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Abstract. The main goal of our paper is to obtain sufficient conditions for the asymptotic equi-
valence of a linear differential system and a quasilinear system of impulsive differential equations
with piecewise constant argument of generalized type, in short IDEPCAG. A deviating argument
is of the advanced and delayed type.

As an auxiliary result, the structure of the set of solutions of the quasilinear system is spe-
cified. Several examples are also given to show the feasibility of results.
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1. INTRODUCTION

The problem of asymptotic equivalence between two differential (or difference)
systems is one of the most important part in the study of asymptotic property for
solutions of differential (or difference) systems, and it shows an asymptotic relation-
ship between solutions of differential (or difference) systems.

If we know that two systems are asymptotically equivalent, and if we can un-
derstand the asymptotic behavior of the solutions of one of them, then we will get
information about the asymptotic behavior of the solutions of the other system. Ap-
parently, the first results regarding the asymptotic behaviour of systems on the basis
of one-to-one correspondence between sets of solutions were obtained in [13,17,21],
see also [12, 25].

The purpose of this paper is to generalize well-known theorems of Yakubovich,
valid for asymptotically equivalent of solutions of linear ODE system and quasilinear
ODE system, to a linear ODE system and a perturbed system of impulsive differential
equations with piecewise alternately advanced and retarded argument of generalized
type.
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Let N, R and C be the sets of all natural, real and complex numbers, respectively.
Denote by | · | the Euclidean norm in Cn, n ∈ N and R+ = [0,∞). Fix two real valued
non-negative sequences {ti}, {γi}, i ∈ N such that ti < ti+1, ti ≤ γi ≤ ti+1 and ti → ∞

as i → ∞. Let γ : R+ → R+, be a given general step function γ|Ii = γi, Ii = [ti, ti+1),
I−1 = [0, t0], γ(s) = s for s in I−1 and R+ =

⋃
∞
i=−1 Ii. In this case we speak of dif-

ferential equations with piecewise constant arguments of generalized type, in short
DEPCAG. Theory and practice of the DEPCAGs have been discussed extensively in
[1, 4, 8–11, 22].

The theory of impulsive differential equations developed rapidly, in recent years.
This development, in particular, is due to the fact that many phenomena and processes
arise in a variety of real world applications such as in the study of theoretical physics,
population dynamics, biological systems, mechanical systems, and control theory.
Furthermore, moment problem approaches appear also as a natural instrument in
control theory of neutral type systems. For a good account on these theories, which
have seen a significant development over the past decades we refer the interested
reader to the monographs [16,26], the papers [14,15,18–20] and the references cited
therein.

To the best of our knowledge, there are only a few papers involving the DEPCAG
with impulsive effects (IDEPCAG) [3, 5–7] to investigate the problem of asymptotic
equivalence between the solutions of two differential systems.

In 2008, M. U. Akhmet [1] demonstrated the asymptotic equivalence of solutions
of the linear ODE system and the DEPCAG system

x′(t) =Cx(t),

z′(t) =Cz(t)+ f (t,z(t),z(γ(t))),

where x,z∈Rn, t ∈R, C is a constant n×n real valued matrix and f ∈C(R×Rn×Rn)
is a real valued n×1 function, γ(t) = γi, t ∈ [ti, ti+1), i ∈ N.

In 2009, M. Pinto [22] proved the asymptotic equivalence of solutions of the linear
ODE system and the following DEPCAG system

x′(t) = A(t)x(t),

z′(t) = A(t)z(t)+ f (t,z(t),z(γ(t))),

where x,z ∈ Cn, A = A(t) is a n×n complex matrix on R+, f : R+×Cn ×Cn → Cn

is a continuous function and γ(t) = γi, t ∈ [ti, ti+1), if i ∈ N.
In the present paper, we consider the following linear differential system

x′(t) = Ax(t) (1.1)

and the linear perturbed IDEPCAG system

y′(t) = Ay(t)+ f (t,y(t),y(γ(t))), t ̸= tk, (1.2a)

∆y|t=tk = Jk(y(t−k )), k ∈ N, (1.2b)



YAKUBOVICH’S THEOREM FOR THE IDEPCAG SYSTEM 581

where x,y ∈ Cn, t ∈ R+, A is a constant n × n complex valued matrix and
f : R+×Cn ×Cn → Cn is a continuous function and

∆y|t=tk = y(t+k )− y(t−k ), y(t+k ) = lim
t→t+k

y(t) and y(t−k ) = lim
t→t−k

y(t).

We assume the following hypotheses.
(L1) There exist two positive locally integrable functions η1 and η2 on R+ such

that

| f (t,x1,y1)− f (t,x2,y2)| ≤ η1(t)|x1 − x2|+η2(t)|y1 − y2|
for all t ∈ R+, x1,x2,y1,y2 ∈ Cn and f (t,0,0) = 0.

(L2) The impulsive operator Jk, k ∈ N, satisfies

|Jk(u)−Jk(v)| ≤ Lk|u− v|
for the positive constant Lk, for all u, v ∈ Cn and Jk(0) = 0.

(D) Let ρ
+
i (A) = exp(A · (γ(ti)− ti)), ρ

−
i (A) = exp(A · (ti+1 − γ(ti))),

ρi(A) = ρ
+
i (A)ρ

−
i (A), i ∈ N. Suppose

ρ(A) = sup
i∈N

ρi(A)< ∞

and

ρ = ρ(A)sup
i∈N

(∫
γi

ti
[η1(s)+η2(s)]ds

)
< 1.

To investigate the asymptotic properties of the solutions, the following definitions
can be efficiently applied.

Definition 1. A function y is a solution of the IDEPCAG system (1.2a)–(1.2b) in
[τ,∞) if

(i) y(t) is continuous for t ∈ [τ,∞) with the possible exception of the points t = tk,
k ∈ N.

(ii) y(t) is right continuous and has left-hand limits at the points t = tk, k ∈ N.
(iii) y(t) is differentiable and satisfies (1.2a) for any t ∈ [τ,∞), with the possible

exception of the points t = tk, k ∈ N, where one-sided derivatives exist.
(iv) y(tk) satisfies (1.2b), k ∈ N.

Definition 2. ([21, Page 288]) Systems (1.1) and (1.2a)–(1.2b) will be called equi-
valent if there exists a homeomorphism between the sets of solutions x and y, and sys-
tems (1.1) and (1.2a)–(1.2b) will be called asymptotically equivalent if, in addition,
x(t)− y(t)→ 0 as t → ∞.

The main purpose of this paper is to obtain a theorem of asymptotic equivalence of
the stable solutions of the ODE system (1.1) and the IDEPCAG system (1.2a)–(1.2b)
by using the IDEPCAG’s integral inequalities of Gronwall type and the method of
investigation introduced by K.-S. Chiu [2] (2013). We also remark that our results
extend their asymptotic formulae given by M. U. Akhmet [1] (2008). See Remark 4.
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The paper is organized as follows. In the next section, we focus on some prelimin-
ary results which will be used to obtain the criteria for the existence and uniqueness of
the solutions of the IDEPCAG system (1.2a)–(1.2b). Here, the IDEPCAG Gronwall-
type inequality is very useful. The third section is devoted to the problem of the
asymptotic equivalence of the linear ODE system (1.1) and the IDEPCAG system
(1.2a)–(1.2b). The fourth section, two examples are given to illustrate the validity of
our results.

2. INTEGRAL EQUATIONS AND GRONWALL INTEGRAL INEQUALITY

To study the nonlinear IDEPCAG system, we will use the approach based on the
construction of an equivalent integral equation. Let us give the following proposi-
tion. We omit the proof of this assertion, since it can be proved in the same way as
Proposition 2 in [2].

For the sake of convenience, we adopt the following notation. For every t ∈ R, let
i = i(t) ∈ N be the unique integer such that t ∈ Ii = [ti, ti+1).

Proposition 2.1. For any (τ,y0) ∈ R+ ×Cn the solution y(t) = y(t,τ,y0) of the
IDEPCAG system (1.2a)–(1.2b) is defined on [τ,∞) and given by

y(t) =



eA(t−τ)y0 +
∫ t

τ

eA(t−s) f (s,y(s),y(γ(s)))ds

+
i(t)

∑
k=i(τ)+1

eA(t−tk)Jk(y(t−k )),
i(t)> i(τ),

eA(t−τ)y0 +
∫ t

τ

eA(t−s) f (s,y(s),y(γi(τ)))ds, i(t) = i(τ).

In the next, we give the following lemma about IDEPCAG integral inequality of
Gronwall type, which is one of the most important auxiliary results of the present
paper. The proof of the assertion is similar to that of Lemma 3 in K.-S. Chiu [2]
(2013).

Lemma 2.1 (IDEPCAG’s Gronwall Inequality). Let v,α j : R+ → R+, j = 1,2,
be three functions such that v is continuous with possible points of discontinuity of
the first kind at t = tk, k ∈ N and α j are locally integrable, for which the inequality
satisfying

v(t)≤ v(τ)+

∣∣∣∣∣∣
t∫

τ

[α1(s)v(s)+α2(s)v(γ(s))]ds

∣∣∣∣∣∣+
i(t)

∑
k=i(τ)+1

ρkv(t−k ),

where i(t)> i(τ) and ρk are non-negative constants. Then for t ≥ τ,

v(t)≤ v(τ)

{
i(t)

∏
k=i(τ)+1

(1+ρk)

}
exp
(∫ t

τ

[
α1(s)+

α2(s)
1−υ

]
ds
)

(2.1)
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and

v(γ(t))≤ v(τ)
1−υ

{
i(t)

∏
k=i(τ)+1

(1+ρk)

}
exp
(∫ t

τ

[
α1(s)+

α2(s)
1−υ

]
ds
)

where

sup
i(τ)≤k

∫
γk

tk
[α1(s)+α2(s)]ds ≤ υ < 1.

Remark 1. Consider ρk ≡ 0 in the IDEPCAG’s Gronwall Inequality (2.1), we can
obtain the following DEPCAG’s inequality of Gronwall type:

u(t)≤ u(τ)exp
(∫ t

τ

(
α1(s)+

α2(s)
1−υ

)
ds
)
.

The following theorem provides the existence of a unique solution when the initial
moment is an arbitrary positive real number τ. Proof of this affirmation is omitted, as
it can be demonstrated in the same way as Theorem 3.1 in K.-S. Chiu [7] (2021).

Theorem 2.1. Let us assume that the conditions (L1), (L2) and (D) are satis-
fied. Then, given an initial condition (τ,y0) ∈ R×Cn, there exists a unique solution
y(·) = y(·,τ,y0) of the IDEPCAG system (1.2a)–(1.2b) in the sense of Definition 1
such that y(τ) = y0.

3. ASYMPTOTIC EQUIVALENCE

In this section we establish sufficient conditions under which the linear ODE sys-
tem (1.1) and the IDEPCAG system (1.2a)–(1.2b) are asymptotically equivalent. Fol-
lowing V. Yakubovich’s theorem [21, 27] and Ráb [23, 24], as in [1, 22, 28], we do
the use of analogical change of variable y(t) = exp(At)u(t). See Lemma 3.1. Along
the lines we also derive a formula for asymptotic representation of solutions of the
IDEPCAG system (1.2a)–(1.2b).

Consider the following nonlinear impulsive differential system with piecewise
constant argument of generalized type

u′(t) = ĝ(t,u(t),u(γ((t))) := e−At f (t,eAtu(t),eAγ(t)u(γ(t))), t ̸= tk, (3.1a)

∆u|t=tk = Ĵk(u(t−k )) := e−AtkJk(eAt−k u(t−k )), k ∈ N, (3.1b)

where u ∈ Cn, eAt is the fundamental matrix of solutions of the linear ODE system
(1.1) and f : R+×Cn ×Cn → Cn satisfies the Lipschitz condition (L1) and the im-
pulsive operator Jk, k ∈ N, satisfies the Lipschitz condition (L2).

Assume the following hypotheses.
(H1) The two integrable functions η̂1, η̂2 are defined on R+, where

η̂1(t) = |e−At ||eAt |η1(t), η̂2(t) = |e−At ||eAγ(t)|η2(t).
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(H2) There exists a summable sequence of non-negative real numbers (Lk)
∞
k=1

such that ∣∣e−Atk
∣∣ ∣∣∣eAt−k

∣∣∣Lk ∈ l1(R+).

(H3) There exist positive constants κ1, κ2 such that∣∣eAt
∣∣≤ κ1tm+−1eµ+t and

∣∣e−At
∣∣≤ κ2tm−−1e−µ−t for all t ∈ R+,

where µ− = min
1≤k≤n

ℜλk, µ+ = max
1≤k≤n

ℜλk (ℜλk is the real part of the eigen-

value λk of the matrix A) and m± are the maxima of the degrees of element-
ary divisors of the matrix A corresponding to eigenvalues λ with ℜλ equal to
µ±, respectively.

Let

α(t) = exp
(∫ t

τ

[
η̂1(s)+

η̂2(s)
1− v̄

]
ds
){

exp
(∫

∞

t

[
η̂1(s)+

η̂2(s)
1− v̄

]
ds
)
−1
}
,

where

v̄ = sup
i∈N

∫
γi

ti
[η̂1(s)+ η̂2(s)]ds < 1 (3.2)

is the smallness condition for the IDEPCAG system (3.1a)–(3.1b). From the Lipschitz
condition (L1), the function ĝ satisfies

|ĝ(t,u1,v1)− ĝ(t,u2,v2)| ≤ η̂1(t)|u1 −u2|+ η̂2(t)|v1 − v2| (3.3)

where t ∈ R+, u1,u2,v1,v2 ∈ Cn and ĝ(t,0,0) = f (t,0,0) = 0.
From the Lipschitz condition (L2), the function Ĵk satisfies

|Ĵk(u)− Ĵk(v)| ≤ L̂k|u− v| (3.4)

where k ∈ N, u,v ∈ Cn, L̂k := |e−Atk ||eAt−k |Lk and Ĵk(0) = Jk(0) = 0.
The following lemma can be easily proved by direct substitution.

Lemma 3.1. If y(t) is a solution of the IDEPCAG system (1.2a)–(1.2b), then there
is a solution u(t) of the IDEPCAG system (3.1a)–(3.1b) such that

y(t) = eAtu(t). (3.5)

Conversely, if u(t) is a solution of the IDEPCAG system (3.1a)–(3.1b), then y(t) in
(3.5) is a solution of the IDEPCAG system (1.2a)–(1.2b).

Theorem 3.1. Under the conditions (H1), (H2), (3.2), (3.3) and (3.4), all the solu-
tions u of the IDEPCAG system (3.1a)–(3.1b) are defined on Iτ = [τ,∞) and conver-
gent to some u∞ ∈ Cn as t → ∞

u(t) = u∞ + |u(τ)|0

({
exp
(∫

∞

t

[
η̂1(s)+

η̂2(s)
1− v̄

]
ds
)
−1
}
+

∞

∑
k=i(t)+1

L̂k

)
. (3.6)
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Conversely, for any u∞ ∈Cn, there exists a unique solution u of the IDEPCAG system
(3.1a)–(3.1b) defined on Iτ = [τ,∞) for τ big enough such that u(t)→ u∞ as t →∞ and
(3.6) holds. Furthermore, the correspondence u → u∞ is an asymptotic equivalence.

Proof. Let u(t) = u(t,τ,u0) denote a solution of the nonlinear IDEPCAG system
(3.1a)–(3.1b) satisfying u(τ) = u0. By the smallness condition (3.2) and using the
same technique of Theorem 2.1, the solution

u(t) = u0 +
∫ t

τ

e−As f (s,eAsu(s),eAγ(s)u(γ(s)))ds+
i(t)

∑
k=i(τ)+1

e−AtkJk(eAt−k u(t−k ))

= u0 +
∫ t

τ

ĝ(s,u(s),u(γ(s)))ds+
i(t)

∑
k=i(τ)+1

Ĵk(u(t−k )), i(t)> i(τ),

exists on Iτ = [τ,∞) and is unique. By using (3.3) and (3.4), ĝ(t,0,0) = 0 and
Ĵk(0) = 0, we have

|u(t)| ≤ |u0|+
∫ t

τ

[η̂1(s) |u(s)|+ η̂2(s)|u(γ(s))|]ds+
i(t)

∑
k=i(τ)+1

L̂k
∣∣u(t−k )

∣∣, i(t)> i(τ).

By virtue of the IDEPCAG integral inequality of Gronwall type (Lemma 2.1), we
obtain

|u(t)| ≤ |u0|

{
i(t)

∏
κ=i(τ)+1

(
1+ L̂κ

)}
exp
(∫ t

τ

[
η̂1(s)+

η̂2(s)
1− v̄

]
ds
)

and

|u(γ(t))| ≤ 1
1− v̄

|u0|

{
i(t)

∏
κ=i(τ)+1

(
1+ L̂κ

)}
exp
(∫ t

τ

[
η̂1(s)+

η̂2(s)
1− v̄

]
ds
)

where v̄ is the smallness condition (3.2).
By (H2), we have L̂k ∈ l1([τ,∞)), then ∏

k≥i(τ)+1

(
1+ L̂k

)
<∞. As η̂1, η̂2 ∈ l1([τ,∞))

and ∏
k≥i(τ)+1

(
1+ L̂k

)
< ∞, we conclude that u is bounded on R+, i.e., |u(t)| ≤ M, for

all t ∈ [τ,∞). Therefore

u∞ = u0 +
∫

∞

τ

ĝ(s,u(s),u(γ(s)))ds+
∞

∑
k=i(τ)+1

Ĵk(u(t−k )) (3.7)

exists and

u(t) = u∞ −
∫

∞

t
ĝ(s,u(s),u(γ(s)))ds−

∞

∑
k=i(t)+1

Ĵk(u(t−k )). (3.8)
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Moreover∫
∞

t
|ĝ(s,u(s),u(γ(s)))|ds

≤ |u0|
∫

∞

t

[(
η̂1(s)+

1
1− v̄

η̂2(s)
)

exp
(∫ s

τ

[
η̂1(r)+

1
1− v̄

η̂2(r)
]

dr
)]

ds

= |u0|exp
(∫ t

τ

[
η̂1(s)+

1
1− v̄

η̂2(s)
]

ds
)

×
{

exp
(∫

∞

t

[
η̂1(s)+

1
1− v̄

η̂2(s)
]

ds
)
−1
}

= |u0|0
{

exp
(∫

∞

t

[
η̂1(s)+

1
1− v̄

η̂2(s)
]

ds
)
−1
}
, as t → ∞.

∞

∑
k=i(t)+1

∣∣Ĵk(u(t−k ))
∣∣≤ ∞

∑
k=i(t)+1

L̂k
∣∣u(t−k )

∣∣≤ M
∞

∑
k=i(t)+1

L̂k

= |u0| ·

(
ρ

∞

∑
k=i(t)+1

L̂k

)
= |u0|0

{
∞

∑
k=i(t)+1

L̂k

}
, as t → ∞,

where ρ = M/|u0|. Then the first conclusion and (3.6) follow.
For ui

0 ∈ Cn, i = 1,2 and ui(t) = ui(t,τ,ui
0), we have

|u1(t)−u2(t)| ≤ |u1
0 −u2

0|+
∫ t

τ

|ĝ(s,u1(s),u1(γ(s)))− ĝ(s,u2(s),u2(γ(s)))|ds

+
i(t)

∑
k=i(τ)+1

∣∣Ĵk(u1(t−k ))− Ĵk(u2(t−k ))
∣∣

≤ |u1
0 −u2

0|

+
∫ t

τ

[η̂1(s)|u1(s)−u2(s)|+ η̂2(s)|u1(γ(s))−u2(γ(s))|)]ds

+
i(t)

∑
k=i(τ)+1

L̂k
∣∣u1(t−k )−u2(t−k )

∣∣.
From the IDEPCAG integral inequality of Gronwall type (Lemma 2.1), for i(t)> i(τ)

|u1(t)−u2(t)| ≤ |u1
0 −u2

0|

{
i(t)

∏
κ=i(τ)+1

(
1+ L̂κ

)}
exp
(∫ t

τ

[
η̂1(s)+

η̂2(s)
1− v̄

]
ds
)

and

|u1(γ(t))−u2(γ(t))| ≤
1

1− v̄
|u1

0 −u2
0|

{
i(t)

∏
κ=i(τ)+1

(
1+ L̂κ

)}
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× exp
(∫ t

τ

[
η̂1(s)+

η̂2(s)
1− v̄

]
ds
)
.

Furthermore, as in (3.6), by (3.7), it is not difficult to obtain(
1−α(τ)−M

∞

∑
k=i(τ)+1

L̂k

)
|u1

0 −u2
0| ≤ |u1

∞ −u2
∞|

≤ |u1
0 −u2

0|

(
1+α(τ)+M

∞

∑
k=i(τ)+1

L̂k

)
,

if α(τ)+M
∞

∑
k=i(τ)+1

L̂k < 1. This establishes the equivalence of u0 → u∞. Finally, for

any u∞ ∈Cn, Eq. (3.8) has a unique solution u defined on Iτ = [τ,∞), if, for example,
τ satisfies ∫

∞

τ

[
η̂1(s)+

η̂2(s)
1− v̄

]
ds+M

∞

∑
k=i(τ)+1

L̂k < 1.

Then the smallness condition (3.2) holds and hence the same technique of Theorem
2.1 is applicable to guarantee the uniqueness of solution u. This proves the asymptotic
equivalence of the correspondence u(t) and u∞. □

Corollary 3.1. If conditions (H1), (H2), (3.2), (3.3) and (3.4) are valid, then every
solution of the IDEPCAG system (3.1a)–(3.1b) is bounded on Iτ = [τ,∞) and for each
solution u of the IDEPCAG system (3.1a)–(3.1b), there exists a constant vector u∞

such that u(t)→ u∞ as t → ∞.

Theorem 3.2. If conditions (H1), (H2), (3.2), (3.3) and (3.4) are fulfilled, then
each solution y of the IDEPCAG system (1.2a)–(1.2b) is defined on Iτ = [τ,∞). Fur-
thermore, the linear ODE system (1.1) and the IDEPCAG system (1.2a)–(1.2b) are
equivalent and we have the following asymptotic formula

y(t) = eAt [v+ ε(t)], as t → ∞, (3.9)

where v ∈ Cn is a constant vector and the error function ε verifies

ε(t) = 0

{(
exp

(∫
∞

t

[
|e−As||eAs|η1(s)+

|e−As||eA·γ(s)|η2(s)
1− v̄

]
ds

)
−1

)

+
∞

∑
k=i(t)+1

|e−Atk ||eAt−k |Lk

}
. (3.10)

Moreover, if ε0(t)→ 0 as t → ∞, where

ε0(t) =
∫

∞

t

∣∣∣eA·(t−s)
∣∣∣[∣∣eAs

∣∣η1(s)+
∣∣∣eA·γ(s)

∣∣∣η2(s)
]
ds
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+
∞

∑
k=i(t)+1

∣∣∣eA·(t−tk)
∣∣∣ ∣∣∣eA·t−k

∣∣∣Lk, (3.11)

then the linear ODE system (1.1) and the IDEPCAG system (1.2a)–(1.2b) are asymp-
totically equivalent and we have the asymptotic formula

y(t) = x(t)+0(ε0(t)), as t → ∞, (3.12)

for some constant vector v ∈ Cn.

Proof. By (3.1) and y = eAtu, we get

y(t) = eAt

[
u∞ −

∫
∞

t
ĝ(s,u(s),u(γ(s)))ds−

∞

∑
k=i(t)+1

Ĵk(u(t−k ))

]
, (3.13)

where u = u(t,τ,u0) is a solution of (3.1). Remark that in (3.13) x(t) = eAtu∞ is a
solution of the linear ODE system (1.1) and y = eAtu and so y(τ) = u0. By The-
orem 3.1, the correspondence u0 ↔ u∞ is a homeomorphism for some τ sufficiently
large. Then, the correspondence x ↔ y is also a homeomorphism and formulae (3.9)
and (3.12) follow. □

Remark 2. Suppose now that

|eAt |= 0(ϕ+(t)), |e−At |= 0(ϕ−(t)) as t → ∞ (3.14)

and
0(γ(t)) = 0(t) as t → ∞. (3.15)

Thus, by (3.14) and (3.15), the functions ε and ε0 in (3.10) and (3.11) of Theorem 3.2
may be considered as

ε(t) = 0
{(

exp
[∫

∞

t
ϕ−(s)ϕ+(s)

(
η1(s)+

η2(s)
1− v̄

)
ds
]
−1
)

+
∞

∑
k=i(t)+1

ϕ−(tk)ϕ+(tk)Lk

}
and

ε0(t) =
∫

∞

t
ϕ−(s− t)ϕ+(s)(η1(s)+η2(s))ds+

∞

∑
k=i(t)+1

ϕ−(tk − t)ϕ+(tk)Lk.

This gives a practical way to apply Theorem 3.2.

Corollary 3.2. If conditions (H1), (H2), (3.2), (3.3) and (3.4) are satisfied, then
every solution y of the IDEPCAG system (1.2a)–(1.2b) possesses an asymptotic rep-
resentation of the form

y(t) = eAt [v+ ε(t)], as t → ∞,
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where v∈Cn is a constant vector and for a solution u of the IDEPCAG system (3.1a)–
(3.1b).

ε(t) =−
∫

∞

t
e−As f (s,eAsu(s),eAγ(s)u(γ(s)))ds−

∞

∑
k=i(t)+1

e−AtkJk(eAt−k u(t−k )).

Remark 3. Note that we can easily deduce the condition (3.2) for the following
form

v = sup
i∈N

∫
γi

ti

∣∣e−As
∣∣(η1(s)

∣∣eAs
∣∣+η2(s)

∣∣∣eAγ(s)
∣∣∣)ds < 1. (3.16)

By (H3), the condition (3.16) can be deduced by

v = κ1κ2sup
i∈N

∫
γi

ti
sm++m−−2e(µ+−µ−)s

(
η1(s)+η2(s)

γ(s)m+−1eµ+γ(s)

sm+−1eµ+s

)
ds < 1 (3.17)

and we can find a positive number κ such that

γ(s)m+−1eµ+γ(s)

sm+−1eµ+s =

(
γ(s)

s

)m+−1

eµ+(γ(s)−s) ≤ sup
i∈N

(
γi

ti

)m+−1

e
µ+sup

j∈N
(γ j−t j)

= κ.

Then the conditions (H1) and (H2) can be deduced by the following forms

(H′
1) The two integrable functions η1,η2 are defined on R+ such that

tm++m−−2e(µ+−µ−)·t (η1(t)+η2(t)) ∈ L1(R+).

(H′
2) There exists a summable sequence of non-negative real numbers (Lk)

∞
k=1

such that

tm++m−−2
k e(µ+−µ−)·tkLk ∈ l1(R+).

Theorem 3.3. Under the conditions (H′
1), (H′

2), (3.2), (3.3) and (3.4), all the solu-
tions u of the IDEPCAG system (3.1a)–(3.1b) are defined on Iτ = [τ,∞) and conver-
gent to some u∞ ∈ Cn as t → ∞

u(t) = u∞ + |u(τ)|0
({

exp
(∫

∞

t

[
sm++m−−2e(µ+−µ−)·s

(
η1(s)+

κ

1− v
η2(s)

)]
ds
)

−1
}
+

∞

∑
k=i(t)+1

tm++m−−2
k e(µ+−µ−)·tkLk

)
. (3.18)

Conversely, for any u∞ ∈Cn, there exists a unique solution u of the IDEPCAG system
(3.1a)–(3.1b) defined on Iτ = [τ,∞) for τ big enough such that u(t)→ u∞ as t →∞ and
(3.18) holds. Furthermore, the correspondence u → u∞ is an asymptotic equivalence.

The proof follows from Lemma 3.1, Theorem 3.1 and Remark 3.
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Theorem 3.4. If the conditions (H′
1), (H′

2), (3.2), (3.3) and (3.4) are fulfilled, then
each solution y of the IDEPCAG system (1.2a)–(1.2b) is defined on Iτ = [τ,∞). Fur-
thermore, the linear ODE system (1.1) and the IDEPCAG system (1.2a)–(1.2b) are
equivalent and we have the following asymptotic formula

y(t) = eAt [c+ ε(t)], as t → ∞,

where c ∈ Cn is a constant vector and the error function ε verifies

ε(t) = 0
{〈

exp
(∫

∞

t

[
sm++m−−2e(µ+−µ−)·s

(
η1(s)+

κ

1− v
η2(s)

)]
ds
)
−1
〉

+
∞

∑
k=i(t)+1

tm++m−−2
k e(µ+−µ−)·tkLk

}
.

Moreover, if ε0(t)→ 0 as t → ∞, where

ε0(t) =
∫

∞

t
(s− t)m−−1e−µ−·(s−t)sm+−1eµ+s (η1(s)+η2(s))ds

+
∞

∑
k=i(t)+1

(tk − t)m−−1e−µ−·(tk−t)tm+−1
k eµ+tkLk, (3.19)

then the linear ODE system (1.1) and the IDEPCAG system (1.2a)–(1.2b) are asymp-
totically equivalent and we have the asymptotic formula

y(t) = eAtc+0(ε0(t)), as t → ∞, (3.20)

for some constant vector c ∈ Cn.

The proof follows from Lemma 3.1, Theorem 3.2 and Remark 3.

Remark 4. Let η(s) =max
i=1,2

ηi(s) and assume that conditions (H′
1), (H′

2), (3.3), (3.4)

and (3.17) are fulfilled. Moreover∫
∞

t
(s− t)m−−1e−µ−(s−t)sm+−1eµ+s

η(s)ds

+
∞

∑
k=i(t)+1

(tk − t)m−−1e−µ−(tk−t)tm+−1
k eµ+tkLk → 0 as t → ∞,

then the linear ODE system (1.1) and the IDEPCAG system (1.2a)–(1.2b) are asymp-
totically equivalent.

Let η(s) ≡ ηi(s), i = 1,2, and assume that conditions (H′
1), (3.3) and (3.17) are

fulfilled and∫
∞

t
(s− t)m−−1e−µ−(s−t)sm+−1eµ+s

η(s)ds → 0 as t → ∞. (3.21)

Then the linear ODE system (1.1) and the DEPCAG system (1.2a) are asymptotically
equivalent.
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The previous result has been obtained in [1, Theorems 2.1 and 2.2], our condition
(3.17) to guarantee the existence and uniqueness of the quasilinear DEPCAG system
(1.2a) is less restrictive than (C3) mentioned in [1].

Remark 5. In [27], we can find Yakubovich’s theorem on the asymptotic equival-
ence of the linear ODE system and quasilinear ODE system. The sufficient condition
for asymptotic equivalence was∫

∞

t
sm++m−−2eµ+s

η(s)ds → 0 as t → ∞, (3.22)

where η(s) = max
i=1,2

ηi(s).

We can easily to prove that the conditions (H′
1) or (3.21) with µ− > 0 are less

restrictive than (3.22) in Ref. [27].
Then Theorem 3.4 extends and improves some existing Yakubovich’s results on

asymptotic equivalence of different classes of linear and quasilinear differential sys-
tems studied in [21, 27]. Also, with this research we extend the results for the DE-
PCAG system in [1] and the DEPCAG system to the impulsive case (the IDEPCAG
system).

4. EXAMPLES

As a direct application of Theorem 3.2 and Theorem 3.4, here we will present two
particular cases.

Example 4.1. Consider the following scalar IDEPCAG

y′(t) = ay+b(t)y(γ(t)), t ̸= tk
∆y|t=tk = Lk · y(t−k ), k ∈ N, (4.1)

with a > 0 is a constant, b(t) ∈ L1(R+), Lk ∈ l1(R+) and b̂(t) = 0(e−at) where

b̂(t) =
∫

∞

t
|b(s)|ds+

∞

∑
k=i(t)+1

Lk.

Then the IDEPCAG (4.1) is equivalent to the linear scalar ODE

x′(t) = ax(t) (4.2)

and all solutions y(t) of the IDEPCAG (4.1) have the asymptotic formula

y(t) = eat(v+ ε(t)
)
, as t → ∞,

where v ∈ R and the error function ε verifies

ε(t) = 0
{〈

exp
(∫

∞

t
ea·(γ(s)−s) |b(s)|ds

)
−1
〉

+
∞

∑
k=i(t)+1

Lk

}
.
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Moreover, if ε0(t)→ 0 as t → ∞, where

ε0(t) = 0

(∫
∞

t

[
ea·(t−s)|b(s)|ea·γ(s)

]
ds+

∞

∑
k=i(t)+1

eatLk

)
,

then, by Theorem 3.2, the linear scalar ODE (4.2) and the scalar IDEPCAG (4.1) are
asymptotically equivalent and we have the asymptotic formula

y(t) = x(t)+0(ε0(t)), as t → ∞.

Example 4.2. Consider the following impulsive second-order differential equa-
tions with piecewise alternately advanced and retarded argument:

y′′(t)−5y′+6y = η(t)cos2
(

y
(

3
[

t +1
3

]))
, t ̸= 3k−1,

∆y|t=tk =

(
1
4

)3k

· y(3k−1−), (4.3)

∆y′|t=tk =

(
1
5

)3k

· y′(3k−1−), k ∈ N,

where [·] is the greatest integer function, η(t) is a continuous function defined on R+

and
|η(t)|< κ

1+ t2 e−3t , for t ∈ R+,

where κ ∈ R+. According to the IDEPCA (4.3), we have γ(t) = 3
[ t+1

3

]
, then

t j = 3 j−1, γ j = 3 j for all j ∈ N.
Letting z(·) =

(
z1(·),z2(·)

)T
=
(
y(·),y′(·)

)T , we write the IDEPCA (4.3) in the
system form

z′(t) =
(

0 1
−6 5

)
z(t)+

(
0

η(t)cos2
(
z1
(
3
[ t+1

3

]))) ,

∆z|3k−1 =

((1
4

)3k 0
0

(1
5

)3k

)
z(3k−1−),

where

A =

(
0 1
−6 5

)
, f

(
t,z(t),z

(
3
[

t +1
3

]))
=

(
0
η(t)cos2

(
z1
(
3
[ t+1

3

])) ) .

We can easily verify that µ− = 2, µ+ = 3, m± = 1 and the conditions (H′
1), (H′

2), (3.2),
(3.3) and (3.4) are fulfilled. Moreover we can check that the condition (3.19) holds.∫

∞

t
(s− t)m−−1e−µ−(s−t)sm+−1eµ+s (η(s))ds ≤

∫
∞

t
e−2(s−t)e3s κ

1+ s2 e−3sds

≤ κ

1+ t2 →
t→∞

0,
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and
∞

∑
k=i(t)+1

(tk − t)m−−1e−µ−(tk−t)tm+−1
k eµ+tkLk ≤

∞

∑
k=i(t)+1

e2t+(3k−1)
(

1
4

)3k

→
t→∞

0.

Thus, by Theorem 3.4, the IDEPCA (4.3) is asymptotically equivalent to the follow-
ing ODE equation

x′′(t)−5x′+6x = 0
which has solutions

x(t) = c1e2t + c2e3t .
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