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Abstract. In this paper we find all involutive solutions X ∈Cn×n of the Yang-Baxter matrix equa-
tion AXA = XAX , where A ∈Cn×n is a given involutory matrix. The construction is algorithmic.
It is based on the concept of quadratic matrices. Algorithms for generating concrete involutive
solutions of the Yang-Baxter matrix equation AXA = XAX are also presented along with several
examples.
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1. INTRODUCTION

We recall that A ∈ Cn×n is an involutory matrix (involution) if A2 = In, where In
is the n× n identity matrix. Let Kn denote the set of all involutory matrices of size
n. The purpose of this paper then is to find all explicit involutive solutions X of the
Yang-Baxter matrix equation AXA = XAX , where A is involution. Our research is
inspired by the papers [5] and [7], where the general analysis of finding all explicit
solutions of AXA = XAX for given involutory A has been given. In this paper we
restrict our attention to involutory matrices X . This problem is related to the quantum
Yang-Baxter equation (QYBE). We say that Z ∈ Rm2×m2

satisfies the QYBE if

(Im ⊗Z)(Z ⊗ Im)(Im ⊗Z) = (Z ⊗ Im)(Im ⊗Z)(Z ⊗ Im) (1.1)

where B⊗C denotes the Kronecker product (tensor product) of the matrices B and C:
B⊗C = (bi, jC). That is, the Kronecker product B⊗C is a block matrix whose (i, j)
blocks are bi, jC. Notice that if Z is involution and satisfies (1.1), then A = Im ⊗Z and
X = Z ⊗ Im are involutions as well, and we have AXA = XAX .

The Yang-Baxter equation has many applications of modern physics, computer
science and mathematics ([6, 8, 9]), for example, in statistical mechanics, integrable
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quantum field theory, condensed matter physics, quantum integrable models, quan-
tum computation, to name a few. Many techniques for the construction of involutive
solutions of the Yang-Baxter equation have been developed, see [2–4, 8].

For given A ∈ Kn we define the set Sn(A) of all involutive solutions of the Yang-
Baxter matrix equation thus:

Sn(A) = {X ∈ Kn : AXA = XAX}.
Using the concept of quadratic matrices, see Theorem 2, we are able to find the

explicit expressions of such solutions for all the case, see Theorems 3–6. This enables
the development of methods, easy to implement, for generating concrete involutive
solutions of the Yang-Baxter matrix equation, see Section 8.

First we present easily-checkable basic properties of the set Sn(A).

Lemma 1. Let A ∈ Kn. Then we have
(a): A ∈ Sn(A),
(b): if X ∈ Sn(A) then −X ∈ Sn(−A),
(c): if X ∈ Sn(A) then A and X are similar; we have X = (AX)A(AX)−1,
(d): if P∈Cn×n is nonsingular, then X ∈ Sn(A) if and only if P−1XP∈ Sn(P−1AP),
(e): if A =±In then Sn(A) = {A}.

Assume that A ∈ Cn×n is a given involution. Then A is diagonalizable. According
to Lemma 1 (b), there is no loss of generality in assuming that A is not equal to ±In,
and there exists a nonsingular matrix P ∈ Cn×n such that

A = PDP−1, D = diag(Ip,−In−p), 1 ≤ p < n, n ≤ 2p. (1.2)

Then we have Sn(A) = {PY P−1 : Y ∈ Sn(D)}. Natural questions to ask about Sn(D)
then are: How many Y ∈ Sn(D) are there? and, how to find them? In general, the
Yang-Baxter matrix equation has infinitely many solutions, see Example 1.

2. IDENTITIES FOR INVOLUTIVE SOLUTIONS OF DY D = Y DY

We would like to find Y ∈ Sn(D), where D is defined by (1.2). Partition Y con-
formally with D as

Y =

[
Y1 Y2
Y3 Y4

]
, Y1(p× p). (2.1)

From Lemma 1 it follows that D and Y are similar, so trY = trD, where trY denotes
the trace of Y . This together with (1.2)-(2.1) gives

trY1 + trY4 = 2p−n ≥ 0. (2.2)

Lemma 2. Let D be given by (1.2) and Y be partitioned as in (2.1). Then DY D =
Y DY if and only if

Y 2
1 −Y1 = Y2Y3, (2.3)

Y 2
4 +Y4 = Y3Y2, (2.4)
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(Y1 + Ip)Y2 = Y2Y4, (2.5)

Y3(Y1 + Ip) = Y4Y3. (2.6)

Proof. Compare the blocks of the following matrices:

DY D =

[
Y1 −Y2
−Y3 Y4

]
, Y DY =

[
Y 2

1 −Y2Y3 Y1Y2 −Y2Y4
Y3Y1 −Y4Y3 Y3Y2 −Y 2

4

]
.

□

Lemma 3. Let Y be partitioned as in (2.1). Then Y is an involution if and only if

Ip −Y 2
1 = Y2Y3, (2.7)

In−p −Y 2
4 = Y3Y2, (2.8)

Y1Y2 =−Y2Y4, (2.9)
Y3Y1 =−Y4Y3. (2.10)

Proof. It is evident that Y 2 = In holds if and only if

Y 2 =

[
Y 2

1 +Y2Y3 Y1Y2 +Y2Y4
Y3Y1 +Y4Y3 Y3Y2 +Y 2

4

]
=

[
Ip 0
0 In−p

]
.

□

Lemma 4. Let (1.2)-(2.2) hold. Assume that Y ∈ Sn(D). Then Y1 and Y4 (called
the quadratic matrices) satisfy the equations

(2Y1 + Ip)(Y1 − Ip) = 0, (2Y4 − In−p)(Y4 + In−p) = 0. (2.11)

Moreover, we have

(2Y1 + Ip)Y2 = 0, Y3(2Y1 + Ip) = 0, (2.12)
Ip −Y1 = 2Y2Y3, In−p +Y4 = 2Y3Y2. (2.13)

Proof. From (2.3) and (2.7) we get Y 2
1 −Y1 = Ip −Y 2

1 . Similarly, from (2.4) and
(2.8) we obtain Y 2

4 +Y4 = In−p −Y 2
4 . The above equations are equivalent to (2.11).

From (2.5) and (2.9), and from (2.6) and (2.10) we get (2.12). Note that (2.3) together
with (2.7), and (2.4) together with (2.8), gives (2.13). □

Theorem 1. Under the hypotheses of Lemma 4, Y ∈ Sn(D) if and only if Y satisfies
(2.11)-(2.13).

Proof. Standard calculations show that the conditions (2.3)-(2.10) are equivalent
to (2.11)-(2.13). □

To find concrete solutions of the equation DY D = Y DY the following Lemma 5 is
useful.
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Lemma 5. Let D be defined by (1.2), and W = diag(W1,W2) ∈ Cn×n be arbit-
rary nonsingular matrix, where W1(p× p). Assume that Y ∈ Sn(D) and define Ŷ =
W−1YW. The we have

(i): Ŷ ∈ Sn(D),
(ii): if we partition Ŷ conformally with Y as follows

Ŷ =

[
Ŷ1 Ŷ2
Ŷ3 Ŷ4

]
=

[
W−1

1 Y1W1 W−1
1 Y2W2

W−1
2 Y3W1 W−1

2 Y4W2

]
, (2.14)

then we get the identities

(2Ŷ1 + Ip)Ŷ2 = 0, Ŷ3(2Ŷ1 + Ip) = 0, Ip − Ŷ1 = 2Ŷ2Ŷ3 (2.15)

and

In−p + Ŷ4 = 2Ŷ3Ŷ2. (2.16)

Proof. From Lemma 1 it follows that Y ∈ Sn(D) if and only if Ŷ = W−1YW ∈
Sn(W−1DW ). However, since W is a block diagonal matrix, we obtain the identity
W−1DW = D, so Ŷ ∈ Sn(D).

To prove part (ii) of Lemma 5, we apply Lemma 4 to Ŷ using the fact that Ŷ ∈
Sn(D). This completes the proof. □

Remark 1. It is obvious that if W is an arbitrary nonsingular matrix then W−1DW =
D holds only for block diagonal matrix W = diag(W1,W2), where W1(p× p).

Note that if there are two matrices P and Q such that A = PDP−1 and A = QDQ−1,
where D is defined by (1.2), then W = P−1Q is a block diagonal matrix. This together
with Lemma 5 leads to

Sn(A) = {PY P−1 : Y ∈ Sn(D)}= {QY Q−1 : Y ∈ Sn(D)}.

Remark 2. Notice that Y1 and Y4 satisfying (2.11) are nonsingular because each
eigenvalue of Y1 is either 1 or −1

2 , and each eigenvalue of Y4 is either −1 or 1
2 . Trivial

solutions of (2.11) are: Y1 = Ip, Y1 =−1
2 Ip, and Y4 =−In−p, Y4 =

1
2 In−p. In order to

characterize other matrices Y1 and Y4 satisfying (2.11), we need some properties of
quadratic matrices.

3. QUADRATIC MATRICES

We recall that A ∈ Cn×n is a quadratic matrix, if there exist α,β ∈ C such that
(A−αIn)(A− βIn) = 0. For the convenience of the reader we repeat the relevant
material from [1].

Theorem 2 ([1, Theorem 1.2]). Let (A−αIn)(A−βIn) = 0, where α,β ∈ C. As-
sume that A ̸= αIn,βIn.
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(1) Then there exist a unitary matrix U ∈ Cn×n and triangular R ∈ Cn×n such
that A =URU∗ (the Schur form), where

R =

[
αIk G
0 βIn−k

]
, 1 ≤ k < n. (3.1)

(2) Each eigenvalue of A is either α or β.
(3) If α ̸= β then A is diagonalizable, and can be written as A = PDP−1, where

P = UW, and W is involution containing the eigenvectors of R, i.e. RW =
WD, where

W =

[
Ik

G
α−β

0 −In−k

]
, D =

[
αIk 0
0 βIn−k

]
. (3.2)

Lemma 6. Let the quadratic matrices Y1 and Y4 satisfy (2.11), where n ≤ 2p. As-
sume that Y1 ̸= Ip,−1

2 Ip and Y4 ̸=−In−p,
1
2 In−p. Then there exist nonsingular matrices

P1 and P4 such that

Y1 = P1D1P−1
1 , D1 = diag(−1

2 Ir, Ip−r), 1 ≤ r < p (3.3)

and
Y4 = P4D4P−1

4 , D4 = diag(1
2 Is,−In−p−s), 1 ≤ s < n− p ≤ p. (3.4)

Proof. It follows from Lemma 4 and Theorem 2. □

Remark 3. We see that all possible cases for Y1 and Y4 are: Y1 = Ip or Y1 =−1
2 Ip,

or Y1 satisfies (3.3). Similarly, Y4 is equal to −In−p or 1
2 In−p, or Y4 satisfies (3.4). We

consider all these cases.

4. SOLUTIONS OF DY D = Y DY FOR Y1 = Ip

Theorem 3. Let (1.2)-(2.2) hold. If Y1 = Ip or Y4 =−In−p then Y = D is the only
solution of the quadratic equation Y DY = DY D.

Proof. Let Y1 = Ip. Then from (2.12) it follows that Y2 = 0 and Y3 = 0. This
together with (2.13) leads to Y4 =−In−p, hence Y = D.

Now assume that Y4 =−In−p. Then from (2.13) we have Y3Y2 = 0. Since tr(Y3Y2)
= 0 and tr(2Y3Y2) = tr(2Y2Y3) = tr(Ip −Y1) = p− trY1, we get trY1 = p, so Y1 = Ip.
This together with (2.12) leads to Y2 = 0 and Y3 = 0, hence Y = D. □

5. SOLUTIONS OF DY D = Y DY FOR Y1 =−1
2 Ip

Theorem 4. Let (1.2)-(2.2) hold and Y ∈ Sn(D). Assume that Y1 = −1
2 Ip. Then

n = 2p, Y4 =
1
2 Ip, and solutions of Y DY = DY D are

Y =

[
−1

2 Ip Y2
3
4Y−1

2
1
2 Ip

]
, (5.1)

where Y2(p× p) is an arbitrary nonsingular matrix.
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Proof. From Theorem 3 it follows that Y4 ̸=−In−p. Assume now that Y4 ̸= 1
2 In−p.

By Remark 3, Y4 should satisfy (3.4). From (3.4) it follows that trY4 =
s
2 −(n− p−s),

where 1 ≤ s < n− p. This together with (1.2) gives s < p. Therefore, trY1 + trY4 =
s−p

2 −(n− p−s), so from (2.2) it follows that trY1+trY4 = 2p−n if and only if s= p,
a contradiction. We conclude that Y4 =

1
2 In−p. Then trY1 + trY4 =− p

2 +
n−p

2 = n−2p
2 .

This together with (2.2) gives n = 2p. From (2.13) we get Y2Y3 =
3
4 Ip. Therefore, Y2

and Y3 are nonsingular, so Y3 =
3
4Y−1

2 . Clearly, Y has a form (5.1). It is easy to check
that such Y satisfies the equation Y DY = Y DY . □

6. SOLUTIONS OF DY D = Y DY FOR Y1 SATISFYING (3.3)

In this section we study two remaining cases: Y4 = 1
2 In−p, or Y4 satisfies (3.4).

Through this section we assume that Y1 satisfies (3.3). We apply Lemma 5 to W =
diag(P1,W2), where W2 is a nonsingular matrix. Then from (2.14) and (3.3) we get
that Ŷ1 = D1 = diag(−1

2 Ir, Ip−r), and we have

2D1 + Ip = 3diag(0, Ip−r), Ip −D1 =
3
2 diag(Ir,0).

Now we partition Ŷ2 and Ŷ3 as follows

Ŷ2 =

[
B2
C2

]
, B2(r× (n− p)), Ŷ3 = (B3,C3), B3((n− p)× r). (6.1)

Then from (2.15) it follows that

C2 = 0, C3 = 0, B2B3 =
3
4 Ir. (6.2)

Theorem 5. Let (1.2)-(2.2) hold. Let Y1 satisfy (3.3) and Y4 =
1
2 In−p. Then r =

n− p, where 1 ≤ r < p. Moreover, Y ∈ Sn(D) if and only if Y = WŶW−1, where
W = diag(P1, In−p) and

Ŷ =

 −1
2 In−p 0 B2
0 I2p−n 0

3
4 B−1

2 0 1
2 In−p

 , (6.3)

where B2(n− p)× (n− p)) is an arbitrary nonsingular matrix.

Proof. Here Ŷ1 = D1 and Ŷ4 =Y4, where D1 is defined by (3.3). Then trY1+ trY4 =
trŶ1 + trŶ4 =− r

2 +(p− r)+ n−p
2 , so by (2.2) we get r = n− p. From this and (6.1)-

(6.2) it follows that B2 and B3 are nonsingular matrices. By (6.2), we get B3 = B−1
2 .

Clearly, (2.16) also holds. □

Theorem 6. Let (1.2)-(2.2) hold. Let Y1 satisfy (3.3) and Y4 satisfy (3.4). Then
s = r, where 1 ≤ r < n− p ≤ p. Moreover, Y ∈ Sn(D) if and only if Y = WŶW−1,
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where W = diag(P1,P4) and

Ŷ =


−1

2 Ir 0 F1 0
0 Ip−r 0 0

3
4 F−1

1 0 1
2 Ir 0

0 0 0 −In−p−r

 ,

where F1(r× r) is an arbitrary nonsingular matrix.

Proof. Here Ŷ1 = D1 and Ŷ4 = D4, where D1 is defined by (3.3), and D4 is given
in (3.4). Then trY1 + trY4 = trŶ1 + trŶ4 =− r

2 +(p− r)+ s
2 − (n− p− s), so by (2.2)

we get s = r.
We use (6.1) and partition B2 and B3 as follows

B3 =

[
F1
F2

]
, F1(r× r), B2 = (G1,G2), G1(r× r).

Then using (6.2) and (2.16) we conclude that G1 =
3
4 F−1

1 , G2 = 0 and F2 = 0. □

7. ALGORITHMS

For given involutory matrix A ∈ Cn×n and matrices P,D defined in (1.2), we can
compute the concrete involutory solutions X of the equation AXA = XAX as X =
PY P−1, where Y is a solution of the equation DY D = Y DY .

In order to help readers implement our methods, we include algorithms for finding
such solutions Y ∈ Sn(D). The proposed algorithms (Algorithms 1–3) construct all
solutions Y ̸= D (we omit the trivial case where X = A, i.e. Y = D).

Algorithm 1. Construction of Y ∈ S2p(D), using Theorem 4.
Take any natural number p and arbitrary nonsingular matrix Y2 ∈ Cp×p.
The algorithm is determined now by two steps:

• compute Y−1
2 ,

• form Y ∈ C2p×2p as follows:

Y =

[
−1

2 Ip Y2
3
4Y−1

2
1
2 Ip

]
.

Algorithm 2. Construction of Y ∈ Sn(D), using Theorem 5
Take any natural numbers n and p such that 1 ≤ n− p < p, and arbitrary nonsin-

gular matrices P1 ∈ Cp×p, B2 ∈ C(n−p)×(n−p).
The algorithm splits into the following steps:

• compute P−1
1 and B−1

2 ,
• Y1 = P1diag(−1

2 In−p, I2p−n)P−1
1 ,

• Y2 = P1

[
B2
0

]
,

• Y3 = (3
4 B−1

2 ,0)P−1
1 ,
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• form Y ∈ Cn×n as follows

Y =

[
Y1 Y2
Y3

1
2 In−p

]
.

Algorithm 3. Construction of Y ∈ Sn(D), using Theorem 6
Take any natural numbers n, p,r such that 1≤ r < n− p≤ p, and arbitrary nonsin-

gular matrices P1 ∈ Cp×p, P4 ∈ C(n−p)×(n−p), and F1 ∈ Cr×r.
The algorithm consists with the following steps:

• compute P−1
1 , P−1

4 and F−1
1 ,

• Y1 = P1diag(−1
2 Ir, Ip−r)P−1

1 ,
• Y2 = P1diag(F1,0)P−1

4 ,
• Y3 = P4diag(3

4 F−1
1 ,0)P−1

1 ,
• Y4 = P4diag(1

2 Ir,−In−p−r)P−1
4 ,

• form Y ∈ Cn×n as follows:

Y =

[
Y1 Y2
Y3 Y4

]
.

8. CONCRETE EXAMPLES

This section contains a few examples to illustrate our theoretical results. All tests
are performed in MATLAB using Symbolic Math Toolbox version 8.5 (R2020a).

Example 1. Let D = diag(1,−1). Then from Theorems 3 and 4 it follows that
S2(A) = {D}∪K , where

K =

{[
−1

2 t
3
4t

1
2

]
: 0 ̸= t ∈ C

}
.

Note that the set K is uniquely determined by parameter t. We have {D}∩K =∅.

Example 2. Let D = diag(1,1,−1). Here n = 3 and p = 2. We prove that S3(D) =
K1 ∪K2 ∪K3, where K1 = {D} and Ki ∩K j =∅ for i ̸= j.

It is obvious that Y ∈ S3(D) iff Y = D or Y = WŶW−1, where W = diag(P1,1),
and P1(2×2) is an arbitrary nonsingular matrix. By (6.3), we get

Ŷ =

 −1
2 0 t

0 1 0
3
4t 0 1

2

 , 0 ̸= t ∈ C.

Without loss of generality we can assume that detP1 = 1, i.e. P1 =

[
a b
c d

]
,

where ab− cd = 1.
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Notice that for such W = diag(P1,1) we get

Y =WŶW−1 =

 − (ad+2bc)
2

3ab
2 at

−3cd
2

(bc+2ad)
2 ct

3d
4t −3b

4t
1
2

 .

Case (i): a = 0. Then detP1 = −bc = 1, hence b ̸= 0 and c ̸= 0. Let u = ct and
t2 = ct. Then Y ∈ K2 iff

Y = Y (u, t2) =

 1 0 0
−3u

2 −1
2 t2

3u
4t2

3
4t2

1
2

 , u ̸= 0, t2 ̸= 0.

We see that the set K2 is uniquely determined by parameters u and t2.
Case (ii): a ̸= 0. This together with ad − bc = 1 leads to ad = 1+ bc. Define

t3 = at,b2 = ab,c2 = c/a. Then Y ∈ K3 iff

Y = Y (b2,c2, t3) =

 −1
2 −

3b2c2
2

3b2
2 t3

−3c2(1+b2c2)
2 1+ 3b2c2

2 c2t3
3(1+b2c2)

4t3
−3b2

4t3
1
2

 , t3 ̸= 0.

Notice that the set K3 is uniquely determined by parameters b2,c2, t3.

Example 3. Let

A =


1 0 2 6
0 1 −4 2
0 0 −1 0
0 0 0 −1

 , P =


1 0 1 3
0 1 −2 1
0 0 −1 0
0 0 0 −1

 .

By Theorem 2, the matrices A and P are involutions and we have the spectral
decomposition A = PDP−1, where D = diag(1,1,−1,−1). We would like to find
concrete solutions Y ∈ S4(D) and X = PY P ∈ S4(A). We see that here we can use
only Algorithm 1 and Algorithm 3.

First, we apply Algorithm 1 for the matrix Y2 =

[
1 2
3 4

]
.

Then we get

Y =


−1

2 0 1 2
0 −1

2 3 4
−3

2
3
4

1
2 0

9
8 −3

8 0 1
2

 , X =


11
8 −3

8
5
8

1
4

33
8 −19

8
55
8

11
2

3
2 −3

4
7
2

15
4

−9
8

3
8 −15

8 −5
2

 .

Next, we apply Algorithm 3, taking F1 = 4 and

P1 =

[
1 1
1 2

]
, P4 =

[
1 1
−1 1

]
.
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Then we obtain the following solutions Y ∈ S4(D) and X = PY P ∈ S4(A):

Y =


−2 3

2 2 −2
−3 5

2 2 −2
3
8 − 3

16 −1
4 −3

4
−3

8
3

16 −3
4 −1

4

 , X =


−11

4
15
8 −6 −23

8
−33

8
49
16 −12 −137

16
−3

8
3

16 −1 −27
16

3
8 − 3

16 0 11
16

 .

9. CONCLUSIONS

• We characterized all explicit involutive solutions of the Yang-Baxter matrix
equation AXA = XAX.

• There are infinitely many such solutions for A ̸=±In.
• Constructing involutive solutions of AXA=XAX can be done easily by direct

implementation of Algoritms 1–3.
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