Miskolc Mathematical Notes

# THE YANG-BAXTER MATRIX EQUATION FOR INVOLUTIONS 

RYSZARD R. ANDRUSZKIEWICZ AND ALICJA SMOKTUNOWICZ<br>Received 10 March, 2021


#### Abstract

In this paper we find all involutive solutions $X \in \mathbb{C}^{n \times n}$ of the Yang-Baxter matrix equation $A X A=X A X$, where $A \in \mathbb{C}^{n \times n}$ is a given involutory matrix. The construction is algorithmic. It is based on the concept of quadratic matrices. Algorithms for generating concrete involutive solutions of the Yang-Baxter matrix equation $A X A=X A X$ are also presented along with several examples.


2010 Mathematics Subject Classification: 15A06; 15A18; 15B99
Keywords: Yang-Baxter equation, involution, eigenvalues, quadratic matrices

## 1. Introduction

We recall that $A \in \mathbb{C}^{n \times n}$ is an involutory matrix (involution) if $A^{2}=I_{n}$, where $I_{n}$ is the $n \times n$ identity matrix. Let $\mathcal{K}_{n}$ denote the set of all involutory matrices of size $n$. The purpose of this paper then is to find all explicit involutive solutions $X$ of the Yang-Baxter matrix equation $A X A=X A X$, where $A$ is involution. Our research is inspired by the papers [5] and [7], where the general analysis of finding all explicit solutions of $A X A=X A X$ for given involutory $A$ has been given. In this paper we restrict our attention to involutory matrices $X$. This problem is related to the quantum Yang-Baxter equation (QYBE). We say that $Z \in \mathbb{R}^{\mathrm{m}^{2} \times \mathrm{m}^{2}}$ satisfies the QYBE if

$$
\begin{equation*}
\left(I_{m} \otimes Z\right)\left(Z \otimes I_{m}\right)\left(I_{m} \otimes Z\right)=\left(Z \otimes I_{m}\right)\left(I_{m} \otimes Z\right)\left(Z \otimes I_{m}\right) \tag{1.1}
\end{equation*}
$$

where $B \otimes C$ denotes the Kronecker product (tensor product) of the matrices $B$ and $C$ : $B \otimes C=\left(b_{i, j} C\right)$. That is, the Kronecker product $B \otimes C$ is a block matrix whose $(i, j)$ blocks are $b_{i, j} C$. Notice that if $Z$ is involution and satisfies (1.1), then $A=I_{m} \otimes Z$ and $X=Z \otimes I_{m}$ are involutions as well, and we have $A X A=X A X$.

The Yang-Baxter equation has many applications of modern physics, computer science and mathematics $([6,8,9])$, for example, in statistical mechanics, integrable

[^0]quantum field theory, condensed matter physics, quantum integrable models, quantum computation, to name a few. Many techniques for the construction of involutive solutions of the Yang-Baxter equation have been developed, see $[2-4,8]$.

For given $A \in \mathcal{K}_{n}$ we define the set $S_{n}(A)$ of all involutive solutions of the YangBaxter matrix equation thus:

$$
S_{n}(A)=\left\{X \in \mathcal{K}_{n}: A X A=X A X\right\} .
$$

Using the concept of quadratic matrices, see Theorem 2, we are able to find the explicit expressions of such solutions for all the case, see Theorems 3-6. This enables the development of methods, easy to implement, for generating concrete involutive solutions of the Yang-Baxter matrix equation, see Section 8.

First we present easily-checkable basic properties of the set $S_{n}(A)$.
Lemma 1. Let $A \in \mathcal{K}_{n}$. Then we have
(a): $A \in S_{n}(A)$,
(b): if $X \in \mathcal{S}_{n}(A)$ then $-X \in \mathcal{S}_{n}(-A)$,
(c): if $X \in \mathcal{S}_{n}(A)$ then $A$ and $X$ are similar; we have $X=(A X) A(A X)^{-1}$,
(d): if $P \in \mathbb{C}^{n \times n}$ is nonsingular, then $X \in S_{n}(A)$ if and only if $P^{-1} X P \in S_{n}\left(P^{-1} A P\right)$,
(e): if $A= \pm I_{n}$ then $S_{n}(A)=\{A\}$.

Assume that $A \in \mathbb{C}^{n \times n}$ is a given involution. Then $A$ is diagonalizable. According to Lemma 1 (b), there is no loss of generality in assuming that $A$ is not equal to $\pm I_{n}$, and there exists a nonsingular matrix $P \in \mathbb{C}^{n \times n}$ such that

$$
\begin{equation*}
A=P D P^{-1}, \quad D=\operatorname{diag}\left(I_{p},-I_{n-p}\right), \quad 1 \leq p<n, \quad n \leq 2 p \tag{1.2}
\end{equation*}
$$

Then we have $S_{n}(A)=\left\{P Y P^{-1}: Y \in S_{n}(D)\right\}$. Natural questions to ask about $S_{n}(D)$ then are: How many $Y \in \mathcal{S}_{n}(D)$ are there? and, how to find them? In general, the Yang-Baxter matrix equation has infinitely many solutions, see Example 1.

## 2. IDENTITIES FOR INVOLUTIVE SOLUTIONS OF $D Y D=Y D Y$

We would like to find $Y \in S_{n}(D)$, where $D$ is defined by (1.2). Partition $Y$ conformally with $D$ as

$$
Y=\left[\begin{array}{ll}
Y_{1} & Y_{2}  \tag{2.1}\\
Y_{3} & Y_{4}
\end{array}\right], \quad Y_{1}(p \times p)
$$

From Lemma 1 it follows that $D$ and $Y$ are similar, so $\operatorname{tr} Y=\operatorname{tr} D$, where $\operatorname{tr} Y$ denotes the trace of $Y$. This together with (1.2)-(2.1) gives

$$
\begin{equation*}
\operatorname{tr} Y_{1}+\operatorname{tr} Y_{4}=2 p-n \geq 0 \tag{2.2}
\end{equation*}
$$

Lemma 2. Let $D$ be given by (1.2) and $Y$ be partitioned as in (2.1). Then $D Y D=$ $Y D Y$ if and only if

$$
\begin{align*}
& Y_{1}^{2}-Y_{1}=Y_{2} Y_{3}  \tag{2.3}\\
& Y_{4}^{2}+Y_{4}=Y_{3} Y_{2} \tag{2.4}
\end{align*}
$$

$$
\begin{align*}
& \left(Y_{1}+I_{p}\right) Y_{2}=Y_{2} Y_{4},  \tag{2.5}\\
& Y_{3}\left(Y_{1}+I_{p}\right)=Y_{4} Y_{3} . \tag{2.6}
\end{align*}
$$

Proof. Compare the blocks of the following matrices:

$$
D Y D=\left[\begin{array}{cc}
Y_{1} & -Y_{2} \\
-Y_{3} & Y_{4}
\end{array}\right], \quad Y D Y=\left[\begin{array}{cc}
Y_{1}^{2}-Y_{2} Y_{3} & Y_{1} Y_{2}-Y_{2} Y_{4} \\
Y_{3} Y_{1}-Y_{4} Y_{3} & Y_{3} Y_{2}-Y_{4}^{2}
\end{array}\right] .
$$

Lemma 3. Let $Y$ be partitioned as in (2.1). Then $Y$ is an involution if and only if

$$
\begin{align*}
I_{p}-Y_{1}^{2} & =Y_{2} Y_{3},  \tag{2.7}\\
I_{n-p}-Y_{4}^{2} & =Y_{3} Y_{2},  \tag{2.8}\\
Y_{1} Y_{2} & =-Y_{2} Y_{4},  \tag{2.9}\\
Y_{3} Y_{1} & =-Y_{4} Y_{3} . \tag{2.10}
\end{align*}
$$

Proof. It is evident that $Y^{2}=I_{n}$ holds if and only if

$$
Y^{2}=\left[\begin{array}{cc}
Y_{1}^{2}+Y_{2} Y_{3} & Y_{1} Y_{2}+Y_{2} Y_{4} \\
Y_{3} Y_{1}+Y_{4} Y_{3} & Y_{3} Y_{2}+Y_{4}^{2}
\end{array}\right]=\left[\begin{array}{cc}
I_{p} & 0 \\
0 & I_{n-p}
\end{array}\right] .
$$

Lemma 4. Let (1.2)-(2.2) hold. Assume that $Y \in S_{n}(D)$. Then $Y_{1}$ and $Y_{4}$ (called the quadratic matrices) satisfy the equations

$$
\begin{equation*}
\left(2 Y_{1}+I_{p}\right)\left(Y_{1}-I_{p}\right)=0, \quad\left(2 Y_{4}-I_{n-p}\right)\left(Y_{4}+I_{n-p}\right)=0 . \tag{2.11}
\end{equation*}
$$

Moreover, we have

$$
\begin{align*}
\left(2 Y_{1}+I_{p}\right) Y_{2} & =0, & Y_{3}\left(2 Y_{1}+I_{p}\right) & =0,  \tag{2.12}\\
I_{p}-Y_{1} & =2 Y_{2} Y_{3}, & I_{n-p}+Y_{4} & =2 Y_{3} Y_{2} .
\end{align*}
$$

Proof. From (2.3) and (2.7) we get $Y_{1}^{2}-Y_{1}=I_{p}-Y_{1}^{2}$. Similarly, from (2.4) and (2.8) we obtain $Y_{4}^{2}+Y_{4}=I_{n-p}-Y_{4}^{2}$. The above equations are equivalent to (2.11). From (2.5) and (2.9), and from (2.6) and (2.10) we get (2.12). Note that (2.3) together with (2.7), and (2.4) together with (2.8), gives (2.13).

Theorem 1. Under the hypotheses of Lemma $4, Y \in S_{n}(D)$ if and only if $Y$ satisfies (2.11)-(2.13).

Proof. Standard calculations show that the conditions (2.3)-(2.10) are equivalent to (2.11)-(2.13).

To find concrete solutions of the equation $D Y D=Y D Y$ the following Lemma 5 is useful.

Lemma 5. Let $D$ be defined by (1.2), and $W=\operatorname{diag}\left(W_{1}, W_{2}\right) \in \mathbb{C}^{n \times n}$ be arbitrary nonsingular matrix, where $W_{1}(p \times p)$. Assume that $Y \in S_{n}(D)$ and define $\hat{Y}=$ $W^{-1} Y W$. The we have
(i): $\hat{Y} \in \mathcal{S}_{n}(D)$,
(ii): if we partition $\hat{Y}$ conformally with $Y$ as follows

$$
\hat{Y}=\left[\begin{array}{ll}
\hat{Y}_{1} & \hat{Y}_{2}  \tag{2.14}\\
\hat{Y}_{3} & \hat{Y}_{4}
\end{array}\right]=\left[\begin{array}{ll}
W_{1}^{-1} Y_{1} W_{1} & W_{1}^{-1} Y_{2} W_{2} \\
W_{2}^{-1} Y_{3} W_{1} & W_{2}^{-1} Y_{4} W_{2}
\end{array}\right]
$$

then we get the identities

$$
\begin{equation*}
\left(2 \hat{Y}_{1}+I_{p}\right) \hat{Y}_{2}=0, \quad \hat{Y}_{3}\left(2 \hat{Y}_{1}+I_{p}\right)=0, \quad I_{p}-\hat{Y}_{1}=2 \hat{Y}_{2} \hat{Y}_{3} \tag{2.15}
\end{equation*}
$$

and

$$
\begin{equation*}
I_{n-p}+\hat{Y}_{4}=2 \hat{Y}_{3} \hat{Y}_{2} . \tag{2.16}
\end{equation*}
$$

Proof. From Lemma 1 it follows that $Y \in \mathcal{S}_{n}(D)$ if and only if $\hat{Y}=W^{-1} Y W \in$ $S_{n}\left(W^{-1} D W\right)$. However, since $W$ is a block diagonal matrix, we obtain the identity $W^{-1} D W=D$, so $\hat{Y} \in \mathcal{S}_{n}(D)$.

To prove part (ii) of Lemma 5, we apply Lemma 4 to $\hat{Y}$ using the fact that $\hat{Y} \in$ $S_{n}(D)$. This completes the proof.

Remark 1. It is obvious that if $W$ is an arbitrary nonsingular matrix then $W^{-1} D W=$ $D$ holds only for block diagonal matrix $W=\operatorname{diag}\left(W_{1}, W_{2}\right)$, where $W_{1}(p \times p)$.

Note that if there are two matrices $P$ and $Q$ such that $A=P D P^{-1}$ and $A=Q D Q^{-1}$, where $D$ is defined by (1.2), then $W=P^{-1} Q$ is a block diagonal matrix. This together with Lemma 5 leads to

$$
\mathcal{S}_{n}(A)=\left\{P Y P^{-1}: Y \in \mathcal{S}_{n}(D)\right\}=\left\{Q Y Q^{-1}: Y \in \mathcal{S}_{n}(D)\right\} .
$$

Remark 2. Notice that $Y_{1}$ and $Y_{4}$ satisfying (2.11) are nonsingular because each eigenvalue of $Y_{1}$ is either 1 or $-\frac{1}{2}$, and each eigenvalue of $Y_{4}$ is either -1 or $\frac{1}{2}$. Trivial solutions of (2.11) are: $Y_{1}=I_{p}, Y_{1}=-\frac{1}{2} I_{p}$, and $Y_{4}=-I_{n-p}, Y_{4}=\frac{1}{2} I_{n-p}$. In order to characterize other matrices $Y_{1}$ and $Y_{4}$ satisfying (2.11), we need some properties of quadratic matrices.

## 3. Quadratic matrices

We recall that $A \in \mathbb{C}^{n \times n}$ is a quadratic matrix, if there exist $\alpha, \beta \in \mathbb{C}$ such that $\left(A-\alpha I_{n}\right)\left(A-\beta I_{n}\right)=0$. For the convenience of the reader we repeat the relevant material from [1].

Theorem 2 ([1, Theorem 1.2]). Let $\left(A-\alpha I_{n}\right)\left(A-\beta I_{n}\right)=0$, where $\alpha, \beta \in \mathbb{C}$. Assume that $A \neq \alpha I_{n}, \beta I_{n}$.
(1) Then there exist a unitary matrix $U \in \mathbb{C}^{n \times n}$ and triangular $R \in \mathbb{C}^{n \times n}$ such that $A=U R U^{*}$ (the Schur form), where

$$
R=\left[\begin{array}{cc}
\alpha I_{k} & G  \tag{3.1}\\
0 & \beta I_{n-k}
\end{array}\right], \quad 1 \leq k<n
$$

(2) Each eigenvalue of $A$ is either $\alpha$ or $\beta$.
(3) If $\alpha \neq \beta$ then $A$ is diagonalizable, and can be written as $A=P D P^{-1}$, where $P=U W$, and $W$ is involution containing the eigenvectors of $R$, i.e. $R W=$ $W D$, where

$$
W=\left[\begin{array}{cc}
I_{k} & \frac{G}{\alpha-\beta}  \tag{3.2}\\
0 & -I_{n-k}
\end{array}\right], \quad D=\left[\begin{array}{cc}
\alpha I_{k} & 0 \\
0 & \beta I_{n-k}
\end{array}\right]
$$

Lemma 6. Let the quadratic matrices $Y_{1}$ and $Y_{4}$ satisfy (2.11), where $n \leq 2 p$. Assume that $Y_{1} \neq I_{p},-\frac{1}{2} I_{p}$ and $Y_{4} \neq-I_{n-p}, \frac{1}{2} I_{n-p}$. Then there exist nonsingular matrices $P_{1}$ and $P_{4}$ such that

$$
\begin{equation*}
Y_{1}=P_{1} D_{1} P_{1}^{-1}, \quad D_{1}=\operatorname{diag}\left(-\frac{1}{2} I_{r}, I_{p-r}\right), \quad 1 \leq r<p \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
Y_{4}=P_{4} D_{4} P_{4}^{-1}, \quad D_{4}=\operatorname{diag}\left(\frac{1}{2} I_{s},-I_{n-p-s}\right), \quad 1 \leq s<n-p \leq p \tag{3.4}
\end{equation*}
$$

Proof. It follows from Lemma 4 and Theorem 2.
Remark 3. We see that all possible cases for $Y_{1}$ and $Y_{4}$ are: $Y_{1}=I_{p}$ or $Y_{1}=-\frac{1}{2} I_{p}$, or $Y_{1}$ satisfies (3.3). Similarly, $Y_{4}$ is equal to $-I_{n-p}$ or $\frac{1}{2} I_{n-p}$, or $Y_{4}$ satisfies (3.4). We consider all these cases.

## 4. SOLUTIONS OF $D Y D=Y D Y$ FOR $Y_{1}=I_{p}$

Theorem 3. Let (1.2)-(2.2) hold. If $Y_{1}=I_{p}$ or $Y_{4}=-I_{n-p}$ then $Y=D$ is the only solution of the quadratic equation $Y D Y=D Y D$.

Proof. Let $Y_{1}=I_{p}$. Then from (2.12) it follows that $Y_{2}=0$ and $Y_{3}=0$. This together with (2.13) leads to $Y_{4}=-I_{n-p}$, hence $Y=D$.

Now assume that $Y_{4}=-I_{n-p}$. Then from (2.13) we have $Y_{3} Y_{2}=0$. Since $\operatorname{tr}\left(Y_{3} Y_{2}\right)$ $=0$ and $\operatorname{tr}\left(2 Y_{3} Y_{2}\right)=\operatorname{tr}\left(2 Y_{2} Y_{3}\right)=\operatorname{tr}\left(I_{p}-Y_{1}\right)=p-\operatorname{tr} Y_{1}$, we get $\operatorname{tr} Y_{1}=p$, so $Y_{1}=I_{p}$. This together with (2.12) leads to $Y_{2}=0$ and $Y_{3}=0$, hence $Y=D$.

$$
\text { 5. SOLUTIONS OF } D Y D=Y D Y \text { FOR } Y_{1}=-\frac{1}{2} I_{p}
$$

Theorem 4. Let (1.2)-(2.2) hold and $Y \in S_{n}(D)$. Assume that $Y_{1}=-\frac{1}{2} I_{p}$. Then $n=2 p, Y_{4}=\frac{1}{2} I_{p}$, and solutions of $Y D Y=D Y D$ are

$$
Y=\left[\begin{array}{cc}
-\frac{1}{2} I_{p} & Y_{2}  \tag{5.1}\\
\frac{3}{4} Y_{2}^{-1} & \frac{1}{2} I_{p}
\end{array}\right]
$$

where $Y_{2}(p \times p)$ is an arbitrary nonsingular matrix.

Proof. From Theorem 3 it follows that $Y_{4} \neq-I_{n-p}$. Assume now that $Y_{4} \neq \frac{1}{2} I_{n-p}$. By Remark 3, $Y_{4}$ should satisfy (3.4). From (3.4) it follows that $\operatorname{tr} Y_{4}=\frac{s}{2}-(n-p-s)$, where $1 \leq s<n-p$. This together with (1.2) gives $s<p$. Therefore, $\operatorname{tr} Y_{1}+\operatorname{tr} Y_{4}=$ $\frac{s-p}{2}-(n-p-s)$, so from (2.2) it follows that $\operatorname{tr} Y_{1}+\operatorname{tr} Y_{4}=2 p-n$ if and only if $s=p$, a contradiction. We conclude that $Y_{4}=\frac{1}{2} I_{n-p}$. Then $\operatorname{tr} Y_{1}+\operatorname{tr} Y_{4}=-\frac{p}{2}+\frac{n-p}{2}=\frac{n-2 p}{2}$. This together with (2.2) gives $n=2 p$. From (2.13) we get $Y_{2} Y_{3}=\frac{3}{4} I_{p}$. Therefore, $Y_{2}$ and $Y_{3}$ are nonsingular, so $Y_{3}=\frac{3}{4} Y_{2}^{-1}$. Clearly, $Y$ has a form (5.1). It is easy to check that such $Y$ satisfies the equation $Y D Y=Y D Y$.

## 6. SOLUTIONS OF $D Y D=Y D Y$ FOR $Y_{1}$ SATISFYING (3.3)

In this section we study two remaining cases: $Y_{4}=\frac{1}{2} I_{n-p}$, or $Y_{4}$ satisfies (3.4). Through this section we assume that $Y_{1}$ satisfies (3.3). We apply Lemma 5 to $W=$ $\operatorname{diag}\left(P_{1}, W_{2}\right)$, where $W_{2}$ is a nonsingular matrix. Then from (2.14) and (3.3) we get that $\hat{Y}_{1}=D_{1}=\operatorname{diag}\left(-\frac{1}{2} I_{r}, I_{p-r}\right)$, and we have

$$
2 D_{1}+I_{p}=3 \operatorname{diag}\left(0, I_{p-r}\right), \quad I_{p}-D_{1}=\frac{3}{2} \operatorname{diag}\left(I_{r}, 0\right)
$$

Now we partition $\hat{Y}_{2}$ and $\hat{Y}_{3}$ as follows

$$
\hat{Y}_{2}=\left[\begin{array}{l}
B_{2}  \tag{6.1}\\
C_{2}
\end{array}\right], \quad B_{2}(r \times(n-p)), \quad \hat{Y}_{3}=\left(B_{3}, C_{3}\right), \quad B_{3}((n-p) \times r) .
$$

Then from (2.15) it follows that

$$
\begin{equation*}
C_{2}=0, \quad C_{3}=0, \quad B_{2} B_{3}=\frac{3}{4} I_{r} . \tag{6.2}
\end{equation*}
$$

Theorem 5. Let (1.2)-(2.2) hold. Let $Y_{1}$ satisfy (3.3) and $Y_{4}=\frac{1}{2} I_{n-p}$. Then $r=$ $n-p$, where $1 \leq r<p$. Moreover, $Y \in S_{n}(D)$ if and only if $Y=W \hat{Y} W^{-1}$, where $W=\operatorname{diag}\left(P_{1}, I_{n-p}\right)$ and

$$
\hat{Y}=\left[\begin{array}{cc|c}
-\frac{1}{2} I_{n-p} & 0 & B_{2}  \tag{6.3}\\
0 & I_{2 p-n} & 0 \\
\hline \frac{3}{4} B_{2}^{-1} & 0 & \frac{1}{2} I_{n-p}
\end{array}\right],
$$

where $\left.B_{2}(n-p) \times(n-p)\right)$ is an arbitrary nonsingular matrix.
Proof. Here $\hat{Y}_{1}=D_{1}$ and $\hat{Y}_{4}=Y_{4}$, where $D_{1}$ is defined by (3.3). Then $\operatorname{tr} Y_{1}+\operatorname{tr} Y_{4}=$ $\operatorname{tr} \hat{Y}_{1}+\operatorname{tr} \hat{Y}_{4}=-\frac{r}{2}+(p-r)+\frac{n-p}{2}$, so by (2.2) we get $r=n-p$. From this and (6.1)(6.2) it follows that $B_{2}$ and $B_{3}$ are nonsingular matrices. By (6.2), we get $B_{3}=B_{2}^{-1}$. Clearly, (2.16) also holds.

Theorem 6. Let (1.2)-(2.2) hold. Let $Y_{1}$ satisfy (3.3) and $Y_{4}$ satisfy (3.4). Then $s=r$, where $1 \leq r<n-p \leq p$. Moreover, $Y \in \mathcal{S}_{n}(D)$ if and only if $Y=W \hat{Y} W^{-1}$,
where $W=\operatorname{diag}\left(P_{1}, P_{4}\right)$ and

$$
\hat{Y}=\left[\begin{array}{cc|cc}
-\frac{1}{2} I_{r} & 0 & F_{1} & 0 \\
0 & I_{p-r} & 0 & 0 \\
\hline \frac{3}{4} F_{1}^{-1} & 0 & \frac{1}{2} I_{r} & 0 \\
0 & 0 & 0 & -I_{n-p-r}
\end{array}\right]
$$

where $F_{1}(r \times r)$ is an arbitrary nonsingular matrix.
Proof. Here $\hat{Y}_{1}=D_{1}$ and $\hat{Y}_{4}=D_{4}$, where $D_{1}$ is defined by (3.3), and $D_{4}$ is given in (3.4). Then $\operatorname{tr} Y_{1}+\operatorname{tr} Y_{4}=\operatorname{tr} \hat{Y}_{1}+\operatorname{tr} \hat{Y}_{4}=-\frac{r}{2}+(p-r)+\frac{s}{2}-(n-p-s)$, so by (2.2) we get $s=r$.

We use (6.1) and partition $B_{2}$ and $B_{3}$ as follows

$$
B_{3}=\left[\begin{array}{l}
F_{1} \\
F_{2}
\end{array}\right], \quad F_{1}(r \times r), \quad B_{2}=\left(G_{1}, G_{2}\right), \quad G_{1}(r \times r) .
$$

Then using (6.2) and (2.16) we conclude that $G_{1}=\frac{3}{4} F_{1}^{-1}, G_{2}=0$ and $F_{2}=0$.

## 7. Algorithms

For given involutory matrix $A \in \mathbb{C}^{n \times n}$ and matrices $P, D$ defined in (1.2), we can compute the concrete involutory solutions $X$ of the equation $A X A=X A X$ as $X=$ $P Y P^{-1}$, where $Y$ is a solution of the equation $D Y D=Y D Y$.

In order to help readers implement our methods, we include algorithms for finding such solutions $Y \in S_{n}(D)$. The proposed algorithms (Algorithms 1-3) construct all solutions $Y \neq D$ (we omit the trivial case where $X=A$, i.e. $Y=D$ ).

Algorithm 1. Construction of $Y \in \mathcal{S}_{2 p}(D)$, using Theorem 4.
Take any natural number $p$ and arbitrary nonsingular matrix $Y_{2} \in \mathbb{C}^{p \times p}$.
The algorithm is determined now by two steps:

- compute $Y_{2}^{-1}$,
- form $Y \in \mathbb{C}^{2 p \times 2 p}$ as follows:

$$
Y=\left[\begin{array}{cc}
-\frac{1}{2} I_{p} & Y_{2} \\
\frac{3}{4} Y_{2}^{-1} & \frac{1}{2} I_{p}
\end{array}\right]
$$

Algorithm 2. Construction of $Y \in \mathcal{S}_{n}(D)$, using Theorem 5
Take any natural numbers $n$ and $p$ such that $1 \leq n-p<p$, and arbitrary nonsingular matrices $P_{1} \in \mathbb{C}^{p \times p}, B_{2} \in \mathbb{C}^{(n-p) \times(n-p)}$.

The algorithm splits into the following steps:

- compute $P_{1}^{-1}$ and $B_{2}^{-1}$,
- $Y_{1}=P_{1} \operatorname{diag}\left(-\frac{1}{2} I_{n-p}, I_{2 p-n}\right) P_{1}^{-1}$,
- $Y_{2}=P_{1}\left[\begin{array}{c}B_{2} \\ 0\end{array}\right]$,
- $Y_{3}=\left(\frac{3}{4} B_{2}^{-1}, 0\right) P_{1}^{-1}$,
- form $Y \in \mathbb{C}^{n \times n}$ as follows

$$
Y=\left[\begin{array}{cc}
Y_{1} & Y_{2} \\
Y_{3} & \frac{1}{2} I_{n-p}
\end{array}\right]
$$

Algorithm 3. Construction of $Y \in \mathcal{S}_{n}(D)$, using Theorem 6
Take any natural numbers $n, p, r$ such that $1 \leq r<n-p \leq p$, and arbitrary nonsingular matrices $P_{1} \in \mathbb{C}^{p \times p}, P_{4} \in \mathbb{C}^{(n-p) \times(n-p)}$, and $F_{1} \in \mathbb{C}^{r \times r}$.

The algorithm consists with the following steps:

- compute $P_{1}^{-1}, P_{4}^{-1}$ and $F_{1}^{-1}$,
- $Y_{1}=P_{1} \operatorname{diag}\left(-\frac{1}{2} I_{r}, I_{p-r}\right) P_{1}^{-1}$,
- $Y_{2}=P_{1} \operatorname{diag}\left(F_{1}, 0\right) P_{4}^{-1}$,
- $Y_{3}=P_{4} \operatorname{diag}\left(\frac{3}{4} F_{1}^{-1}, 0\right) P_{1}^{-1}$,
- $Y_{4}=P_{4} \operatorname{diag}\left(\frac{1}{2} I_{r},-I_{n-p-r}\right) P_{4}^{-1}$,
- form $Y \in \mathbb{C}^{n \times n}$ as follows:

$$
Y=\left[\begin{array}{ll}
Y_{1} & Y_{2} \\
Y_{3} & Y_{4}
\end{array}\right]
$$

## 8. Concrete examples

This section contains a few examples to illustrate our theoretical results. All tests are performed in MATLAB using Symbolic Math Toolbox version 8.5 (R2020a).

Example 1. Let $D=\operatorname{diag}(1,-1)$. Then from Theorems 3 and 4 it follows that $S_{2}(A)=\{D\} \cup \mathcal{K}$, where

$$
\mathcal{K}=\left\{\left[\begin{array}{cc}
-\frac{1}{2} & t \\
\frac{3}{4 t} & \frac{1}{2}
\end{array}\right]: 0 \neq t \in \mathbb{C}\right\}
$$

Note that the set $K$ is uniquely determined by parameter $t$. We have $\{D\} \cap K=\varnothing$.
Example 2. Let $D=\operatorname{diag}(1,1,-1)$. Here $n=3$ and $p=2$. We prove that $\mathcal{S}_{3}(D)=$ $\mathcal{K}_{1} \cup \mathcal{K}_{2} \cup \mathcal{K}_{3}$, where $\mathcal{K}_{1}=\{D\}$ and $\mathcal{K}_{i} \cap \mathcal{K}_{j}=\varnothing$ for $i \neq j$.

It is obvious that $Y \in \mathcal{S}_{3}(D)$ iff $Y=D$ or $Y=W \hat{Y} W^{-1}$, where $W=\operatorname{diag}\left(P_{1}, 1\right)$, and $P_{1}(2 \times 2)$ is an arbitrary nonsingular matrix. By (6.3), we get

$$
\hat{Y}=\left[\begin{array}{ccc}
-\frac{1}{2} & 0 & t \\
0 & 1 & 0 \\
\frac{3}{4 t} & 0 & \frac{1}{2}
\end{array}\right], \quad 0 \neq t \in \mathbb{C}
$$

Without loss of generality we can assume that $\operatorname{det} P_{1}=1$, i.e. $P_{1}=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, where $a b-c d=1$.

Notice that for such $W=\operatorname{diag}\left(P_{1}, 1\right)$ we get

$$
Y=W \hat{Y} W^{-1}=\left[\begin{array}{ccc}
-\frac{(a d+2 b c)}{2} & \frac{3 a b}{2} & a t \\
-\frac{3 c d}{2} & \frac{(b c+2 a d)}{2} & c t \\
\frac{3 d}{4 t} & -\frac{3 b}{4 t} & \frac{1}{2}
\end{array}\right]
$$

Case (i): $a=0$. Then $\operatorname{det} P_{1}=-b c=1$, hence $b \neq 0$ and $c \neq 0$. Let $u=c t$ and $t_{2}=c t$. Then $Y \in \mathcal{K}_{2}$ iff

$$
Y=Y\left(u, t_{2}\right)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-\frac{3 u}{2} & -\frac{1}{2} & t_{2} \\
\frac{3 u}{4 t_{2}} & \frac{3}{4 t_{2}} & \frac{1}{2}
\end{array}\right], \quad u \neq 0, t_{2} \neq 0
$$

We see that the set $\mathcal{K}_{2}$ is uniquely determined by parameters $u$ and $t_{2}$.
Case (ii): $a \neq 0$. This together with $a d-b c=1$ leads to $a d=1+b c$. Define $t_{3}=a t, b_{2}=a b, c_{2}=c / a$. Then $Y \in \mathcal{K}_{3}$ iff

$$
Y=Y\left(b_{2}, c_{2}, t_{3}\right)=\left[\begin{array}{ccc}
-\frac{1}{2}-\frac{3 b_{2} c_{2}}{2} & \frac{3 b_{2}}{2} & t_{3} \\
-\frac{3 c_{2}\left(1+b_{2} c_{2}\right)}{2} & 1+\frac{3 b_{2} c_{2}}{2} & c_{2} t_{3} \\
\frac{3\left(1+b_{2} c_{2}\right)}{4 t_{3}} & -\frac{3 b_{2}}{4 t_{3}} & \frac{1}{2}
\end{array}\right], \quad t_{3} \neq 0
$$

Notice that the set $\mathcal{K}_{3}$ is uniquely determined by parameters $b_{2}, c_{2}, t_{3}$.
Example 3. Let

$$
A=\left[\begin{array}{cccc}
1 & 0 & 2 & 6 \\
0 & 1 & -4 & 2 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right], \quad P=\left[\begin{array}{cccc}
1 & 0 & 1 & 3 \\
0 & 1 & -2 & 1 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right]
$$

By Theorem 2, the matrices $A$ and $P$ are involutions and we have the spectral decomposition $A=P D P^{-1}$, where $D=\operatorname{diag}(1,1,-1,-1)$. We would like to find concrete solutions $Y \in S_{4}(D)$ and $X=P Y P \in S_{4}(A)$. We see that here we can use only Algorithm 1 and Algorithm 3.

First, we apply Algorithm 1 for the matrix $Y_{2}=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$.
Then we get

$$
Y=\left[\begin{array}{cccc}
-\frac{1}{2} & 0 & 1 & 2 \\
0 & -\frac{1}{2} & 3 & 4 \\
-\frac{3}{2} & \frac{3}{4} & \frac{1}{2} & 0 \\
\frac{9}{8} & -\frac{3}{8} & 0 & \frac{1}{2}
\end{array}\right], \quad X=\left[\begin{array}{cccc}
\frac{11}{8} & -\frac{3}{8} & \frac{5}{8} & \frac{1}{4} \\
\frac{33}{8} & -\frac{19}{8} & \frac{55}{8} & \frac{11}{2} \\
\frac{3}{2} & -\frac{3}{4} & \frac{7}{2} & \frac{15}{4} \\
-\frac{9}{8} & \frac{3}{8} & -\frac{15}{8} & -\frac{5}{2}
\end{array}\right]
$$

Next, we apply Algorithm 3, taking $F_{1}=4$ and

$$
P_{1}=\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right], \quad P_{4}=\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right]
$$

Then we obtain the following solutions $Y \in \mathcal{S}_{4}(D)$ and $X=P Y P \in \mathcal{S}_{4}(A)$ :

$$
Y=\left[\begin{array}{cccc}
-2 & \frac{3}{2} & 2 & -2 \\
-3 & \frac{5}{2} & 2 & -2 \\
\frac{3}{8} & -\frac{3}{16} & -\frac{1}{4} & -\frac{3}{4} \\
-\frac{3}{8} & \frac{3}{16} & -\frac{3}{4} & -\frac{1}{4}
\end{array}\right], \quad X=\left[\begin{array}{cccc}
-\frac{11}{4} & \frac{15}{8} & -6 & -\frac{23}{8} \\
-\frac{33}{8} & \frac{49}{16} & -12 & -\frac{137}{16} \\
-\frac{3}{8} & \frac{3}{16} & -1 & -\frac{27}{16} \\
\frac{3}{8} & -\frac{3}{16} & 0 & \frac{11}{16}
\end{array}\right]
$$

## 9. CONCLUSIONS

- We characterized all explicit involutive solutions of the Yang-Baxter matrix equation $A X A=X A X$.
- There are infinitely many such solutions for $A \neq \pm I_{n}$.
- Constructing involutive solutions of $A X A=X A X$ can be done easily by direct implementation of Algoritms 1-3.


## References

[1] M. Aleksiejczyk and A. Smoktunowicz, "On properties of quadratic matrices." Math. Pannon., vol. 11, no. 2, pp. 239-248, 2000.
[2] T. Brzeziński, "Trusses: Between braces and rings." Trans. Amer. Math. Soc., vol. 372, pp. 41494176, 2019, doi: 10.1090/tran/7705.
[3] F. Cedó, E. Jespers, and Á. del Rio, "Involutive Yang-Baxter groups." Trans. Amer. Math. Soc., vol. 362, no. 5, pp. 2541-2558, 2010, doi: 10.1090/S0002-9947-09-04927-7.
[4] F. Cedó, E. Jespers, and J. Okniński, "Braces and the Yang-Baxter equation." Comm. Math. Phys., vol. 327, pp. 101-116, 2014, doi: 10.1007/s00220-014-1935-y.
[5] Q. Huang, M. Saeed Ibrahim Adam, J. Ding, and L. Zhu, "All non-commuting solutions of the Yang-Baxter matrix equation for a class of diagonalizable matrices." Oper. Matrices, vol. 13, no. 1, pp. 187-195, 2019, doi: 10.7153/oam-2019-13-11.
[6] F. F. Nichita, "Yang-Baxter equations, computational methods and applications." Axioms, vol. 4, pp. 423-435, 2015, doi: 10.3390/axioms4040423.
[7] M. Saeed Ibrahim Adam, J. Ding, Q. Huang, and L. Zhu, "Solving a class of quadratic matrix equations." Applied Math. Lett., vol. 82, pp. 58-63, 2018, doi: 10.1016/j.aml.2018.02.017.
[8] A. Smoktunowicz and A. Smoktunowicz, "Set-theoretic solutions of the Yang-Baxter equation and new classes of R-matrices." Linear Algebra Appl., vol. 546, pp. 86-114, 2018, doi: 10.1016/j.laa.2018.02.001.
[9] A. Smoktunowicz, R. Kozera, and G. Oderda, " Efficient numerical algorithms for constructing orthogonal generalized doubly stochastic matrices." App. Numer. Math., vol. 142, pp. 16-27, 2019, doi: 10.1016/j.apnum.2019.02.008.

## Authors' addresses

Ryszard R. Andruszkiewicz
Faculty of Mathematics, University of Białystok, Ciołkowskiego 1 M, 15-245 Białystok, Poland
E-mail address: randrusz@math.uwb.edu.pl
Alicja Smoktunowicz
(Corresponding author) Faculty of Mathematics and Information Science, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland

E-mail address: A.Smoktunowicz@mini.pw.edu.pl


[^0]:    The research of Ryszard R. Andruszkiewicz is partially supported by the National Science Centre, Poland, grant no. 2019/35/B/ST1/01115.

