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Abstract. In the current work, fractional differential equations (FDEs) with Sturm-Liouville
boundary conditions (BCs) and p—-Laplacian operator in terms of the Riesz-Caputo fractional
derivatives are considered. With the aid of Schauder’s and Banach’s fixed point theorems, the
existence and uniqueness results of the aforesaid problem are established. An explanatory ex-
ample is set forth to make efficient the obtained results.

2010 Mathematics Subject Classification: 26A33; 34A08; 34B24

Keywords: p-Laplacian operator; Sturm-Liouville boundary conditions; Riesz-Caputo derivat-
ive.

1. INTRODUCTION

FDEs have acquired plentiful circulation and great significance thanks to their
accurate description of some phenomena of real-world problems. For instance, we
refer the reader to [21,23,30,31,33,35] for detailed interpretations, and we refer to
[1,2,6,13=15,28,34] for the newest trends in the field of FDEs.

Boundary value problems (BVPs) for FDEs have become an interesting field of
research. This is due to their strong presence in many significant problems in math-
ematical physics. In particular, Sturm-Liouville type BVPs have attracted the interest
of many mathematicians and physicists due to their numerous applications in various
scientific fields; see, for example, [4, 10, 11,22,37].

In [24], Leibenson introduced the p—Laplacian differential equation

(9p(' (1)) = f(r.u(r),u (1)), 1€ (0,1),

where @,(r) = |r|P"2r, p > 1, for studying the turbulent flow problem in a porous
medium. In the last few years, the topic was extended to the case of fractional dif-
ferential equations using different types of fractional operators; see, for example,
[18=20,25,29] and the references cited therein.

In 1892, Riesz [21] introduced a two-sided fractional operator including both left
and right derivatives, which can reflect both the past and the future memory effects.

© 2023 Miskolc University Press


http://dx.doi.org/10.18514/MMN.2023.3797

16 M. 1. ABBAS

As a result of the two-sided feature of the Riesz fractional operator, it has arisen
strongly in fractional modeling on finite domains and fractional variational problems;
see [3,5,9,17].

In despite of the significant contributions involving the numerical methods of the
FDEs in terms of the Riesz-Caputo fractional derivatives [32, 36], the analytical
results concerning the existence, uniqueness, and stability of the solutions are still
scarce. For example, Chen et al. in [7] studied a class of BVPs for FDEs with the
Riesz-Caputo derivative of the form

Rg@;y(r) :g(‘c,y(’t)), re [O>T]v 0<y<l,
¥(0)=0, ¥(T)=yr,

where is a Riesz-Caputo derivative and g : [0,7] x R — R is a continuous
function. By means of new fractional Gronwall’s inequalities and some fixed point
theorems, they obtained the main results.

Further, Chen et al. [8] obtained some existence results of the anti-periodic BVPs
for FDEs with Riesz-Caputo derivative

Ko () =g(ty(v), €[0T, 1<y<2,
¥(0)+3(T)=0, y'(0)+y(T)=0,
where Rg@; is a Riesz-Caputo derivative and g : [0,7] x R — R is a continuous
function. Some existence results are estabilished using Schaefer’s and Schauder’s
fixed point theorems.

In [12], Gu et al. investigated the existence of positive solutions of the FDEs with
Riesz-Caputo derivative

KoDtx(t) = h(t,x(7)), 1€[0,1], 0<a <1,
x(0) =x0, x(1)=xi,

RCRyY
0@

where ®{D% is a Riesz-Caputo derivative and / : [0, 1] x [0, +o0) — [0, +o0) is a con-
tinuous function. Using Leray-Schauder and Krasnoselskii’s fixed point theorems
in a cone, they obtained trajectory of the solutions via the numerical discretization
of the equivalent fractional integral equations. In this study, inspired by [7, 8], we
investigate the existence and uniqueness of solutions of FDEs with Sturm-Liouville
BCs and p—Laplacian operator of the form:

(R ((p,, (RC@%(;))) — W (r,0(1)), t€J:=[0,T], T < oo,
a19y (*50500)) o — b1 (9 (*§050(0)) ) 0 =0,
aPp <RC®§U( ) =1 + b2 (‘Pp (RS”}J?D(;)»/ i=r =0, (1.1

0) —d,v'(0) =0,
T)+dy0/(T) =0,

(
(
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where k(DY Rgaa? denote the Riesz-Caputo fractional derivatives of order o, €
(0,1, aj,,bi,ciydi € Rji=1,2, W:J xR — R is a given continuous function, and
®,(r) = |r|P~%r, p > 1is a p-Laplacian operator with (9,)~! = @, %—l—é =1

To the best knowledge of the author, there are no publications have yet been treated
with p—Laplacian FDEs with Sturm-Liouville BCs in terms of the Riesz-Caputo frac-
tional derivative.

2. PRELIMINARIES

In this section, we recall some definitions, lemmas and properties of fractional
calculus [21,33] and Riesz-Caputo fractional derivative [3, 7].

Definition 1. (Riemann-Liouville fractional integrals)[33]
If y € C[0,T], then for ¢ € [0,T], the left and the right Riemann-Liouville fractional
integrals of order y > 0 are defined by

1 !

A0 = F [, =9y, 70, @1
1 T |

) = g | =00, v>0, 22)

respectively, where I'(-) denotes the Gamma function.

Definition 2. (Riesz fractional integral)[21]
If y € C[0,T], then for ¢ € [0, T], the Riesz fractional integral of order y > 0 is defined
by

1 t
T = F sl (5 @3)

As a consequence of (2.1) and (2.2), it follows that

1 ~ ~
0T7y(6) =5 (0T + 1) (). 2.4)
Definition 3. (Caputo fractional derivatives)[33]

If y € C"[0,T], then for ¢ € [0, T], the left and the right Caputo fractional derivatives
of order v, n — 1 <y < n, are defined by

r(nl_ 7) /Ot(t—s)”‘v—l (;;)ny(s)ds, (2.5)
(1) = r(nl_y) /t T(s—t)y’l (‘i)nﬂs)ds, (2.6)

respectively, where n = [y] + 1, n € N.

COQQ{Y(I )=
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Definition 4. (Riesz-Caputo fractional derivatives)[3]
If y € C"[0,T], then for ¢ € [0,T], the Riesz-Caputo fractional derivative of order
Y, n—1 <y < n, is defined by

1 ! d\"
RCY — _ gyl
0D 7y(1) Ti—7) /0 |t —s| (ds) y(s)ds, 2.7)
wheren=[y]+1, n€ N.

Using equations (2.5) and (2.6), it follows that
1
01y(0) = 5 (927 + (1) D7) y(0)- (2.8)
In particular, for 0 <y < 1 and y(z) € C(0,T), one has
1
601y(0) = 5 (27 =) »(0). 2.9)

Lemma 1. [2/] Ify(t) € C"[0,T], then

n—1 _(m) 0
o0 =50 - ¥ 2 Do, @10
m=0 :
n—1 —_1)m (m) T
7 CDYy(1) = (1) <y(t) -y ()nf'()(T—z)m . 2.11)
m=0 :
In view of [7], equations (2.10) and (2.11) imply
~ 1 ~ n ~
037 “6D7y(1) = 5 (037 DI+ (=1)" I D)), (@212

In particular, for 0 <y < 1 and y(z) € C(0,T), one has

1

0J7 “GD7¥(1) = y(1) — 5> 0(0) +¥(T)) (2.13)

To end this section, we recall some basic properties of the p—Laplacian operator

[26,27].

Definition 5. The p—Laplacian operator is defined as
-2
Q) (x) =|x[""x, p> 1,
~ - 1,1
at which ¢, ! = @, where S+, =1L
Lemma 2. Let ¢, (x), p > 2, be p-Laplacian operator and |x|,|y| < M, then

[0 () = 9p ) < (= 1) MP 72 [x ).
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3. MAIN RESULTS

We consider the Banach space C(J,R) of all real and continuous functions from J
to R endowed with the supremum norm

[v]| = sup [o(r)]-
teJ
Before investigating the main results, we consider the following auxiliary lemma.

Lemma 3. Let 0 < a,B <1 and v:J — R be a continuous function. Then the
linear p—Laplacian BVP

#6% ( (FDh0() ) =v(0), rey 3.1)

a9y (5980)) o1 (9 (599010))) 10 =0

P, (’%990( )) = T+b2( 0, (RSP (r )) =0, G2
{ZEE >) ﬁ;fg) 06, (3-3)
is equivalent to the integral equation
o0 = g 0~ s s [ =08 oy nls)as
s e ) s~ s [ e, () as
e [ = s s s [y )
where oH
hy(1) = F(la) /0 (1= )% 1V(s)ds+ F(la) /t T(s —1)%"v(s)ds
- zlrfé_l) [ s 2visyas - F(loo [ s visyas
- MF’(’;_D /O "7 — 52 (s)ds - = (100 /0 "9 s, ()

Proof. Let @ =g, (*5D}0(r) ). Then the BVP (3.1)-(3.2) will be written as

RED%0 (1) =v(t), teJ,
a;o(0) —b1'(0) =0, (3.6)
az(l)(T) + bz(l)l(T) =0,
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From (2.3), (2.13) and the first equality of (3.6), one has

1 1 r o1
0l1) = 5 (0(0)+0(T) + o5 /0 1t — s|% v (s)ds 3.7)
= 2 (0(0) +0(T)) + F(la) /0 (1= )% I (s)ds+ F(la) /t 5= 0% (s)ds.
Then
W (1) = 1“(0(1—1) /O t(t—s)o‘zv(s)ds—r(al_l) [ 5=t vy

Using the boundary conditions a;®(0) — b1’ (0) =0 and a,®(T) 4+ b, (T) = 0, we
get

by T o 2 (T
0)(T) = _alr‘(oc—l)/o N 2V(s)ds— F((X)‘/() s 1V(s)ds,
by T o 2 (T o
®(0) = _CQW)L—U/O (T —5)*2v(s)ds — F(OL)/O (T —5)* v(s)ds.

Substituting the values of ®(0) and ®(7") into (3.7), we obtain that

o(t) =y (*500(1)) = F(la) /O (£ — )% I (s)ds+ F(la) [ L 5= 0% Iy (s)ds

b L 1T
_Zall“((;—l)/o s 2v(s)ds—r(oc)/o s l\/(s)ds

b r o
_2a2F(éL—1)/() (T —5)%2v(s)ds

1 T
- T —5)* v(s)ds.
Thus,
“§D50() = 9y (hv(1)).
where the function Ay is defined in (3.5).
With a similar procedure, one can conclude that the BVP

Kb ) = 9, ((1)), 1€,
c1v(0) —dv'(0) =0, (3.8)
c(T)+dv'(T) =0,
is equivalent to the integral equation
1

V() = F(B)/Ot(t—s)ﬁl(pq(hv(s))ds—i—r(lm/tT(s—z)Bl(pq(hv(s))ds

- 2C11f(1é—1) /OT 0 (s)) ds - 1“(1[3) /OT sP 7oy (v (5)) ds
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dr r _ 1 r _
- T —5)P2¢, (h ds— —— / T—5)P 1o, (h ds.
262F(B_1) A ( S) (pq( V(S)) S F(B) 0 ( S) (Pq( V(S>) s
That is the desired integral equation (3.4). The proof is completed. O

In view of Lemma 3, we deduce that the solution of the p—Laplacian BVP (1.1) is
given by

—L t—sﬁf s))ds L Ts— B- s))ds
o(0) = gy, €9 (Haa ) st s [ (5—0P ey (Hura(9) d
d; T 1T,
_261F(l3—1)/0 sP 2(pq (HW’D(S)) a’s—nﬁ)/0 sP l(pq (van(s)) ds
dy r B2
_2c2F([3—1)/0 (7 =)0 (Hu(s)) ds
—F(IB) /0 T(T—S)B*qu (Hupv(s)) ds, (3.9)
where
1 . 17 o
me(t):r(a)/o(t—s) I‘W(s,l)(s))ds—i—r(oc)/t (s— )% W (5,0(s)) ds
T T
_25111“](7(;—1)/0 s“_z‘lfl/(s,l)(s))ds—r(]a)/o s* Loy (s,0(s)) ds
- 2@;{;_ 0 /OT(T—S)“‘ZW(s,u(s))dS
1 T
—F(a)/o (T —5)* L (s,0(s)) ds. (3.10)

For fulfillment the main results, the following assumptions will be imposed.

(A1): The function %W : J x R — R is continuous.
(A2): Two constants Ly, K4y > 0 exist such that

|W(t,l)1) — W(I,Dz) ‘ < Lw’l)l —1)2|,
for each r € J and v,0; € R, along with
| (¢,0)] < Kyy.
3.1. Existence result via Schauder’s fixed point theorem

Lemma 4. (Schauder’s fixed point theorem)[16] Let U be a Banach space with
B C U closed, bounded and convex, and P : ‘B — B is completely continuous. Then
‘P has a fixed point in U.

Theorem 1. Assume that (A1)—(A2) hold. Then the p—Laplacian BVP (1.1) pos-
sesses at least one solution on J.
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Proof. The problem (1.1) will be transformed into the fixed point problem v = Pv,
where the operator 2 : C(J,R) — C(J,R) is defined by

(20)(1) = ot [ =510 (n(s)) ds s [ (5080 (Bl (5)) s

() Jo r'(B)
T T
‘qu?él) | 2, (Hw,u(s))ds—r(lm |70 (Huno(s)) ds
N 2czFElL23—1) /oT(T =5)P729 (Hu(s)) ds
1 T
_F(B)/o (T —)P~"@g (Hawn(5)) ds, (3.11)

where the function Hyy , is defined in (3.10).
Define B, = {v € C(J,R) : ||v|| < k} with

AaTP TP | TP
FB+1)  2(a|lP)  2[c|T(B)
It is clear that the set By is a closed, bounded, convex subset of C(J,R). Moreover,

for v(t) € By, the operator P is well defined.
We first show that P(By) C Bi. Foreacht € J and v € B, we get

k>

] 04 (M"). (3.12)

(@O0 < s [ 65016 (Hano)) s + s [ (50 oy (o (5) s

I'(B) rB) Ji
r T
2\c1|1|f1(1[3|—1)/0 s[372|(Pq (H"W,D(S)) |ds + F(IB)/O s571|(pq (me(s)) \ds
zu'rd(é—w /0T<T = )P 210g (Hawu(s)) |
+F(16)/OT(T_S)6—1,% (Hapo(s)) |ds. (3.13)

From the assumption (A2), one has

Hool0) < s [ =0 1w 06 ds + s [ (5= 0 5,006l

(o
m}iﬂc_n/fﬂzrws,ws» rds+r(1a) / 5w (5,0(s))|ds

|ba g o—
Wa_l)/o (T —5)%2|W (5, 0(s)) ds

- o
+r(a)/0 (T — )%V (5,0(s)) |ds
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o [ (T =02 |by|T*! N by |T*!
= T(a+1) 2]a;|C(at) * 2lax|T(a) | ="

AT by |T*! \bz\T““]
Ky =M". 3.14
—[rml) 2T 2laaT(@) G
Thus, by substitution the estimate M* in (3.14) to (3.13), we get
BT —0)By2rf  |a TP |dy TR
Po)(1)| < 0, (M*
(o)) ME+1) 2l 2er@ | ™
4TB |dl|TB_1 ’d2’T5_1 0 (M*)
T TR+ 2[af@)  2ler@)|
<k.

Thus, (3.12) implies that P(B;) maps into B;.

Now, we show that P is completely continuous on By.

First, from P(By) C By, it follows that || Pv|| < k for any v € By, and so {v: v €
PPy} is uniformly bounded.

Second, we show that P(B) is equicontinuous. For each 71,7, € J, t; < t, and
Vv € By, using (3.14), we get

|(PV)(2) — () (1))

< ’F(lﬁ)/oz(tz—s)ﬁ_l(pq (Hov(s)) ds

_F(lﬁ) /0 (11— )P @ (Hupo(s)) ds
o 6 e (9 s
<t ) (=9 = =9 ) oy (ta(s) |as
N F(lﬁ) / (11— )P [@q (Hawo(s)) | ds
g | (P ) o ()
s 5 0P o (ha6)] s
< B | () (-t ) w2t
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The right-hand side of the above inequality tends to zero as r, — ¢;. So we conclude
that P(‘By) is equicontinuous. As a consequence of the Arzela-Ascoli Theorem, we
infer that 2 (By) is relatively compact in C(J,R).

Finally, we show that 2 is continuous. Let {v,} be a sequence in B; such that
Vy — D, as n — oo,

(20,)(1) — (20) (1)
< F(1[3)/o (t—s5)P o, (H, (5)) — g (Hap(s)) |ds

1 T B
+F(B)/¢ (s—t)B 1\(pq (vaun(s)—(pq (me(S))) \ds
|di|

T
e fy 100 (o (0) 0y (v (9) s

+ r(lm / "5y (Hop, () — 0y (Hop(s)) |ds

2’6,2|1|—C~l(2l?|)_1)/0T(T_S)BZ‘(pq (H‘WA)n(s)) —Qq (HWA)(S)) ’ds
+ 1—~(IB) /OT(T _S)B_1|(Pq (Hw.,o,, (5)) — @y (Hw.,t)(s)) |ds. (3.15)
Again, by virtue of the assumption (A2), one has
|Hap, (t) — Hap ()|
< F;a)/o’(r—s)“-‘|ms,u,,<s)) — (s, 0(s))|ds
1 T
n r(oc)/, (s— 1)1 (5,00(s)) — W (5,0(s)) |ds
2|m||rl’(lo|c_l)/OTs“2yW(s7u,,(s)) — W (s,0(s)) |ds
+ r(la) /OTsalyW(s,un(s)) — W (s,0(s)) |ds
2|a2|’r”(20’c_1) /OT(T %290 (5,00 (s)) — W (s,0(s)) |ds
1 T
+ F(oc)/o (T — )% | W (5,00(s)) — W (s,0(s)) |ds
- [t“+ (T —1)*4+2T%  |by|T* " |by|T*!
= T(o+ 1) 2 T(0)  2wT(@)

X (0n() = W (o) |
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AT by |T* ! |by|T* !
T M(o+1)  2ar|T(e)  2|az|T (o)
W 0a()) = W00 - (3.16)

Therefore, the continuity of the function % implies that the function Hyy 4, is also
continuous. Hence, by referring to (3.15), we infer the continuity of P.

In the light of the above analysis, we realize that P is completely continuous. In
consequence of Schauder’s fixed point theorem (Lemma 4), P has a fixed point in
C(J,R), that is, it is a solution of the p—Laplacian BVP (1.1). The proof is finished.

O

3.2. Uniqueness result via Banach’s fixed point theorem

Theorem 2. Let 1 < p < 2. Assume that the assumptions (A1) and (A2) are
satisfied. Then the p—Laplacian BVP (1.1) possesses a unique solution on J as long
as

41P dy|TB=" |dy| TR
LB+1)  2lei[T(B)  2|ea|(B)

AT by |T* 1 |by| T !

[F(ochl) 2|a;|T(a)  2|ax|T(ov)

Proof. We consider the operator P : C(J,R) — C(J,R) defined by (3.11). We shall

show that P is a contraction.
For each r € J and v;,v; € C(J,R), using Lemma 2 and (3.14), we get

ro,B =

] (q— DM "Ly < 1. (3.17)

[(Po1) (1) — (Po2) ()]
< (13)/0 (t =) @g (Howv, (5)) = 0 (Hwy (5)) lds

b [ (50 0y (s (5) — 0y (Ha e (5) s
F(B) (Pq W01 (Pq W, 0o

t

+ z\cl||rd(1p|>_1) /OT B219, (Hapo, (5)) — 0g (Hap, (5)) |ds

+ 1"(1[3) /OT §B-1 10g (Hw v, (5)) — 0g (Hw v, (5)) |ds

+W/T(T—)B_2I H. —o, (H d
2|e2T(B—1) Jo )P 21 Qg (Hw v, (5)) — g (Haw v, (5)) |ds

i T =910y (o, 9) — 0 (g 6) s

(g—)M**?

< 5E /0 (t = )8~ [Hap v, (5) — Hopo, (5)|ds
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_ xq—2
(qfl‘g[]:[)q/T(s_t) - |HW01( ) —Han, (5)|ds
— *q—2
’d;\cllrlM / P72 Hap, (5) = Hyp, (5)|ds
_ *q—2
+ (Flggq /0 B H oy v, (5) — Hop oy (5)|ds

J— * 72
|d§||(cqzll“(lﬁ)]‘:[ 1q) /OT(T — )P |Hap, (5) — Hup , (5)|ds

(g—1)M"?

T -
+F(B)/0 (T =)™ [Hw,, (s) = Hw,v, (s)ds.  (3.18)

Using the assumption (A2), one obtain

[Haw,v, (1) = Hap v, (7)]

< F(100/0[(t—s)°tllfw(s,m(s)) — W (5,02(s)) |ds
1 T
+ Fm)/t (s—1)* "W (s,01(5)) — W (s,02(5)) |ds

|b1] T o
S o W (9) = W va(o) s

1 T o
+F(a)/0 S (5,01 (s)) — W (5,09(s)) |ds

|bs r o
+2rrr<oc—1>/o (T )" 72| (5,01(5) — W (5,02(s)) Ids
+F(1a)/OT(T—S)O‘—II‘W(S’UI(S))—W(S,Dz(S))|ds

[ 4T |by|T*" |by|T* !
“|I(a+1) 2|aT'(a)  2|axT'(a)
By substitution from (3.19) into (3.18), we obtain that

:|Lle)1—1)2||. (3.19)

[Pv1 — Pva|| < Qg pllv1 — V2.

By virtue of (3.17), we infer that P is a contraction. Hence, by the Banach’s fixed
point theorem, P has a unique fixed point which is the unique solution of the p—
Laplacian BVP (1.1). The proof is completed. O

4. EXPLANATORY EXAMPLE

In this section, we examine the applicability of the theoretical results.
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Example 1. Consider the following BVP:

1 3
5697 (01 (f§010()) ) = ki, refo.1],
/

3 3
0s ( *6D10() | li=0— <(Pg <Rg@fu(1)> =0 =0,
3 / “4.1)
0s ( KGDI0() ) =1+ <<Pg (RSQ?U(I)» =1 =0,
v(0) —v'(0) =0,
[ u(1)+v'(1) =0,

HCI‘C,OC:%,B:%,T:l,p:%,q:4,a1 :azzbl :bQZC] :CQZdl :dzzl.
! [v]
(1+5¢)2 14|

Foreacht € [0,1] and v € R, we get |W (£,0) | < 5.
Additionally, for each 7 € [0, 1] and v;,v; € R, one has

W(t,0) =

1
‘W(l,’l)])—W(l‘,l)l)’ < %‘Dl —1)2‘.

Therefore, the assumptions (A1) and (A2) hold true with Ly = Ky = %.
Furthermore, one obtain that M* = 0.1410473959 and Qg ~ 0.0435 < 1.
Hence, by Theorem 2, the p—Laplacian BVP (4.1) has a unique solution on [0, 1].
Finally, by virtue of Definition 5, the inequality (3.12) proves that there exists a

real number £ satisfies

4 1
k> x (0.1410473959)%,
= [ram tram) :
which implies that k£ > 0.01450. Hence, by Theorem 1, the p—Laplacian BVP (4.1)
has a solution on [0, 1].
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