B_{uvr} is a permutation matrix (here of dimension s(p+q)) of the form $\begin{pmatrix} I_u & 0 & 0 & 0 \\ 0 & 0 & I_v & 0 \\ 0 & 0 & 0 & I \end{pmatrix}$. Say $s \ge 2$ for $i = 1 \dots s - 1$, take $P = \prod_{i=1}^{s-1} B_{u_i v_i r_i}$, where $u_i = ip, v_i = iq$ and $r_i = p$.

2. MAIN RESULTS

If $M = \begin{pmatrix} A & X \\ X^* & B \end{pmatrix} \in \mathbb{M}_2^H(\mathbb{M}_m)$ (not necessarily ≥ 0) with positive semi-definite diagonal blocks then it is easy to see that $|\lambda_n(M)| \leq \lambda_1(M)$ (to see this consider the eigenvalues of $\begin{pmatrix} 0 & X \\ X^* & 0 \end{pmatrix}$). In particular if $M \leq I \otimes S$ then $||M||_s \leq ||S||_s$, where $||.||_s$ is the spectral norm. This is not true for n > 2 with n = 4 taking for example $\begin{pmatrix} 0 & 3 & -1 & 0 \\ 3 & 0 & 2 & 0 \\ -1 & 2 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$, where $\lambda_4 \approx -4.1$ and $\lambda_1 \approx 3.22$. In fact if M is an entry wise non-negative matrix we know by Perron-Frobenius theorem that $|\lambda_n(M)| \leq \lambda_1(M)$.

2.1. Lin's Inequality

In [1] the following norm inequality is proved:

Theorem 2.1. [1] Let $M = \begin{pmatrix} A & X \\ X^* & B \end{pmatrix} \in \mathbb{M}_2^+(\mathbb{M}_m)$. Then for all symmetric norms $\|M\| \le \|A + B + \omega I_m\|$,

where ω is the width of a strip containing the numerical range of X.

The previous theorem has been generalized in [12] for 2×2 block matrices. In [11] a generalization to any number of blocks was presented, here we refine Lin's idea mainly from Theorem's 2.1 proof (the base case):

As *M* is positive, we may write
$$M = \begin{pmatrix} X_1 \\ X_2^* \\ \vdots \\ X_n^* \end{pmatrix} \begin{pmatrix} X_1 & X_2 & \dots & X_n \end{pmatrix}$$
 for some $X_i \in$

 $\mathbb{M}_{mn \times m} \text{ so that } M_{i,i} = X_i^* X_i \text{ and } \|M\|_k = \left\| \sum_{i=1}^n X_i X_i^* \right\|_k (\|.\|_k \text{ are Ky-Fan } k\text{-norms}).$ Identifying the *n*-tuple X to the set $\{X_i, 1 \le i \le n\}$ we have (by a direct induction) $\sum_{i=1}^n X_i X_i^* = \frac{1}{2^{n-1}} (\sum_{\sigma} (X^{[\sigma]}) (X^{[\sigma]})^*), \text{ applying Ky-Fan } k\text{-norms triangular inequality}$ we get

$$\|M\|_{k} = \frac{1}{2^{n-1}} \left\| \sum_{\sigma} (X^{[\sigma]}) (X^{[\sigma]})^{*} \right\|_{k} \le \frac{1}{2^{n-1}} \sum_{\sigma} \left\| (X^{[\sigma]})^{*} (X^{[\sigma]}) \right\|_{k}.$$
 (2.1)

Theorem 2.2. [11] Let $M = [X_{i,j}] \in \mathbb{M}_n^+(\mathbb{M}_m)$ and let $S_i = \{X_{i,k}, i+1 \le k \le n\}$ for i = 1, ..., n-1. Then for all symmetric norms

$$\|M\| \leq \left\|\sum_{i=1}^n X_{i,i} + \sum_{i=1}^{n-1} \upsilon_i I_m\right\|,$$

where v_i is the average of $\omega_v(\{S_i\})$.

Proof. The proof follows from [11] or one can use (2.1), each term in the σ sum is a positive semi-definite matrix that can be written as

$$\sum_{i=1}^{n} X_{i}^{*} X_{i} + \sum_{i=1}^{n-1} \pm Re(X_{i}^{*}(\pm X_{i+1} \cdots \pm X_{n})),$$

we can bound each term of the second sum by scalar identities and splitting the quantities we get the result by a counting argument for Ky-Fan *k*-norms. Ky-Fan dominance theorem completes the proof ([14] -Sec 10.7-). The same last step can be seen in [1, Theorem 2.1's proof].

Corollary 2.3. Let $M = [X_{i,j}] \in \mathbb{M}_n^+(\mathbb{M}_m)$. Then for all symmetric norms

$$\|M\| \leq \left\|\sum_{i=1}^n X_{i,i} + \sum_{i=2}^n \upsilon_i I_m\right\|,$$

where v_i (*i* = 2,...,*n*) *is the average of* $\omega_v(\{S_i\})$ *and* $S_i = \{X_{k,i}, 1 \le k \le i-1\}$ *.*

Proof. Consider the matrix \mathcal{LML} in Theorem 2.2 with \mathcal{L} the anti-diagonal permutation matrix for blocks $\left(\mathcal{L} = \begin{pmatrix} 0 & \cdots & I_m \\ \vdots & \ddots & \vdots \\ I_m & \cdots & 0 \end{pmatrix}\right)$.

Corollary 2.4. Let $M = [X_{i,j}] \in \mathbb{M}_n^+(\mathbb{M}_m)$ such that for i < j, $r_{i,j}I_m \le Re(X_{i,j}) \le r_{i,j}I_m + \delta_{i,j}I_m$. Then $||M|| \le \left\|\sum_{i=1}^n X_{i,i} + (\sum_{i < j} \delta_{i,j})I_m\right\|$ for all symmetric norms.

Proof. The proof follows from Theorem 2.2 by writing each $X_{i,j} = Re(X_{i,j}) + iIm(X_{i,j})$ for i < j in the average expression and bounding the real parts we get the stated inequality.

The case $Re(X_{i,j}) = 0.I_m$ (skew-Hermitian blocks) is the main result of [13]. We also point out that in Theorem 2.1 of [11] the author replaced (by a miss-justification when n > 2 as per our private communication) vertical widths by smallest widths ω and proposed the same replacement in Corollary 2.4 as Question 2.5.

2.2. Around Hiroshima majorization

In this section we prove some classical results concerning matrices in $\mathbb{M}_n^H(\mathbb{M}_m)$, related to some permutations and P.P.T. matrices. The approach is close (dual) to that in [4].

Corollary 2.5. [4] Let $M \in \mathbb{M}_n^H(\mathbb{M}_m)$ such that $M^{\tau} \leq \operatorname{Tr}_2(M^{\tau}) \otimes I_m$. Then there exist a permutation \mathcal{P}_M with:

$$N = \mathcal{P}_{M}^{T} M^{\tau} \mathcal{P}_{M} \le \mathcal{P}_{M}^{T} (\operatorname{Tr}_{2}(M^{\tau}) \otimes I_{m}) \mathcal{P}_{M} = I_{m} \otimes \operatorname{Tr}_{1}(N)$$
(2.2)

for $N \in \mathbb{M}_m^H(\mathbb{M}_n)$, $\operatorname{Tr}_1(N) = \operatorname{Tr}_2(M^{\tau})$ is an $n \times n$ matrix. Furthermore if $M \ge 0$ then $N^{\tau} \ge 0$.

Remark 2.6. Set $M \in \mathbb{M}_n(\mathbb{M}_m)$, U unitary and $U^*MU \in \mathbb{M}_n(\mathbb{M}_m)$. Define the block $m \times m$ permutation matrix $P_M \in \mathbb{M}_n(\mathbb{M}_m)$ having zero or identity $m \times m$ blocks; if $U = P_M$ is a transposition block matrix then it is easy to see that $(P_M M P_M)^{\tau} = P_M M^{\tau} P_M$ and thus upon composition for any block $m \times m$ permutation matrix P_M , $P_M(P_M^T M P_M)^{\tau} P_M^T = M^{\tau}$.

Let $M \in \mathbb{M}_n^H(\mathbb{M}_m)$ such that $M^{\tau} \ge 0$ and U unitary, for $U^*MU \in \mathbb{M}_n^H(\mathbb{M}_m)$ the matrix $(U^*MU)^{\tau}$ may not be positive semi-definite in general; consider $M = UNU^* \in (0, 1, 0, 0, 0, 0)$

$$\mathbb{M}_{3}^{+}(\mathbb{M}_{2})$$
 in Example 2.12 with $U = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{pmatrix}$, however this is true if $n = m$

and $U = \mathcal{P}_M$, this is also true for $M \in \mathbb{M}_2^H(\mathbb{M}_m)$ and $U^* = \begin{pmatrix} e^{i\zeta}\cos(\theta)I & \sin(\theta)I \\ -e^{i\zeta}\sin(\theta)I & \cos(\theta)I \end{pmatrix}$ ([12]).

From Quantum Physics theory we know that if *M* is P.P.T. then $M \le I_n \otimes \text{Tr}_1(M)$ and $M \le \text{Tr}_2(M) \otimes I_m$ see for example [7,8] and more recently [2,4]. Here we present a different proof as follows:

Lemma 2.7. If $M = [X_{i,j}] \in \mathbb{M}_n^+(\mathbb{M}_m)$ then

$$\bigoplus_{i=1}^{n} (X_{i,i} - \sum_{j \neq i} X_{j,j}) \le M^{\tau} \le I_n \otimes \sum_{i=1}^{n} X_{i,i}.$$

Proof. We prove the right side inequality as the lower bound has a similar proof by noticing that $\begin{pmatrix} A & X \\ X^* & B \end{pmatrix} \ge 0 \iff \begin{pmatrix} A & -X \\ -X^* & B \end{pmatrix} \ge 0$. We write $E = I_n \otimes \sum_{i=1}^n X_{i,i} - M^{\tau}$ as the sum of positive semi-definite matrices of the form $E_{k,j} = \begin{pmatrix} X_{j,j}(k) & -X_{k,j}^* \\ -X_{k,j} & X_{k,k}(j) \end{pmatrix}$; here the matrix $E_{k,j}$ with k < j refers to the $mn \times mn$ block matrix having all blocks zero except $-X_{k,j}$ and $-X_{k,j}^*$ taken on the same position as $X_{k,j}$ and $X_{k,j}^*$ in E, respectively, $X_{j,j}(k)$ and $X_{k,k}(j)$, where $X_{j,j}(k)$ is the block $X_{j,j}$ on the k^{th} diagonal entry of E (as of $E_{k,j}$). Since $M \ge 0$, up to the congruence $\begin{pmatrix} 0 & -I \\ I & 0 \end{pmatrix}$ each $E_{k,j}$ is a principal block submatrix of M and $E = \sum_{k < j} E_{k,j} \ge 0$.

Remark 2.8. Let $M = [X_{i,j}] \in \mathbb{M}_n^+(\mathbb{M}_m)$ one can check following the previous proof that $M \leq \bigoplus_{i=1}^n nX_{i,i}$.

The last lemma and corollary imply the following:

Corollary 2.9. [4] If $M = [X_{i,j}] \in \mathbb{M}_n^+(\mathbb{M}_m)$ then $M^{\mathfrak{r}} \leq \operatorname{Tr}_2(M^{\mathfrak{r}}) \otimes I_m$.

In [6]-Theorem 1- the following (Hiroshima majorization) is proved:

Theorem 2.10. [6] Let $M = [X_{i,j}] \in \mathbb{M}_n^+(\mathbb{M}_m)$ such that $M \leq \operatorname{Tr}_2(M) \otimes I_m$. Then for all $k \in [1, mn]$:

$$\sum_{i=1}^k \lambda_i(M) \leq \sum_{i=1}^k \lambda_i(\operatorname{Tr}_2(M)).$$

Corollary 2.11. Let $M = [X_{i,j}] \in \mathbb{M}_n^H(\mathbb{M}_m)$ such that

$$0 \le M \le I_n \otimes \sum_{i=1}^n X_{i,i}.$$
(2.3)

Then for all $k \in [1, m]$:

$$\sum_{i=1}^{k} \sigma_i(M) \leq \sum_{i=1}^{k} \sigma_i\left(\sum_{i=1}^{n} X_{i,i}\right)$$

equivalently $||M|| \leq \left\|\sum_{i=1}^{n} X_{i,i}\right\|$ for all symmetric norms.

Upon completing $\sum_{i=1}^{n} X_{i,i}$ by zeros we can take k; $1 \le k \le mn$ to get the last inequality from Ky-Fan dominance theorem. In [10] another direct proof of Corollary 2.11 is given with the fact that Corollary 2.11 and Theorem 2.10 are equivalent (see Corollary 2.5).

Example 2.12. It is well known that a matrix in $\mathbb{M}_{n}^{+}(\mathbb{M}_{m})$ (n > 2) satisfying (2.3) need not be P.P.T. as for example $N \in \mathbb{M}_{3}^{+}(\mathbb{M}_{2}) = \begin{pmatrix} 4 & 0 & 0 & 2 & 0 & 0 \\ 0 & 4 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$.

The next corollary can be proved from the double inequality of Lemma 2.7.

Corollary 2.13. If $M \in \mathbb{M}_n^+(\mathbb{M}_m)$ then $\|M^{\tau}\|_s \leq \|\operatorname{Tr}_1(M)\|_s$.

The positive condition in Corollary 2.11 seems necessary as this example shows:

Example 2.14. We have
$$M = \begin{pmatrix} 1 & 0 & 0 & 2 \\ 0 & 4.5 & 0 & 0 \\ 0 & 0 & 0.9 & 0 \\ 2 & 0 & 0 & 1 \end{pmatrix} \in \mathbb{M}_2(\mathbb{M}_2) \text{ and } \sigma_1(M) + \sigma_2(M) =$$

.5+3 > 7.4

306

For a matrix $D = [D_{i,j}] \in \mathbb{M}_n^+(\mathbb{M}_m)$ with all blocks diagonal, it is easily seen that D is P.P.T. as $D^{\tau} = \overline{D}$ (\overline{D} is D with conjugate entries). Upon considering the rearrangement of D taking $\mathcal{P}_D^T D \mathcal{P}_D$, we see that each diagonal entry of $\operatorname{Tr}_1(D)$ is the sum of n eigenvalues of D which implies: $||D|| \leq ||\operatorname{Tr}_1(D)||$ for all symmetric norms.

Corollary 2.15. [15] Let
$$M = [X_{i,j}] \in \mathbb{M}_n^+(\mathbb{M}_m)$$
. Then $M \leq m \operatorname{Tr}_2(M) \otimes I_m$.

Proof. Take $M_{\mathcal{P}_M} = \mathcal{P}_M^T M \mathcal{P}_M = [X'_{i,j}] \in \mathbb{M}_m^+(\mathbb{M}_n)$, applying Remark 2.8 $M_{\mathcal{P}_M} \leq \bigoplus_{i=1}^m m X'_{i,i}$, reversing the rearrangement $M \leq mD$ where $D = [D_{i,j}] \in \mathbb{M}_n^+(\mathbb{M}_m)$ and $D_{i,j}$ is the (main) diagonal of $X_{i,j}$. Since D is P.P.T. we get the result from Corollary 2.9.

ACKNOWLEDGMENTS

I thank Prof. Minghua Lin for correspondences and the reviewer for his kind advices.

REFERENCES

- J.-C. Bourin and A. Mhanna, "Positive block matrices and numerical ranges," C. R., Math., Acad. Sci. Paris, vol. 355, no. 10, pp. 1077–1081, 2017, doi: 10.1016/j.crma.2017.10.006.
- [2] D. Choi, "Inequalities related to partial transpose and partial trace," *Linear Algebra Appl.*, vol. 516, pp. 1–7, 2017, doi: 10.1016/j.laa.2016.11.027.
- [3] D. Choi, "Inequalities related to trace and determinant of positive semidefinite block matrices," *Linear Algebra Appl.*, vol. 532, pp. 1–7, 2017, doi: 10.1016/j.laa.2017.06.026.
- [4] D. Choi, "Inequalities about partial transpose and partial traces," *Linear Multilinear Algebra*, vol. 66, no. 8, pp. 1619–1625, 2018, doi: 10.1080/03081087.2017.1364341.
- [5] D. D'Angeli and A. Donno, "Shuffling matrices, Kronecker product and discrete Fourier transform," *Discrete Appl. Math.*, vol. 233, pp. 1–18, 2017, doi: 10.1016/j.dam.2017.08.018.
- [6] T. Hiroshima, "Majorization criterion for distillability of a bipartite quantum state," *Phys. Rev. Lett.*, vol. 91, p. 057902, Aug 2003, doi: 10.1103/PhysRevLett.91.057902.
- [7] M. Horodecki and P. Horodecki, "Reduction criterion of separability and limits for a class of distillation protocols," *Phys. Rev. A*, vol. 59, pp. 4206–4216, Jun 1999, doi: 10.1103/Phys-RevA.59.4206.
- [8] M. Horodecki, P. Horodecki, and R. Horodecki, "Separability of mixed states: necessary and sufficient conditions," *Physics Letters A*, vol. 223, no. 1, pp. 1–8, 1996, doi: https://doi.org/10.1016/S0375-9601(96)00706-2.
- [9] Y. Li, L. Feng, Z. Huang, and W. Liu, "Inequalities regarding partial trace and partial determinant," *Math. Inequal. Appl.*, vol. 23, no. 2, pp. 477–485, 2020, doi: 10.7153/mia-2020-23-39.
- [10] M. Lin, "Some applications of a majorization inequality due to Bapat and Sunder," *Linear Algebra Appl.*, vol. 469, pp. 510–517, 2015, doi: 10.1016/j.laa.2014.12.001.
- [11] M. Lin, "A norm inequality for positive block matrices," C. R., Math., Acad. Sci. Paris, vol. 356, no. 7, pp. 818–822, 2018, doi: 10.1016/j.crma.2018.05.006.
- [12] A. Mhanna, "Unitary congruences and positive block-matrices," *Math. Inequal. Appl.*, vol. 22, no. 3, pp. 777–780, 2019, doi: 10.7153/mia-2019-22-52.
- [13] F. Zhang and J. Xu, "An eigenvalue inequality for positive semidefinite k × k block matrices," J. Math. Inequal., vol. 14, no. 4, pp. 1383–1388, 2020, doi: 10.7153/jmi-2020-14-90.
- [14] F. Zhang, Matrix theory. Basic results and techniques, 2nd ed., ser. Universitext. New York, NY: Springer, 2011. doi: 10.1007/978-1-4614-1099-7.

[15] P. Zhang, "On some inequalities related to positive block matrices," *Linear Algebra Appl.*, vol. 576, pp. 258–267, 2019, doi: 10.1016/j.laa.2018.10.017.

Author's address

Antoine Mhanna Kfardebian, Lebanon *E-mail address:* tmhanat@yahoo.com