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Abstract. We review Lin’s inequality of numerical range widths and prove that if M = [Xi, j]
n
i, j=1

is positive semi-definite then
⊕n

i=1(Xi,i − ∑
j ̸=i

X j, j) ≤ Mτ ≤ In ⊗
n
∑

i=1
Xi,i, where Mτ is the partial

transpose of M. Some classical results are also discussed in terms of permutations.
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1. INTRODUCTION AND PRELIMINARIES

Let Mn(Mm) denote the space of n×n complex matrices with entries in Mm(C).
We write MH

n (Mm) and M+
n (Mm) for the set of Hermitian and positive semi-definite

matrices in Mn(Mm), respectively. Let Im(X) :=
X −X∗

2i
and Re(X) :=

X +X∗

2
be

the imaginary part and the real part of a matrix X , respectively. If W (X) denotes the
field of values of X then W (Re(X)) = ℜ(W (X)) and W (Im(X)) = ℑ(W (X)) see [14].
A positive semi-definite matrix A is denoted by A ≥ 0 and a norm ∥.∥ over the space
of matrices is a symmetric norm if ∥UAV∥= ∥A∥ for all A and all unitaries U and V.

For a matrix M = [Xi, j] ∈ Mn(Mm) we denote Mτ the matrix [X∗
i, j] where each

block is replaced by its adjoint. We define Tr1(M) := ∑
n
i=1 Xi,i, Tr2(M) := [Tr(Xi, j)]

for Tr1(M) (resp. Tr2(M)) is an m×m matrix (resp. an n×n complex matrix). The
matrix M is positive partial transpose (P.P.T.) if M ≥ 0 and Mτ ≥ 0. The matrix Im (or
I) is the identity matrix of dimension m and a 0 block-entry is an all zero submatrix.
We finally denote λi(M) and σi(M), i = 1, . . . ,n the eigenvalues and the singular
values of M, respectively, arranged in decreasing order.

We need the following notations used latter in the article:
For X ∈ Mn, the vertical width ωv(X) and the width ω(X) of X are the smallest

possible real numbers v and w such that W (X) is contained in a vertical strip of width
v and in a strip (rectangle) of width w, respectively. In particular, ω(X)≤ ωv(X) and
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we may write

min |b−a|
(a,b)∈R2 |W (X)⊂{x∈C;a≤ℜ(x)≤b}

= ωv(X).

Notice that if the width of W (A) is ω, then one can find a θ ∈ [0,π] such that

rIm ≤ Re(eiθA)≤ (r+ω)Im

for some r ∈ R and ω = ωv(eiθA).
If Si = {Mk,1 ≤ k ≤ i,Mk ∈Mm} of cardinality i, we let {Si} denote the set of

matrices {M1 ± . . .±Mi} and an element in {Si} is denoted by S[σ]i . We denote by
ωv({Si}) the 2i−1-tuple of ωv(S

[σ]
i ) for each S[σ]i .

Finally if M := [Xi, j]
n
i, j=1 ∈Mn(Mm) with blocks Xi, j we write M = [M[x

i, j
k,l]], where

M[x
i, j
k,l] is the complex number belonging to block Xi, j on its line k and column l. For

k, l: 1 . . .m and i, j: 1 . . .n one has

MT [x
i, j
k,l] = M[x

j,i
l,k] ; Mτ[x

i, j
k,l] = M[x

i, j
l,k].

The matrix M̃ defined in Mm(Mn) by
M̃
[xk,l

i, j ] = M[x
i, j
k,l] is known to be congruent to

M, that is, there exist a permutation PM such that P T
MMPM = M̃, see [3, Theorem 7]

and [9, Theorem 2.4] with (̃M̃)τ = (Mτ)T .
We sketch PM as follows: An index in [1,mn] is denoted by ι, upon completing

M by m×m zero blocks or extending each block by 0′s we consider the completed
matrix M0 ∈ Mr(Mr) with max(m,n) = r. Take the transposition T permuting for
every s, 0 ≤ s ≤ r−2 and sr+2+ s ≤ ι ≤ sr+ r, ι ↔ (ι− sr−1)r+1+ s, T M0T =

M̃0. Applying block swapping (Proposition 1.1) one can show that there is some
permutation P such that

PT
(

M 0
0 0

)
P =

(
M̃ 0
0 0

)
.

Assume that M is invertible then so is M̃, writing P by blocks P =

(
L ⋆
⋆ ⋆

)
we see

that LT ML = M̃ which implies that L is invertible and thus a permutation matrix. By
a continuity argument we can take PM = L, see [5] and the references therein for
further reading.

Proposition 1.1. Let A = [Ai, j] ∈Ms(Mp) and let B = [Bi, j] ∈Ms(Mq) two com-

plex matrices written by blocks. For C = [Ci, j]∈Ms(Mp+q), where Ci, j =

(
Ai, j 0
0 Bi, j

)
there is a permutation P such that PTCP =

(
A 0
0 B

)
.
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Proof. A (u,v,r) block swap Buvr is a permutation matrix (here of dimension s(p+

q)) of the form

(
Iu 0 0 0
0 0 Iv 0
0 Ir 0 0
0 0 0 I

)
. Say s ≥ 2 for i = 1 . . .s−1, take P = ∏

s−1
i=1 Buiviri , where

ui = ip,vi = iq and ri = p. □

2. MAIN RESULTS

If M =

(
A X

X∗ B

)
∈ MH

2 (Mm) (not necessarily ≥ 0) with positive semi-definite

diagonal blocks then it is easy to see that |λn(M)| ≤ λ1(M) (to see this consider the

eigenvalues of
(

0 X
X∗ 0

))
. In particular if M ≤ I ⊗ S then ∥M∥s ≤ ∥S∥s, where

∥.∥s is the spectral norm. This is not true for n > 2 with n = 4 taking for example( 0 3 −1 0
3 0 2 0
−1 2 0 1
0 0 1 0

)
, where λ4 ≈ −4.1 and λ1 ≈ 3.22. In fact if M is an entry wise non-

negative matrix we know by Perron-Frobenius theorem that |λn(M)| ≤ λ1(M).

2.1. Lin’s Inequality

In [1] the following norm inequality is proved:

Theorem 2.1. [1] Let M =

(
A X

X∗ B

)
∈M+

2 (Mm). Then for all symmetric norms

∥M∥ ≤ ∥A+B+ωIm∥ ,

where ω is the width of a strip containing the numerical range of X.

The previous theorem has been generalized in [12] for 2× 2 block matrices. In
[11] a generalization to any number of blocks was presented, here we refine Lin’s
idea mainly from Theorem’s 2.1 proof (the base case):

As M is positive, we may write M =


X∗

1
X∗

2
...

X∗
n

(X1 X2 . . . Xn
)

for some Xi ∈

Mmn×m so that Mi,i = X∗
i Xi and ∥M∥k =

∥∥∥∥∥ n

∑
i=1

XiX∗
i

∥∥∥∥∥
k

(∥.∥k are Ky-Fan k-norms).

Identifying the n-tuple X to the set {Xi,1 ≤ i ≤ n} we have (by a direct induction)

∑
n
i=1 XiX∗

i =
1

2n−1 (∑σ(X [σ])(X [σ])∗), applying Ky-Fan k-norms triangular inequality
we get

∥M∥k =
1

2n−1

∥∥∥∥∥∑
σ

(X [σ])(X [σ])∗

∥∥∥∥∥
k

≤ 1
2n−1 ∑

σ

∥∥∥(X [σ])∗(X [σ])
∥∥∥

k
. (2.1)



304 A. MHANNA

Theorem 2.2. [11] Let M = [Xi, j] ∈ M+
n (Mm) and let Si = {Xi,k, i+1 ≤ k ≤ n}

for i = 1, . . . ,n−1. Then for all symmetric norms

∥M∥ ≤

∥∥∥∥∥ n

∑
i=1

Xi,i +
n−1

∑
i=1

υiIm

∥∥∥∥∥ ,
where υi is the average of ωv({Si}).

Proof. The proof follows from [11] or one can use (2.1), each term in the σ sum
is a positive semi-definite matrix that can be written as

n

∑
i=1

X∗
i Xi +

n−1

∑
i=1

±Re(X∗
i (±Xi+1 · · ·±Xn)),

we can bound each term of the second sum by scalar identities and splitting the quant-
ities we get the result by a counting argument for Ky-Fan k-norms. Ky-Fan domin-
ance theorem completes the proof ([14] -Sec 10.7-). The same last step can be seen
in [1, Theorem 2.1’s proof]. □

Corollary 2.3. Let M = [Xi, j] ∈M+
n (Mm). Then for all symmetric norms

∥M∥ ≤

∥∥∥∥∥ n

∑
i=1

Xi,i +
n

∑
i=2

υiIm

∥∥∥∥∥ ,
where υi (i = 2, . . . ,n) is the average of ωv({Si}) and Si = {Xk,i,1 ≤ k ≤ i−1}.

Proof. Consider the matrix LML in Theorem 2.2 with L the anti-diagonal per-

mutation matrix for blocks
(

L =

( 0 ··· Im...
...

...
Im ··· 0

))
. □

Corollary 2.4. Let M = [Xi, j] ∈M+
n (Mm) such that for i < j, ri, jIm ≤ Re(Xi, j) ≤

ri, jIm +δi, jIm. Then ∥M∥ ≤
∥∥∥∥ n

∑
i=1

Xi,i +(∑i< j δi, j)Im

∥∥∥∥ for all symmetric norms.

Proof. The proof follows from Theorem 2.2 by writing each Xi, j = Re(Xi, j) +
iIm(Xi, j) for i < j in the average expression and bounding the real parts we get the
stated inequality. □

The case Re(Xi, j) = 0.Im (skew-Hermitian blocks) is the main result of [13]. We
also point out that in Theorem 2.1 of [11] the author replaced (by a miss-justification
when n > 2 as per our private communication) vertical widths by smallest widths ω

and proposed the same replacement in Corollary 2.4 as Question 2.5.

2.2. Around Hiroshima majorization

In this section we prove some classical results concerning matrices in MH
n (Mm),

related to some permutations and P.P.T. matrices. The approach is close (dual) to that
in [4].
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Corollary 2.5. [4] Let M ∈ MH
n (Mm) such that Mτ ≤ Tr2(Mτ)⊗ Im. Then there

exist a permutation PM with:

N = P T
MMτPM ≤ P T

M(Tr2(Mτ)⊗ Im)PM = Im ⊗Tr1(N) (2.2)

for N ∈MH
m(Mn), Tr1(N) = Tr2(Mτ) is an n×n matrix. Furthermore if M ≥ 0 then

Nτ ≥ 0.

Remark 2.6. Set M ∈ Mn(Mm), U unitary and U∗MU ∈ Mn(Mm). Define the
block m×m permutation matrix PM ∈Mn(Mm) having zero or identity m×m blocks;
if U = PM is a transposition block matrix then it is easy to see that (PMMPM)τ =
PMMτPM and thus upon composition for any block m×m permutation matrix PM,
PM(PT

MMPM)τPT
M = Mτ.

Let M ∈ MH
n (Mm) such that Mτ ≥ 0 and U unitary, for U∗MU ∈ MH

n (Mm) the
matrix (U∗MU)τ may not be positive semi-definite in general; consider M =UNU∗ ∈

M+
3 (M2) in Example 2.12 with U =

 0 1 0 0 0 0
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

, however this is true if n = m

and U = PM, this is also true for M ∈MH
2 (Mm) and U∗ =

(
eiζ cos(θ)I sin(θ)I
−eiζ sin(θ)I cos(θ)I

)
([12]).

From Quantum Physics theory we know that if M is P.P.T. then M ≤ In ⊗Tr1(M)
and M ≤ Tr2(M)⊗ Im see for example [7,8] and more recently [2,4]. Here we present
a different proof as follows:

Lemma 2.7. If M = [Xi, j] ∈M+
n (Mm) then

n⊕
i=1

(Xi,i −∑
j ̸=i

X j, j)≤ Mτ ≤ In ⊗
n

∑
i=1

Xi,i.

Proof. We prove the right side inequality as the lower bound has a similar proof by

noticing that
(

A X
X∗ B

)
≥ 0 ⇐⇒

(
A −X

−X∗ B

)
≥ 0. We write E = In ⊗

n
∑

i=1
Xi,i −Mτ

as the sum of positive semi-definite matrices of the form Ek, j =

(
X j, j(k) −X∗

k, j
−Xk, j Xk,k( j)

)
;

here the matrix Ek, j with k < j refers to the mn×mn block matrix having all blocks
zero except −Xk, j and −X∗

k, j taken on the same position as Xk, j and X∗
k, j in E, respect-

ively, X j, j(k) and Xk,k( j), where X j, j(k) is the block X j, j on the kth diagonal entry of E

(as of Ek, j). Since M ≥ 0, up to the congruence
(

0 −I
I 0

)
each Ek, j is a principal

block submatrix of M and E = ∑k< j Ek, j ≥ 0.
□

Remark 2.8. Let M = [Xi, j] ∈ M+
n (Mm) one can check following the previous

proof that M ≤
⊕n

i=1 nXi,i.
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The last lemma and corollary imply the following:

Corollary 2.9. [4] If M = [Xi, j] ∈M+
n (Mm) then Mτ ≤ Tr2(Mτ)⊗ Im.

In [6]-Theorem 1- the following (Hiroshima majorization) is proved:

Theorem 2.10. [6] Let M = [Xi, j] ∈M+
n (Mm) such that M ≤ Tr2(M)⊗ Im. Then

for all k ∈ [1,mn] :
k

∑
i=1

λi(M)≤
k

∑
i=1

λi(Tr2(M)).

Corollary 2.11. Let M = [Xi, j] ∈MH
n (Mm) such that

0 ≤ M ≤ In ⊗
n

∑
i=1

Xi,i. (2.3)

Then for all k ∈ [1,m] :
k

∑
i=1

σi(M)≤
k

∑
i=1

σi

(
n

∑
i=1

Xi,i

)

equivalently ∥M∥ ≤
∥∥∥∥ n

∑
i=1

Xi,i

∥∥∥∥ for all symmetric norms.

Upon completing
n
∑

i=1
Xi,i by zeros we can take k; 1 ≤ k ≤ mn to get the last inequal-

ity from Ky-Fan dominance theorem. In [10] another direct proof of Corollary 2.11
is given with the fact that Corollary 2.11 and Theorem 2.10 are equivalent (see Co-
rollary 2.5).

Example 2.12. It is well known that a matrix in M+
n (Mm) (n > 2) satisfying (2.3)

need not be P.P.T. as for example N ∈M+
3 (M2) =

 4 0 0 2 0 0
0 4 0 0 1 0
0 0 1 0 0 0
2 0 0 1 0 0
0 1 0 0 1 0
0 0 0 0 0 0

 .

The next corollary can be proved from the double inequality of Lemma 2.7.

Corollary 2.13. If M ∈M+
n (Mm) then ∥Mτ∥s ≤ ∥Tr1(M)∥s.

The positive condition in Corollary 2.11 seems necessary as this example shows:

Example 2.14. We have M =


1 0 0 2
0 4.5 0 0
0 0 0.9 0
2 0 0 1

∈M2(M2) and σ1(M)+σ2(M)=

4.5+3 > 7.4
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For a matrix D = [Di, j]∈M+
n (Mm) with all blocks diagonal, it is easily seen that D

is P.P.T. as Dτ = D̄ (D̄ is D with conjugate entries). Upon considering the rearrange-
ment of D taking P T

D DPD, we see that each diagonal entry of Tr1(D) is the sum of n
eigenvalues of D which implies: ∥D∥ ≤ ∥Tr1(D)∥ for all symmetric norms.

Corollary 2.15. [15] Let M = [Xi, j] ∈M+
n (Mm). Then M ≤ mTr2(M)⊗ Im.

Proof. Take MPM = P T
MMPM = [X ′

i, j] ∈ M+
m(Mn), applying Remark 2.8 MPM ≤⊕m

i=1 mX ′
i,i, reversing the rearrangement M ≤ mD where D = [Di, j] ∈M+

n (Mm) and
Di, j is the (main) diagonal of Xi, j. Since D is P.P.T. we get the result from Corol-
lary 2.9. □
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