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Abstract. In this paper, we define Gaussian Fibonacci quaternion polynomials and Gaussian
Lucas quaternion polynomials. We also investigate some properties of these quaternion polyno-
mials.
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1. INTRODUCTION

Gaussian number, investigated by Gauss in 1832, is a complex number with integer
coefficients. Horadam introduced the concept of complex Fibonacci numbers (Gaus-
sian Fibonacci numbers) in 1963. Then, Gaussian Fibonacci numbers and Gaussian
Lucas numbers are studied by many authors. Some example of these studies can be
found in [1, 7, 8, 10, 12], among others.

The nth Gaussian Fibonacci number is defined by the relation

GFn = GFn−1 +GFn−2, n ≥ 2,

with initial conditions GF0 = i and GF1 = 1.
It is easy to see that GFn = Fn + iFn−1, where Fn is the nth Fibonacci number

defined recursively by Fn = Fn−1 +Fn−2 with F0 = 0, F1 = 1.
Similarly, the nth Gaussian Lucas number is defined by the relation

GLn = GLn−1 +GLn−2, n ≥ 2,

with initial conditions GL0 = 2− i and GL1 = 1+2i.
It is clear that GLn = Ln+ iLn−1, where Ln is the nth Lucas number defined recurs-

ively by Ln = Ln−1 +Ln−2 with L0 = 2, L1 = 1.
The Fibonacci polynomials studied by Catalan in 1883 are defined by the relation

Fn(x) = xFn−1(x)+Fn−2(x), n ≥ 2,

with initial conditions F0(x) = 0 and F1(x) = 1.
The Lucas polynomials studied by Bicknell in 1970 are defined by the relation

Ln(x) = xLn−1(x)+Ln−2(x), n ≥ 2,
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with initial conditions L0(x) = 2 and L1(x) = x.
In [11], Özkan and Taştan studied Gaussian Fibonacci polynomials, Gaussian Lu-

cas polynomials and also their applications. They gave the definitions of the Gaussian
Fibonacci and Lucas polynomials, and Binet’s formulas for these polynomials as fol-
lows:

The Gaussian Fibonacci polynomials are defined by the relation

GFn(x) = xGFn−1(x)+GFn−2(x), n ≥ 2, (1.1)

with initial conditions GF0(x) = i and GF1(x) = 1.
Moreover, it is easy to see that GFn(x) = Fn(x)+ iFn−1(x). Setting x = 1 in the eq.

(1.1), the Gaussian Fibonacci number GFn can be obtained.
The Binet’s formulas for the Gaussian Fibonacci polynomials are given by

GFn(x) =
αn−1(x)(α(x)+ i)−βn−1(x)(β(x)+ i)

α(x)−β(x)
, (1.2)

where α(x) = x+
√

x2+4
2 and β(x) = x−

√
x2+4
2 are the roots of the equation t2−xt −1 =

0.
The Gaussian Lucas polynomials are defined by the relation

GLn(x) = xGLn−1(x)+GLn−2(x), n ≥ 2, (1.3)

with initial conditions GL0(x) = 2− ix and GL1(x) = x+2i.
Furthermore, it is clear that GLn(x) = Ln(x)+ iLn−1(x). Setting x = 1 in the eq.

(1.3), the Gaussian Lucas number GLn can be obtained.
The Binet’s formulas for the Gaussian Lucas polynomials are given by

GLn(x) = α
n−1(x)(α(x)+ i)+β

n−1(x)(β(x)+ i), (1.4)

where α(x) and β(x) are same as defined in eq. (1.2).
Quaternions, four-dimensional hyper-complex numbers, introduced by Sir Wil-

liam Rowan Hamilton in 1843. These numbers have found widespread application in
quantum physics, computer graphics, robotics and signal processing.

A quaternion q is of the form

q = q0 +q1i+q2 j+q3k = (q0,q1,q2,q3),

where q0, q1, q2, q3 are real numbers, and i, j, k are quaternionic units which satisfy
the equalities

i2 = j2 = k2 = i jk =−1, i j = k =− ji, jk = i =−k j, ki = j =−ik. (1.5)

The set of all quaternions denoted by H is a non-commutative associative algebra
over the real numbers. For a survey on quaternions, we refer the reader to [6, 15].

In [8], Horadam defined the Fibonacci and Lucas quaternions as

FQn = Fn +Fn+1i+Fn+2 j+Fn+3k
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and
LQn = Ln +Ln+1i+Ln+2 j+Ln+3k,

respectively, where Fn is the nth Fibonacci number, Ln is the nth Lucas number, and
i, j, k are quaternionic units which satisfy the rules (1.5).

There have been many studies in literature on Fibonacci and Lucas quaternions,
see for example [2, 3, 9, 13, 14], among others.

The main objective of this paper is to define and study Gaussian Fibonacci and
Lucas quaternion polynomials. We shall give recurrence relations, Binet’s formulas,
generating functions and summation formulas involving these quaternion polynomi-
als.

2. THE GAUSSIAN FIBONACCI QUATERNION POLYNOMIALS

In this section, we first give the definitions of Gaussian Fibonacci quaternion poly-
nomials and Gaussian Lucas quaternion polynomials. We then obtain some results
for these quaternion polynomials.

For n ≥ 0, Gaussian Fibonacci quaternion polynomials {GFQn(x)}∞
n=0 and Gaus-

sian Lucas quaternion polynomials {GLQn(x)}∞
n=0 are defined by

GFQn(x) = (GFn(x),GFn+1(x),GFn+2(x),GFn+3(x)) (2.1)

and
GLQn(x) = (GLn(x),GLn+1(x),GLn+2(x),GLn+3(x)), (2.2)

respectively, where GFn(x) is the nth Gaussian Fibonacci polynomial, GLn(x) is the
nth Gaussian Lucas polynomial.

It is easy to see that the nth Gaussian Fibonacci quaternion polynomial is defined
recursively by

GFQn(x) = xGFQn−1(x)+GFQn−2(x), n ≥ 2, (2.3)

with initial conditions

GFQ0(x) = (i,1,x+ i,x2 +1+ i) = 2i+(x−1) j+(x2 +2)k (2.4)

and

GFQ1(x) = (1,x+ i,x2 +1+ i,x3 +2x+ i(x+1)) (2.5)

= xi+(x2 − x) j+(x3 +2x+1)k.

Similarly, the nth Gaussian Lucas quaternion polynomial is defined recursively by

GLQn(x) = xGLQn−1(x)+GLQn−2(x), n ≥ 2, (2.6)

with initial conditions
GLQ0(x) = (x3 +4x)k (2.7)

and
GLQ1(x) = (x2 +4)i+(x4 +5x2 +4)k. (2.8)



508 T. YAǦMUR

It must be noted that if we set x = 1 in eqs. (2.1) or (2.3), we obtain Gaussian
Fibonacci quaternions (see, [3, 5])

GFQn = GFQn−1 +GFQn−2, n ≥ 2, (2.9)

with initial conditions

GFQ0 = (i,1,1+ i,2+ i) = 2i+3k,

GFQ1 = (1,1+ i,2+ i,3+2i) = i+4k.

and if we set x = 1 in eqs. (2.2) or (2.6), we obtain Gaussian Lucas quaternions (see,
[4])

GLQn = GLQn−1 +GLQn−2, n ≥ 2, (2.10)
with initial conditions

GLQ0 = (2− i,1+2i,3+ i,4+3i) = 5k,

GLQ1 = (1+2i,3+ i,4+3i,7+4i) = 5i+10k.

Let α(x) and β(x) be the roots of the characteristic equation t2 − xt − 1 = 0 on
the recurrence relation (2.3) of Gaussian Fibonacci quaternion polynomials. Here,
α(x) = x+

√
x2+4
2 and β(x) = x−

√
x2+4
2 . These roots satisfy the following rules:

α(x)+β(x) = x, α(x)−β(x) =
√

x2 +4, α(x)β(x) =−1,

α(x)
β(x)

=−α
2(x),

β(x)
α(x)

=−β
2(x). (2.11)

We now give the Binet’s formulas for the Gaussian Fibonacci and Lucas qua-
ternion polynomials in the following theorem.

Theorem 1. The Binet’s formulas for the Gaussian Fibonacci and Lucas qua-
ternion polynomials are given by

GFQn(x) =
GFQ1(x)(αn(x)−βn(x))+GFQ0(x)(αn−1(x)−βn−1(x))

α(x)−β(x)
(2.12)

and

GLQn(x) =
GLQ1(x)(αn(x)−βn(x))+GLQ0(x)(αn−1(x)−βn−1(x))

α(x)−β(x)
(2.13)

respectively.

Proof. From the general solution for the recurrence relation and using initial con-
ditions the desired results can be obtained easily. □

If we set x = 1 in eq. (2.12), we obtain the Binet’s formula for the Gaussian
Fibonacci quaternions (see, [3, 5]) as follow:

GFQn =
GFQ1(α

n −βn)+GFQ0(α
n−1 −βn−1)

α−β
.
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Moreover, if we set x= 1 in eq. (2.13), we obtain the Binet’s formula for the Gaussian
Lucas quaternions (see, [4]) as follow:

GLQn =
GLQ1(α

n −βn)+GLQ0(α
n−1 −βn−1)

α−β
.

Now, the ordinary generating functions, exponential generating functions and Pois-
son generating functions for the Gaussian Fibonacci quaternion polynomials and
Gaussian Lucas quaternion polynomials are given in the following results, respect-
ively.

Theorem 2. The ordinary generating functions for the Gaussian Fibonacci qua-
ternion polynomials and Gaussian Lucas quaternion polynomials are given by

f (t) =
GFQ0(x)+(GFQ1(x)− xGFQ0(x))t

1− xt − t2 (2.14)

=
2i+(x−1) j+(x2 +2)k+(−xi+ k)t

1− xt − t2 ,

and

g(t) =
GLQ0(x)+(GLQ1(x)− xGLQ0(x))t

1− xt − t2 (2.15)

=
(x3 +4x)k+(x2 +4)(i+ k)t

1− xt − t2 ,

respectively.

Proof. Let f (t) be the generating function for the Gaussian Fibonacci quaternion
polynomials. Then we write

f (t) =
∞

∑
n=0

GFQn(x)tn = GFQ0(x)+GFQ1(x)t + ...+GFQn(x)tn + ... . (2.16)

Multiplying the eq. (2.16) with −xt and −t2, respectively, we get

− xt f (t) =−xGFQ0(x)t − xGFQ1(x)t2 − ...− xGFQn−1(x)tn − ... (2.17)

and

− t2 f (t) =−GFQ0(x)t2 −GFQ1(x)t3 − ...−GFQn−2(x)tn − ... . (2.18)

Then adding the eqs. (2.16), (2.17) and (2.18), we obtain

(1− xt − t2) f (t) = GFQ0(x)+(GFQ1(x)− xGFQ0(x))t

+
∞

∑
n=2

(GFQn(x)− xGFQn−1(x)−GFQn−2(x))tn.

From the eq. (2.3), we get

(1− xt − t2) f (t) = GFQ0(x)+(GFQ1(x)− xGFQ0(x))t.



510 T. YAǦMUR

Using the eqs. (2.4) and (2.5), we have

(1− xt − t2) f (t) = 2i+(x−1) j+(x2 +2)k+(−xi+ k)t

which completes the proof of the first statement.
The second statement of the theorem can be proved in a similar manner. □

If we set x = 1 in eq. (2.14), we obtain the ordinary generating function for the
Gaussian Fibonacci quaternions (see, [3, 5]) as follow:

f (t) =
2i+3k+(k− i)t

1− t − t2 .

Furthermore, if we set x = 1 in eq. (2.15), we obtain the ordinary generating function
for the Gaussian Lucas quaternions (see, [4]) as follow:

g(t) =
5k+5(i+ k)t

1− t − t2 .

Theorem 3. The exponential generating functions for the Gaussian Fibonacci
quaternion polynomials and Gaussian Lucas quaternion polynomials are given by

F(t) =
(GFQ1(x)−β(x)GFQ0(x))eα(x)t − (GFQ1(x)−α(x)GFQ0(x))eβ(x)t

α(x)−β(x)
,

and

G(t) =
(GLQ1(x)−β(x)GLQ0(x))eα(x)t − (GLQ1(x)−α(x)GLQ0(x))eβ(x)t

α(x)−β(x)
,

respectively.

Proof. Using the Binet’s formula (2.12) of the Gaussian Fibonacci quaternion
polynomials, we have

F(t) =
∞

∑
n=0

GFQn(x)
tn

n!

=
∞

∑
n=0

GFQ1(x)(αn(x)−βn(x))
α(x)−β(x)

tn

n!
+

∞

∑
n=0

GFQ0(x)(αn−1(x)−βn−1(x))
α(x)−β(x)

tn

n!

=
∞

∑
n=0

(α(x)GFQ1(x)+GFQ0(x))(α(x)t)n

α(x)(α(x)−β(x))n!

−
∞

∑
n=0

(β(x)GFQ1(x)+GFQ0(x))(β(x)t)n

β(x)(α(x)−β(x))n!

=
(α(x)GFQ1(x)+GFQ0(x))

α(x)(α(x)−β(x))

∞

∑
n=0

(α(x)t)n

n!

− (β(x)GFQ1(x)+GFQ0(x))
β(x)(α(x)−β(x))

∞

∑
n=0

(β(x)t)n

n!
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=
(α(x)GFQ1(x)+GFQ0(x))

1+α2(x)
eα(x)t +

(β(x)GFQ1(x)+GFQ0(x))
1+β2(x)

eβ(x)t

=
(GFQ1(x)−β(x)GFQ0(x))eα(x)t − (GFQ1(x)−α(x)GFQ0(x))eβ(x)t

α(x)−β(x)
.

Thus, the proof of the first statement is completed. The second statement can be
proved using the Binet’s formula (2.13) of the Gaussian Lucas quaternion polynomi-
als in a similar manner. □

Theorem 4. The Poisson generating functions for the Gaussian Fibonacci qua-
ternion polynomials and Gaussian Lucas quaternion polynomials are given by

F (t) =
(GFQ1(x)−β(x)GFQ0(x))eα(x)t − (GFQ1(x)−α(x)GFQ0(x))eβ(x)t

et(α(x)−β(x))
,

and

G(t) =
(GLQ1(x)−β(x)GLQ0(x))eα(x)t − (GLQ1(x)−α(x)GLQ0(x))eβ(x)t

et(α(x)−β(x))
,

respectively.

Proof. Since F (t) = e−tF(t) and G(t) = e−tG(t), the proof of the theorem is
clear. □

Theorem 5. For n ≥ 2, we have
n

∑
k=1

GFQk(x) =
1
x
(GFQn+1(x)+GFQn(x)−GFQ1(x)−GFQ0(x)), (2.19)

and
n

∑
k=1

GLQk(x) =
1
x
(GLQn+1(x)+GLQn(x)−GLQ1(x)−GLQ0(x)). (2.20)

Proof. From eq. (1.1), we can write GFQn−1(x) = 1
x (GFQn(x)−GFQn−2(x)).

By the telescoping sum, we get
n

∑
k=1

GFQk(x) =
1
x

n+1

∑
k=2

GFQk(x)−
1
x

n−1

∑
k=0

GFQk(x)

=
1
x
(GFQn+1(x)+GFQn(x)−GFQ1(x)−GFQ0(x))

which completes the proof of the eq. (2.19).
Since GLQn−1(x) = 1

x (GLQn(x)−GLQn−2(x)) from eq. (1.3)), eq. (2.20)) can be
obtained in a similar manner. □

If we set x = 1 in eq. (2.20), we have [4]
n

∑
k=0

GLQk = GLQn+2 −5(i+2k).
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Corollary 1. For n ≥ 2, we have
n

∑
k=1

GFQ2k(x) =
1
x
(GFQ2n+1(x)−GFQ1(x)),

n

∑
k=1

GFQ2k−1(x) =
1
x
(GFQ2n(x)−GFQ0(x)),

n

∑
k=1

GLQ2k(x) =
1
x
(GLQ2n+1(x)−GLQ1(x)),

n

∑
k=1

GLQ2k−1(x) =
1
x
(GLQ2n(x)−GLQ0(x)).

We now define the matrices Q, R and S as follows:

Q =

(
x 1
1 0

)
, R =

(
GFQ2(x) GFQ1(x)
GFQ1(x) GFQ0(x)

)
, S =

(
GLQ2(x) GLQ1(x)
GLQ1(x) GLQ0(x)

)
.

Theorem 6. For n ≥ 1, we have

QnR =

(
GFQn+2(x) GFQn+1(x)
GFQn+1(x) GFQn(x)

)
and

QnS =

(
GLQn+2(x) GLQn+1(x)
GLQn+1(x) GLQn(x)

)
.

Proof. The results can be obtained easily using the mathematical induction on
n. □

Theorem 7 (Cassini’s Identity). For n ≥ 1, we have

GFQn+1(x)GFQn−1(x)−GFQ2
n(x) = (−1)n−1(GFQ2(x)GFQ0(x)−GFQ2

1(x)),

and

GLQn+1(x)GLQn−1(x)−GLQ2
n(x) = (−1)n−1(GLQ2(x)GLQ0(x)−GLQ2

1(x)).

Proof. It is clear that detQn−1 = (−1)n−1, detR = GFQ2(x)GFQ0(x)−GFQ2
1(x)

and detS = GLQ2(x)GLQ0(x)−GLQ2
1(x). Taking detQn−1R and detQn−1S, we can

obtain the desired results, respectively. □

3. CONCLUSION

In this paper, we study the Gaussian Fibonacci and Lucas quaternion polynomials.
We give some results including recurrence relations, Binet’s formulas, generating
functions and summation formulas for these quaternion polynomials.

It must be noted that for x = 1, the results for the Gaussian Fibonacci quaternion
polynomials and Gaussian Lucas quaternion polynomials given in this study corres-
pond to the Gaussian Fibonacci quaternions [3, 5] and Gaussian Lucas quaternions
[4], respectively.
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Tülay Yaǧmur
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