
Miskolc Mathematical Notes HU ISSN 1787-2405
Vol. 23 (2022), No. 1, pp. 339–362 DOI: 10.18514/MMN.2022.3787
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Abstract. This paper presents new geometric viewpoints to Chen chaotic system. Firstly, the
existence of two nontransverse homoclinic orbits in Chen system is rigorously proved beyond
the classical parameters. Secondly, combined with the theory of tangent bundle, a new geometric
viewpoint is given to explore chaos mechanism of Chen system.

The fundamental geometric definition of tangent bundle and the essential role of nonlinear
connection between the tangent space and the base space are described. By introducing the geo-
metrical viewpoints of second order system governed by Lie-Poisson equation, some geometric
invariants of Chen system can be obtained. Furthermore, the torsion tensor as one of the geomet-
ric invariants is obtained, and it gives the geometrical interpretation to the chaotic behaviour of
Chen system.

Finally, the torsion tensor of Chen system and Lorenz system are also compared. The obtain-
ing results show that torsion tensor change will lead the Chen system from periodic to chaotic,
which is not found in Lorenz system.

2010 Mathematics Subject Classification: 34A26; 34A34; 34C37; 53B40; 53C60

Keywords: Chen system, homoclinic orbit, torsion tensor, tangent bundle, chaos

1. INTRODUCTION

In the second half of the 20th century, nonlinear science has achieved unpreceden-
ted vigorous development, which is regarded as the ”third revolution” in the history
of natural science. Chaos as one of the subjects of nonlinear science has been al-
ways widely concerned, which has been widely applied in secure communication,
biological science, engineering technology and other fields. The Lorenz system is
the first classical chaos system that was proposed by the famous meteorologist E. N.
Lorenz in 1963 [19], which has a fundamental significance in the development of
chaos. Since then, a increase number of literature are devoted to the study of Lorenz
system and Lorenz-like system (e.g. Lorenz system [19], Chen system [4], Lorenz
system family [3]). Among them, the most peculiar is the Chen system with a similar
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but topologically nonequivalent to Lorenz system [4, 5, 23], which is the dual system
of Lorenz system [3]. It was discovered by G.R. Chen in 1999 and has more complex
topological structure and dynamic behaviour than Lorenz system. Chen system is
given by  ẋ1 = a(x2− x1)

ẋ2 = (c−a)x1 + cx2− x1x3
ẋ3 = x1x2−bx3.

(1.1)

where a, b, c are positive real numbers. When a = 35, b = 3 and c = 28, the corres-
ponding typical numerical chaotic attractor is shown in Fig. 1.
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FIGURE 1. The chaotic attractor of Chen system (1.1) with (a,b,c) =
(35,3,28) and initial conditions (x1(0),x2(0),x3(0)) = (−10,0,37).

There have been already a sea of investigations and studies of Chen system (1.1),
for example, bifurcation analyses [14, 20, 23], global analyses [17, 21, 30], the com-
pound topological structure[16, 30], chaotic attractors [23, 31]. In particular, the
literature [7], based on KCC-theory, revealed that the underlying chaotic evolution of
Chen system by quantitatively described the behavior of the second KCC-invariant.

On the one hand, homoclinic orbits and heteroclinic orbits are important concepts
in the study of the bifurcation of vector fields and chaos. Many chaotic behaviours of
a complex system are related to the existence or nonexistence of these kinds of orbits
in the system. In the literatures [10,11,13,18], the existence of nontransverse homo-
clinic orbits of Chen system has been well proved. Using Fishing principle, which
ideas are from [17], the obtained results showed that when a > c, Chen system either
has homoclinic orbits with 2a > b or has no homoclinic orbits with b > 2a. But what
happens when c > a, which is rarely reported. On the other hand, nowadays, differ-
ential geometry has become a practical tool in the study of the complexity of typical
chaotic systems. Some good results have been reported in analysing the trajectory
behaviour of chaotic systems from the viewpoint of tangent bundle. The literature
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[22] has successfully described the chaotic behaviour of Lorenz system on the tan-
gent space. In [27], the aperiodic behaviour of Rikitake system can be expressed by
torsion tensor based on the geometrical unified theory. Moreover, the literature [28]
shown that a torsion tensor as one of the geometrical invariants, relates to the chaotic
behaviour characterized by the Rayleigh number, and results from the decomposi-
tion from the second order system to the tangent space (state space) and base space
(configuration space), respectively. The above studies indicate that it is feasible and
beneficial to discuss the dynamic behaviour of chaotic systems on the tangent bundle.
To our knowledge, the dynamic analysis of the Chen system on the tangent bundle
has rarely been studied in the literature.

In this paper, on the one hand, the existence of nontransverse homoclinic orbits
in Chen system under specific parameter conditions with c > a has been rigorously
proven.

On the other hand, we mainly focus on analyzing the relationship between the
characteristics of orbit of Chen system and the torsion tensor from the viewpoint of
tangent bundle. According to geometric theory, the solution of Chen system can be
regarded as a trajectory on the tangent bundle, from which we can calculate the geo-
metric invariants of the Chen system. The advantage of this method is that it uses
geometric invariants to qualitatively explore the chaos mechanism of the Chen sys-
tem in 6+1 dimensional tangent space, and the results obtained are more detailed and
intuitive than in original 3+1 dimensional Euclidean space. Moreover, the changing
trend and degree of the system trajectory can be observed more clearly in the tangent
space. Different from the way of parameter selection of Lorenz system [28], one has
been considered selecting three regions near the classical value of Chen system to
discuss the relationship between the change of torsion tensor and the dynamic beha-
viour. The differences of dynamics and torsion tensor between Lorenz system and
Chen system has been explored, the obtained results has shown that Chen system has
more complex dynamics than Lorenz system, which can be explained geometrically
by the change of torsion tensor.

These results may give a contribution in an understanding of the geometric mech-
anism for chaos of the system.

The present paper is organized as follows. In Section 2, geometric definitions for
tangent bundle and geometric quantities in the non-holonomic system are described.
In Section 3, the existence of two nontransverse homoclinic orbits in Chen system is
rigorously proved. In Section 4, the geometric quantities of Chen system are given
and a relation between the chaotic behaviour of Chen system and the torsion tensor is
discussed. Moreover, the torsion tensors of Lorenz and Chen systems are compared.
In Section 5, the conclusion of this paper is given.



342 XIAOTING LU, YONGJIAN LIU, AIMIN LIU, AND CHUNSHENG FENG

2. TANGENT BUNDLE VIEWPOINT OF THE CHEN SYSTEM

In this section, we introduce the related definitions, notions and formulas of the
tangent bundle [28], including nonlinear connection, connection coefficient, torsion
tensors, curvature tensors, et.al. One will need them in Section 4. In this article,
Einstein’s summation convention is used.

In the following, a non-holonomic system and a holonomic system are given by
(x)-field and (ṗ)-field, respectively. In addition, the coordinate indices in the non-
holonomic system is represented by α, β, γ, δ, ε, · · · , while the coordinate indexes in
the holonomic system is represented by i, j, k, · · · .

2.1. Geometric definitions for tangent bundle

Let M be the m-dimensional Ck manifold, Tp(M) be the tangent space of M at
point p and mark T (M) =

⋃
P∈M Tp(M) = {Xp ∈ Tp(M) | P ∈M}. According to the

definition in [1], (T (M), π, M), or simply T (M), is called the tangent bundle on M. π

is called the natural mapping. Tp(M) is the fiber of T (M) at point p.
Firstly, the coordinate systems of holonomic system are defined on a tangent

bundle, and the geometric descriptions are obtained. Then, the coordinates on a
base manifold M and the fiber coordinates are denoted by (pi) and (ṗi) = (dpi/dt),
respectively. We also call that the manifold are spanned by the coordinates (pi) and
(ṗi), which are regarded as (p)-field and (ṗ)-field, respectively. Then, (pi, ṗi) rep-
resents the coordinates that they are defined on the total space or the tangent bundle
T M.

In order to illustrate the essence of the nonlinear connection, a definition is intro-
duced as follows.

Definition 1 ([2]). A non-linear connection on the tangent bundle T M is a sub-
bundle (HT M,τH ,T M) of the tangent bundle (T T M,τ,T M) such that on fibers, we
have

TuT (M) = HuT M⊕VuT M,∀u ∈ T M, (2.1)

where HuT M and VuT M are the horizontal distribution and the vertical distribution,
respectively. ⊕ is the Whitney sum.

Thus, a non-linear connection N on T M induces the tangent space TuT (M) to
produce as the direct sum decomposition of relation (2.1). For a given non-linear
connection (HT M) or N, we always have a natural basis and its dual basis to adapt
the relation (2.1). They are given as following

(dpi,δṗi) = (dpi,d ṗi +Ni
jdp j), (2.2)

(
δ

δpi ,
∂

∂ṗi ) = (
∂

∂pi −N j
i

∂

∂ṗ j ,
∂

∂ṗi ), (2.3)

where Ni
j is the component of the nonlinear connection.
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According to the result in the literature [2], there is canonical isomorphism between
two tangent spaces TpM and TqM at p,q∈M, which will be called a parallel transport
it is equivalent to existing a linear connection on the manifold M. This means that we
can define a parallel transport between TuT M and TvT M for two points u,v∈ T M that
preserves the above decomposition of (2.1). The linear connection, corresponding to
such a parallel transport, is called a Finsler connection (or a N-linear connection) on
T M. These functions Ni

j,F
i
jk,C

i
jk are called the local coefficients of a Finsler connec-

tion DΓ = (F i
jk,N

i
j,C

i
jk).

With respect to the adapted frames (2.2) and (2.3), the connection coefficients F i
jk

and Ci
jk are called horizontal and vertical connection coefficients, respectively [2],

and are denoted by (F i
jk,C

i
jk) on T M. These connections preserve the horizontal and

the vertical distributions, and are given by the covariant derivative for an arbitrary
vector field V i [2]:

DV i = dV i +V j(F i
jkdpk +Ci

jkD ṗk).

Dṗi = d ṗi +Ni
jdp j.

(2.4)

In this study, Chen system is regarded as a system of second order differential equa-
tions. Then, by using equations (2.7) and (2.8) in section 2.2, the second-order differ-
ential equations can be related to the Berwald connection[1]. Thus, in this article, one
considers that the connection coefficients F i

jk and Ci
jk of the Chen system are the Ber-

wald connection. A Finsler connection DΓ = (F i
jk,N

i
j,C

i
jk) is reduced to a Berwald

connection when Ci
jk = 0, and sometimes is represented by (F i

jk,N
i
j,0). Moreover, in

this case, F i
jk is a function of pi or constant.

2.2. Geometric quantities in the non-holonomic system

The equation of motion of the differential equation is given by

dpi

dt
= k(i) ṗi, (2.5)

d ṗi

dt
+2Gi(p j, ṗ j) = 0, (2.6)

where pi and ṗi can be interpreted geometrically as the coordinates of the base space
and tangent space, respectively. Gi is a smooth function and k(i) is a constant, where
k(i) ṗi does not sum.

Introducing the non-holonomic transformation defined on TM as follows

pα = pα(pi), (2.7)

xα = Xα
i ṗi, ṗi = X i

αxα, (2.8)
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where Xα
j X j

β
= δα

β
, X i

α = (X i
1,X

i
2,X

i
3) , and Xα

i = (X1
i ,X

2
i ,X

3
i ). Using equations (2.7)

and (2.8), equations (2.5) and (2.6) are converted to

dpi

dt
= X i

αxα, (2.9)

dxα

dt
+2Ḡα(pβ,xγ) = 0. (2.10)

Then, taking the derivation of both sides of Eq. (2.8) with respect to t, and comparing
the obtained result with Eq. (2.10) to get

Ḡα = X i
αGi− 1

2
∂X i

α

∂p j ṗi ṗ j. (2.11)

The nonlinear connection and the connection coefficient are defined by the function
Ḡα as

N̄α

β
=

∂Ḡα

∂xβ
, F̄α

βγ
=

∂2Ḡα

∂xβ∂xγ
. (2.12)

The paths of equations(2.9) and (2.10) are defined by

dxα

dt
+ N̄α

β
xβ + N̄α

0 = 0, (2.13)

here, N̄α
0 = 2Ḡα− N̄α

β
xβ is called the first invariant which indicates external force. If

the nonlinear connection is first-order homogeneous in xα, then the nonlinear con-
nection becomes N̄α

β
= F̄α

βγ
xγ. The torsion tensor as one of the geometric invariants is

defined by

R̄α

βγ
=

δN̄α

β

δpγ
−

δN̄α
γ

δpβ
. (2.14)

According to the literature [1], similarly to the holonomic system, a Finsler connec-
tion DΓ = (F̄α

βγ
, N̄α

β
,C̄α

βγ
) has only three local components R̄α

δβγ
, P̄α

δβγ
and S̄α

δβγ
, which

are given by

R̄α

δβγ
=

δF̄α

δβ

δpγ
−

δF̄α

δγ

δpβ
+ F̄ε

δβ
F̄α

εγ− F̄ε

δγ
F̄α

εβ
+C̄α

δε
R̄ε

βγ
,

P̄α

δβγ
=

∂F̄α

δβ

∂xγ
−

δC̄α

δγ

δpβ
+ F̄ε

δβ
C̄α

εγ + F̄ε

γβ
C̄α

δε
+C̄α

δε
P̄ε

αγ,

S̄α

δβγ
=

∂C̄α

δβ

∂xγ
−

∂C̄α

δγ

∂xβ
+C̄ε

δβ
C̄α

εγ−C̄ε

δγ
C̄α

εβ
.

When C̄α

βγ
= 0 in a Finsler connection DΓ = (F̄α

βγ
, N̄α

β
,C̄α

βγ
), this Finsler connec-

tion is reduced to a Berwald connection. Therefore, the Berwald connection DΓ =
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(F̄α

βγ
, N̄α

β
,0) has only two nonzero components of curvature P̄α

δβγ
and R̄α

δβγ
, and these

are given by

P̄α

δβγ
=

∂F̄α

δβ

∂xγ
, (2.15)

R̄α

δβγ
=

δF̄α

δβ

δpγ
−

δF̄α

δγ

δpβ
+ F̄ε

δβ
F̄α

εγ− F̄ε

δγ
F̄α

εβ
. (2.16)

3. NONTRANSVERSE HOMOCLINIC ORBITS

In this section, one investigates homoclinic orbits in Chen system (1.1) within a
specific parameter range by the generalized Melnikov method, which was developed
by Wiggins and Holmes [25]. It’s important to point out that a rigorous proof that
the existence of periodic orbits and homoclinic chaos in the periodic forced Chen
system under certain parameter conditions has been studied in literature [6]. There
are similar results in Lorenz system [15], the diffusionless Lorenz system [24] and
a special system with two stable focal points [29], etc. It should be pointed out that
these focus on the case that c > a, which is different from the previous rich results
[10, 11, 13, 17, 18] that c < a.

Under the transformation z→ z−a+ c, system (1.1) becomes ẋ = a(y− x)
ẏ =−xz+ cy
ż = xy−bz−b(c−a).

(3.1)

Introducing the rescaling x→ ax
ε

, y→ ay
−ε2 , z→ az

−ε2 , t → εt, ε = a√
b(c−a)

, system

(3.1) becomes 
ẋ =−y− εx
ẏ =−xz+ ε

c
a y

ż = xy+ ε(−b
a z+1).

(3.2)

To ensure the sufficient smallness of ε, one studys study this dependency here. When
the parameters c� a, one obtains that 0 < ε� 1. Thus, the approximate homoclinic
orbits are obtained as analytical solutions of the Chen system at the value ε = 0.
Moreover, unlike the Lorenz system, which is known to be Levinson dissipative (i.e
there exists a global bounded absorbing set containing global Lorenz attractor) for
all positive values of parameters [9], the Chen system is Levinson dissipative only
when a+b > c > 0 [12] and in general could have unbounded trajectories tending to
infinity. The dissipative condition of the Chen system should be taken into account
when studying possible existence of homoclinic orbits, which is a crucial difference
between Lorenz system and Chen system. When the parameters c� a, Chen system
is not disspative in the sense of Levinson dissipative, In other words, Chen system
has unbounded trajectories tending to infinity. That is, the above definition of ε is
reasonable.
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When ε = 0, system (3.2) can be seen as a three dimensional generalized Hamilto-
nian system

d
dt

 x
y
z

=

 0 0 −y
−z 0 0
y 0 0

 x
0
1

= J

 ∂H
∂x
∂H
∂y
∂H
∂z


with Hamiltonian function

H(x,y,z) = z+
x2

2
= A

and Casimir function
C(x,y,z) = y2 + z2 = r2.

Let r > 0 and make a polar-coordinate transformation x = x
y = r cos(θ− π

2 )
z = r sin(θ− π

2 ).
(3.3)

Then, system (3.2) is transformed into θ̇ = x+ ε( c
a sinθcosθ+ b

a sinθcosθ+ sinθ

r )
ẋ =−r sinθ− εx
ṙ = ε( rc

a sin2
θ− br

a cos2 θ− cosθ).
(3.4)

Then, the following conclusion holds.

Theorem 1. Let a, b, c are positive real numbers and 3a+c > b/2. If c > a, for ε

sufficiently small near the two homoclinic orbits Γh± of system (3.4)ε=0, system (3.4)
possesses two nontransverse homoclinnic orbits near y2 + z2 = r2

∗, where

r∗ =
3a

2(3a+ c)−b
.

Proof. System (3.4)ε=0 is a Hamiltonian system, and its Hamiltonian function is
H(x,r,θ), where H(x,r,θ) = x2

2 − r cosθ = A. Therefore, when A = r, the two homo-
clinic orbits Γ1

h± of the system (3.4)ε=0 are connected to the saddle point (r,π,0), and
the parameter expression is{

θh(t) =±2arctan(sinh
√

rt)
xh(t) =±2

√
r(sech

√
rt). (3.5)

From (3.4) and (3.5), Melnikov function of (3.4)

M(r) =
∫ +∞

−∞

[
−x2

h(t)+
br
a

sin2
θh(t)cosθh(t)+ sin2

θh(t)+ cos2
θh(t)

]
dt

+
∫ +∞

−∞

[
br
a

cos3
θh(t)−

cr
a

sin2
θh(t)+ cosθh(t)+

br
a

cos2
θh(t)

]
dt
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=−8
√

r+
4b
√

r
3a
− 8c
√

r
3a

+
4√
r
.

Thus, M(r∗) = 0, ∂M
∂r |r=r∗ 6= 0, where r = r∗ = 3a

2(3a+c)−b . For 3a + c > b/2, the
results can be obtained from Lemma 4.2 in the liberature [25]. Namely, for ε suffi-
ciently small near the two homoclinic orbits ±Γ1

h± of system (3.4)ε=0, system (3.4)
possesses two non-transverse homoclinic orbits. �

Remark 1. From [15], it is known that if r � σ, near the two homoclinic or-
bits Γ1

h± of the perturbed system (2.5)ε=0 of the Lorenz system on the phase cylinder
w2+z2 = 1, there exist two homoclinic orbits Γ1

h± connecting the saddle point (1,0,0)
of (2.5)ε=0 when σ = 1

3 . In this paper, the condition for the existence of non-
transverse homoclinic orbit in the Chen system is stronger than that in the Lorenz
system, which can be revealed from the fact that the dissipation condition of the
Chen system is stronger than that of the Lorenz system.

4. CHAOTIC BEHAVIOR AND GEOMETRIC QUANTITIES

In this section, from the geometric viewpoint of tangent bundle, we analyze the
chaotic complexity of Chen system. The relevant preliminary is briefly introduced
in Section 2. These may give a contribution in an understanding of the geometric
mechanism for chaotic systems.

4.1. Convert to a second order differential equation

Rewrite Chen system into a set of second order differential equations. Firstly,
system (2.8) is equivalent to x1 = X1

1 ṗ1 +X1
2 ṗ2 +X1

3 ṗ3 = ṗ1

x2 = X2
1 ṗ1 +X2

2 ṗ2 +X2
3 ṗ3 = ṗ2

x3 = X3
1 ṗ1 +X3

2 ṗ2 +X3
3 ṗ3 = ṗ3.

(4.1)

where Xα
j X j

β
= δα

β
. Secondly, making the following transformation to system (1.1)

x1→ x1,x2→ x2,x3→ x3. (4.2)

Then system (1.1) can be rewritten as p̈1 = a(ṗ2− ṗ1)
p̈2 = (c−a)ṗ1 + cṗ2− ṗ1 ṗ3

p̈3 = ṗ1 ṗ2−bṗ3.
(4.3)

From (4.1), one sees that system (4.3) is equivalent to ẋ1 = a(x2− x1)
ẋ2 = (c−a)x1 + cx2− x1x3

ẋ3 = x1x2−bx3.
(4.4)
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Introduce a linear substitution of variables to system (4.4)

x1→ x1,x2→ x2,x3→ x3 + c. (4.5)

Then system (4.4) can be rewritten as follows
dx1

dt = ax2−ax1

dx2

dt =−ax1 + cx2− x1x3

dx3

dt = x1x2−bx3−bc.
(4.6)

Note that x1, x2, x3 are defined in the tangent space, and x1 = ṗ1, x2 = ṗ2, x3 = ṗ3.
According to literature [8], one sets principle moments of inertia for system (4.6)

as follows

I = diag(I1, I2, I3) = diag(1,(1+ e3)
−1,(1+ e1 + e3)

−1) = diag
(

1,
1
2
,
1
2

)
.

Hamiltonian function are defined as H = K +U , K = 1
2((x

1)2 + 2(x2)2 + 2(x3)2),
U = ax3. The Lie-Poisson brackets are given by

{x,H}= x×5H =

 ax2

−x1x3−ax1

x1x2

 .

Therefore, system (4.6) can be described as the Kolmogorov system. The specific
form of the Kolmogorov system is rewritten from Chen system as follows

ẋ =

 ẋ1

ẋ2

ẋ3

=

 ax2

−x1x3−ax1

x1x2

−
 ax1

−cx2

bx3

+

 0
0
−bc

= {x,H}−Λx+ f ,

where Λ = diag{a,−c,b} and f = (0,0,−bc)T .

4.2. Geometric quantities

Chen system has been rewritten as the Lie-Poisson equcation in Section 4.1, which
means that the Chen system is a non-holonomic system with torsion tensor. Similar to
Lorenz system [28], Chen system can be regarded as a unified system of the tangent
space and the base space.

By comparing equation (2.10) with equations (4.6), Chen system can be given by
three equations of the form

dxα

dt
+2Ḡα(pβ,xγ) = 0, (α,β,γ = 1,2,3),

where

Ḡ1 =
1
2
(ax1−ax2), Ḡ2 =

1
2
(x1x3 +ax1− cx2)
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and

Ḡ3 =
1
2
(−x1x2 +bx3 +bc).

Therefore, the nonlinear connection and the connection coefficient are given by

N̄1
1 =

1
2

a, N̄1
2 =−1

2
a, N̄1

3 = 0, N̄2
1 =

1
2
(x3 +a), N̄2

2 =−1
2

c,

N̄2
3 =

1
2

x1, N̄3
1 =−1

2
x2, N̄3

2 =−1
2

x1, N̄3
3 =

1
2

b
(4.7)

and

F̄2
11 = F̄2

12 = F̄2
32 = F̄2

33 = 0, F̄3
11 = F̄3

11 = F̄3
13 = F̄3

23 = F̄3
22 = 0, F̄1

βγ
= 0,

F̄2
2γ = 0, F̄3

3γ = 0, (β,γ = 1,2,3), F̄2
13 = F̄2

31 =
1
2
, F̄3

12 = F̄3
21 =−

1
2
,

(4.8)

respectively. The first invariants of Chen system are obtained as follows

N̄1
0 =

1
2
(ax1−ax2), N̄2

0 =
1
2
(ax1− cx2), N̄3

0 = bc− 1
2

bx3.

Just to make it easier to compute the torsion tensor, we firstly give the following
result.

Theorem 2. The form of Ḡα in Chen system is given by

Ḡα = F̄α

βγ
xβxγ +Λ

α

β
xβ + f α, (4.9)

where Λα

β
and f α represent the dissipation term and external force, respectively.

Proof. Noting that α = 1, N̄1
1 = 1

2 a, N̄1
2 = −1

2 a, N̄1
3 = 0, F̄1

βγ
= 0, (β,γ = 1,2,3).

The first equation of the system (4.6) can be seen as

dx1

dt
+2F̄1

βγ
xβxγ +2N̄1

1 x1−2N̄1
2 x2 +2 f 1 = 0.

Further,

dx1

dt
+2F̄1

βγ
xβxγ +2Λ

1
1x1 +2Λ

1
2x2 +2Λ

1
3x3 +2 f 1 = 0,

where Λ1
1 = N̄1

1 , Λ1
2 =−N̄1

2 , Λ1
3 = 0, f 1 = 0. Consequently,

dx1

dt
+2(F̄1

βγ
xβxγ +Λ

1
β
xβ + f 1) = 0.

From equation (2.10), one obtains Ḡ1 = F̄1
βγ
+Λ1

β
xβ + f 1.

When α = 2 or 3, similarly results are obtained as follows

dx2

dt
+2(F̄2

βγ
xβxγ +Λ

2
β
xβ + f 2) = 0
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and

dx3

dt
+2(F̄3

βγ
xβxγ +Λ

3
β
xβ + f 3) = 0,

respectively. Therefore, we obtain Ḡα in Chen system as the following form

Ḡα = F̄α

βγ
xβxγ +Λ

α

β
xβ + f α.

�

From the above Theorem 2, formula (2.14) can be rewritten as follows

R̄α

βγ
= N̄δ

β
F̄α

δγ
− N̄δ

γ F̄α

δβ
. (4.10)

The curvature tensors of Chen system are given by

P̄α

δβγ
=

∂F̄α

δβ

∂xγ
= 0, (α,β,δ,γ = 1,2,3).

From equation (2.16), another the curvature tensors of the Chen system are obtained:

R̄α

δβγ
=


0, for δ,β,γ = 1,2,3, and α = 1;
−1

4 , for δ = 1,β = 2,γ = 1, and α = 2;
0, for δ 6= 1,β 6= 2,γ 6= 1, and α = 2;
−1

4 , for δ = 1,β = 3,γ = 1, and α = 3;
0, for δ 6= 1,β 6= 3,γ 6= 1, and α = 3.

4.3. Discuss the chaotic behavior and torsion

In this subsection, the relations between the chaotic behaviour and the torsion for
the Chen system are discussed on the base space and the tangent space, respectively.
Some good results have been reported in discussing the relationship between the
torsion and the trajectory behaviour of dynamical systems in the base space [26–28].

Firstly, one analyses Chen system on the base space. From equation (2.13), the
torsion and nonlinear connection with the first invariant can describe the discrepancy
of Chen system as follows

∆xα =
∮
c

dxα =−
∮
c

(N̄α

β
Xβ

i dpi + N̄α
0 dt) =−

∮
c

N̄α

β̂
X β̂

î
dpî 6= 0, (4.11)

where ∆xα expresses the discrepancy along the trajectory c = (xα(t)) in the (x)-field.
Here, we put (pî) = (pi, p0) = (pi, t), X α̂

î
= (Xα

i ,X
0
0 ) = (Xα

i ,1) and Xα
0 = X0

i = 0.
Therefore, using the Stokes’ theorem, relation (4.11) can be rewritten as

∆xα =−
∮
c

N̄α

β̂
X β̂

î
dpî =

1
2

x

S

R̄α

β̂γ̂
dpβ̂∧dpγ̂ 6= 0, (4.12)
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where S is a region inside the trajectory c. Here, we put (pβ̂) = (pβ, t),

R̄α

0β
=

δN̄α
0

δpβ
−

δN̄α

β

δp0 , and
δ

δp0 =
∂

∂t
− N̄γ

0
∂

∂xγ
. (4.13)

Thus, the torsion tensor R̄α

βγ
on the base spaces expresses the discrepancy which im-

plies the trajectory of Chen system is not periodic.
In order to do better next analysis, the components of the torsion tensor are calcu-

lated as follows.

Theorem 3. If the torsion tensor R̄2
32 satisfy a 6= 0, then the torsion tensor R̄α

βγ
of

Chen system does not vanish.

Proof. Combine equations (4.7), (4.8) and (4.10), one can calculate that
R̄1

βγ
= N̄δ

β
F̄1

δγ
− N̄δ

γ F̄1
δβ

= 0 holds for all δ,β,γ ∈ {1,2,3}.
Similarly, one can obtain that R̄2

βγ
= N̄δ

β
F̄2

δγ
− N̄δ

γ F̄2
δβ

. From N̄3
1 F̄2

32− N̄3
2 F̄2

31 = 0,

(−1
2 x2)− (−1

2 x1).1
2 = 1

4 x1 and N̄δ
1 F̄2

δ2− N̄δ
2 F̄2

δ1 = 0 for δ ∈ {1,2}, one obtains that
R̄2

12 =
1
4 x1. The others can be given by R̄2

13 =
1
4(a−b) and R̄2

32 =
1
4 a.

From R̄3
βγ

= N̄δ

β
F̄3

δγ
− N̄δ

γ F̄3
δβ

, one gains that N̄2
1 F̄3

23 − N̄2
3 F̄3

21 = 1
4 x1 and R̄3

βγ
=

N̄δ

β
F̄3

δγ
− N̄δ

γ F̄3
δβ

= 0 for δ ∈ {1,3}, thence, R̄3
13 =

1
4 x1. One also acquires that N̄1

2 F̄3
11−

N̄1
1 F̄3

12 = 1
4 a, N̄2

1 F̄3
23− N̄2

3 F̄3
21 = 1

4 x1 and N̄3
2 F̄3

31− N̄3
1 F̄3

32 = 0, thus, R̄3
21 = 1

4(a+ c).
From the above analysis, the torsion tensor R̄α

βγ
does not disappear because of R̄2

32 =
1
4 a 6= 0 (a 6= 0). �

Secondly, one will discuss a relation between the dynamics behavior of Chen sys-
tem and the torsion under three sets parameter conditions by means of the numerical
study. Based on the values of the components of the torsion tensor of under each
parameter condition, the corresponding Lyapunov exponent spectrum and bifurca-
tion diagram are drawn to describe complex dynamics characteristics of Chen system.
After transformation (4.5), the first two components of one of the non-zero equilib-
rium points of the original Chen system (1.1) and Chen system (4.6) are the same,
i.e., (x1,x2) = (x̄1, x̄1) = (

√
b(2c−a),

√
b(2c−a)). So we know from our previous

calculations that the torsion tensor doesn’t change under coordinate transformation
(4.5). In other words, studying the relationship between the dynamics of Chen system
(1.1) and the torsion tensor is equivalent to studying the Chen system (4.6). Next, we
only consider the torsion around at (x1,x2) = (x̄1, x̄1) = (

√
b(2c−a),

√
b(2c−a))

of Chen system (1.1) in the tangent space. From Theorem 3, one knows that R̄2
12 =

R̄3
13 =

1
4 x1. For brevity, we remark that 4R̄α

βγ
= R̂α

βγ
.

It should be noted that the three set of parameter values considered below are all
Levinson dissipative, i.e., all satisfying the parameters a+ b > c > 0 in the Chen
system.
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First case, fixing the parameters a = 35, b = 3 and letting c ∈ [20,28] in Chen
system, the values of the components of the torsion tensor with the change of the
parameter c are obtained, as shown in Fig. 2. It reveals that as R̂2

12, R̂3
13 and R̂3

21 go
up, R̂2

13 and R̂2
32 remain unchanged with increasing the value of parameter c. And it

can also be seen intuitively that the torsion R̂2
12, R̂3

13 and R̂3
21 are proportional to the

value of parameter c.
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FIGURE 2. The values of the components of the torsion tensor of Chen
system (1.1) with a = 35, b = 3 and c ∈ [20,28].

In Figs. 4, 6 and 8, computation of the Lyapunov exponent spectrums use wolf
algorithm, the period of time is 0.1, start and finish values of time are 0 and 4000,
respectively. When c ∈ [20,28], the corresponding Lyapunov exponent spectrum and
the bifurcation diagram of Chen system are shown in Figs. 3(a) and 3(b).
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FIGURE 3. (a) Lyapunov exponent spectrum with the initial conditions
(x1(0),x2(0),x3(0)) = (1.3,1.3,0.038) and (b) bifurcation diagram with
the initial conditions (x1(0),x2(0),x3(0)) = (1.15,3.5,3.3) for Chen sys-
tem with a = 35, b = 3 and c ∈ [20,28].

It can be observed that the bifurcation diagram coincides with the spectrum of
Lyapunov exponents. Fig. 3(a) shows that Chen system evolves from the periodic to
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chaotic for a very wide range of c. Combining Figs. 3(a) and 3(b), the dynamical
behaviors of Chen system can be clearly observed. When c = 20, the largest Lya-
punov exponents is almost equal zero, which implies that Chen system is periodic or
quasi-periodic. When c ∈ (20,28], the largest Lyapunov exponents is positive, which
means that Chen system is chaotic.

Second case, fixing the parameters a = 35, c = 28, and letting b ∈ [3,15], the
values of the components of the torsion tensor with the change of the parameter b are
given, as shown in Fig. 4. It displays that as R̂2

12 and R̂3
13 go up, R̂2

13 goes down, and
R̂2

13, R̂2
32 stay the same with increasing the value of b. And one can see that R̂2

12 and
R̂3

13 are proportional to parameter b but R̂2
13 is inversely proportional to parameter b.
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FIGURE 4. The values of the components of the torsion tensor of Chen
system with a = 35, c = 28 and b ∈ [3,15].

When b ∈ [3,15], the corresponding Lyapunov exponent spectrum and the bifurc-
ation diagram of Chen system are shown in Figs. 5(a) and 5(b). It can be observed
that the bifurcation diagram coincides with the spectrum of Lyapunov exponents.
Fig. 5(a) shows that Chen system evolves from the periodic to chaotic for a very wide
range of b. Combining Figs. 5(a) and 5(b), the dynamical behaviors of Chen system
can be clearly observed. When b ∈ [4,15], the largest Lyapunov exponents is almost
equal zero, which implies that Chen system is periodic or qusi-periodic. The Chen
system is chaotic in the sense that the largest Lyapunov exponents is positive when
b ∈ [3,4).

Third case, fixing the parameters b = 3, c = 28 in Chen system and letting a ∈
[30,40] varies, the values of the components of the torsion tensor with the change of
the parameter a are obtained, as shown in Fig. 6. It shows that R̂2

12 and R̂3
13 go down

slowly and others go up quickly with increasing the value of a. And it can also be
seen intuitively that the torsion R̄α

βγ
has a linear relationship with the parameter a.

When a∈ [30,40], the corresponding Lyapunov exponent spectrum and the bifurc-
ation diagram of Chen system are shown in Figs. 7(a) and 7(b). It can be observed
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FIGURE 5. (a) Lyapunov exponent spectrum with the initial conditions
(x1(0),x2(0),x3(0)) = (1.3,1.3,0.038) and (b) bifurcation diagram with
the initial conditions (x1(0),x2(0),x3(0)) = (1.15,3.5,3.3) for Chen sys-
tem with a = 35, c = 28 and b ∈ [3,15].
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FIGURE 6. The values of the components of the torsion tensor of Chen
system with b = 3, c = 28 and a ∈ [30,40].

that the bifurcation diagram coincides with the spectrum of Lyapunov exponents.
Fig. 7(a) shows that Chen system evolves from the periodic to chaotic for a very
wide range of b. Combining Figs. 7(a) and 7(b), the dynamical behaviours of Chen
system can be clearly observed. When a ∈ [30,34.3] and a = 37.4, the largest Lya-
punov exponents is almost equal zero, which implies that Chen system is periodic or
quasi-periodic. When a ∈ (34.3,37.4)

⋃
(37.4,40], the largest Lyapunov exponents

is positive, which means that Chen system is chaotic.
Therefore, basing on Figs. 3, 5, and 7 and then fixing

(a,b,c) = (35,3,20), (33,3,28), (35,10,28), (35,3,28),

respectively, the phase diagrams of Chen system are drawn as in Figs. 8, 9 and 10.
These figures display that the behaviour of Chen system evolves from the periodic to
chaotic coincide with the change of torsion.
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FIGURE 7. (a) Lyapunov exponent spectrum with the initial conditions
(x1(0),x2(0),x3(0)) = (1.3,1.3,0.038) and (b) bifurcation diagram with
with the initial conditions (x1(0),x2(0),x3(0)) = (1.15,3.5,3.3) for Chen
system with b = 3, c = 28 and a ∈ [30,40].
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FIGURE 8. Trajectory of Chen system with (a,b)= (35,3) and the initial
values (x1(0),x2(0),x3(0)) = (−2,3,8): (a) periodic for c = 20 and the
corresponding the components of the R̂2

12 = R̂3
13 ≈ 3.9; (b) chaos for c = 28

and the corresponding the components of the R̂2
12 = R̂3

13 ≈ 7.9.

In conclusion, these figures numerically show that the complex dynamic behavior
of the Chen system is expressed by the change of torsion tensor which change with
the parameters, and among them R̂2

12, R̂3
13 are obtained in the (x)-field. That is to say,

the torsion tensor R̄α

βγ
gives the geometrical interpretation of the complex dynamic

behavior of Chen system.
In order to better explore the complexity of dynamics and torsion tensor between

Lorenz system and Chen system, one concretely compares that the values of the
components of the torsion tensor of two systems in the form of a table as shown
in Table 1.

The results show that the four components of the torsion tensor of the two systems
are consistent, but the component of the torsion tensor R̂3

21 is particularly different,
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FIGURE 9. Trajectory of the Chen system with (a,c) = (35,28) and
initial values (x1(0),x2(0),x3(0)) = (−2,3,8): (a) periodic for b = 10 and
the corresponding the components of the R̂2

12 = R̂3
13 ≈ 14.5; (b) chaos for

b = 3 and the corresponding the components of the R̂2
12 = R̂3

13 ≈ 7.9.
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FIGURE 10. Trajectory of the Chen system with (b,c) = (3,28) and
initial values (x1(0),x2(0),x3(0)) = (−2,3,8): (a) periodic for a = 33 and
the corresponding the components of the R̂2

12 = R̂3
13 ≈ 8.3; (b) chaos for

a = 35 and the corresponding the components of the R̂2
12 = R̂3

13 ≈ 7.9.

which is equal to a− 1 in Lorenz system, and is equal to a + c in Chen system.
Therefore, we want to know what happens to the torsion tensor and dynamics of the
two systems when a and b are fixed and c takes different values?

Based on the torsion tensor is equal to the first component of the equilibrium point
of the two systems, let’s compare two systems from two perspectives.

In order to compare with Lorenz system, we fix the parameters a = 35 and b = 3.
With reference to Lorenz system (4.14) in tangent space [28] rewrite the system (4.4)
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TABLE 1. The values of the torsion tensor of Lorenz system and
Chen system

the components of the torsion tensor Lorenz system Chen system

R̂2
12 x1

0 x1

R̂3
13 x2

0 x2

R̂2
13 a−b a−b

R̂2
32 a a

R̂3
21 a−1 a+ c

into (4.15) as follows  ẋ1 = 35(x2− x1)
ẋ2 = c0x1− x1x3− x2

ẋ3 = x1x2−3x3,
(4.14)

 ẋ1 = 35(x2− x1)
ẋ2 = c0x1− x1x3− x2 +(c+1)x2 +(c−10− c0)x1

ẋ3 = x1x2−3x3.
(4.15)

Then the component of the torsion tensor corresponding to Table 1 is changed as
follows

TABLE 2. The values of the torsion tensor of Lorenz system and
Chen system with a = 35, b = 3 at the equilibrium point

the components of the Lorenz system Chen system
torsion tensor

R̂2
12 x1

0 =
√

3(c0−1) x1 =
√

3((c0−1)+(2c−34− c0))

R̂3
13 x2

0 =
√

3(c0−1) x2 =
√

3((c0−1)+(2c−34− c0))

R̂2
13 32 32

R̂2
32 35 35

R̂3
21 34 35+ c

As we all know, the Chen system is constructed by adding a simple state feedback
to the second equation of the Lorenz system [4]. Although the Lorenz system and
the Chen system have similar properties, there is difference between the two sys-
tems. From Table 2, one obtains that (x1)2 = (x1

0)
2 + 3(2c− 34− c0). The values

of the component R̂2
12 = R̂3

13 of the original Lorenz system only have a simple linear
relationship with c0, but in the Chen system their square have one more term, i.e,
3(2c− 34− c0) than the Lorenz system. Moreover, in this case, we find that when
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c0 = c ∈ [24,32], the two systems show different dynamic characteristics under the
same parameters and initial conditions as shown in Fig. 11. The Lorenz system is al-
ways stable, while the Chen system shows more complex dynamic behavior, that is,
from chaos to periodic. These indicate that the Chen system exhibits more complex
torsion tensor and dynamics than the Lorenz system.

Comparing Chen system with a = 35, b = 3 and Lorenz system with a = 10,
b = 8/3, the values of the components of the torsion tensor with the change of the
parameter c are given as shown in Figs. 2 and 12. And it’s clearly observed that the
torsion tensor R̂3

21 increases obviously from periodic to chaos of the Chen system
in Fig. 2, whereas it is constant of the Lorenz system in Fig. 12. In other words,
the Chen system evolves from the periodic to chaos is expressed by the change of
torsion R̂3

21, which is not found in Lorenz system. The above shows that the chaotic
mechanism of Chen system may be more complex than Lorenz system.

5. CONCLUSION

This paper presents a new perspective of dynamics analysis of Chen system. On
the one hand, by using the generalized Meinikov method, the existence of two non-
transverse homoclinnic orbits is proved of the Chen system (1.1) for 3a+ c > b/2
and c > a.

Based on the theory of tangent bundle, a new geometric method is proposed, and
the relationship between the complex dynamic behaviour in Chen system and the
torsion tensor has been discussed in this paper. Firstly, Chen system is transformed
into Kolmogorov system, which can be regarded as a set of second-order differen-
tial equations controlled by Lie-Poisson equations. Then, some geometric invariants
of Chen system are obtained by associating non-linear connection and connection
coefficients. Furthermore, through numerical study, the results show that the com-
plex dynamic behaviour of Chen system is expressed by the change of torsion tensor
which are proportional or inversely proportional to the parameters. And it should
be noted that R̂2

12 = R̂3
13 = x1 =

√
b(2c−a) are obtained in the (x)-field (i.e., tan-

gent space), which indicate that it is meaningful and effective to explore the dynamic
characteristic of Chen system on the tangent bundle. These mean that the torsion
tensor R̄α

βγ
gives the geometrical interpretation of the complex dynamic behaviour of

the Chen system. Finally, one concretely compares that the values of the components
of the torsion tensor of two systems as shown in Table 1 for exploring the complexity
of dynamics and torsion tensor between Lorenz system and Chen system. The results
show that torsion tensor change will lead the Chen system from periodic to chaotic,
which is not found in Lorenz system. These indicate that the chaotic mechanism
of Chen system may be more complex than Lorenz system. It is also hoped that
this paper will help to reveal the most essential geometrical structure of the chaotic
attractors.
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FIGURE 11. Trajectory of the system for (a,b) = (35,3) and c0 = c ∈
[24,32] with initial values (x1(0),x2(0),x3(0)) = (−3,2,20): (a) stable for
Lorenz system; (b) c ∈ [24,28] chaos and c ∈ [29,32] periodic for Chen
system.
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