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Abstract. In this paper, we establish the sharp maximal function estimates for the Toeplitz type
operator related to the singular integral operator with general kernel. As an application, we obtain
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1. INTRODUCTION

As the development of singular integral operators (see [7, 19, 20]), their commu-
tators have been well studied. In [4, 17, 18] the authors prove that the commutators
generated by the singular integral operators and BM O functions are bounded on
LP(R") for 1 < p < oco. Chanillo (see [2]) proves a similar result when singular
integral operators are replaced by the fractional integral operators. In [3, 8, 14] the
boundedness for the commutators generated by the singular integral operators and
Lipschitz functions on Triebel-Lizorkin and L?(R")(1 < p < oco) spaces are obta-
ined. In [1], some singular integral operators with general kernel are introduced, and
the boundedness for the operators and their commutators generated by BM O and
Lipschitz functions are obtained (see [1, 10]). In [9, 1 1], some Toeplitz type operators
related to the singular integral operators and strongly singular integral operators are
introduced, and the boundedness for the operators generated by BM O and Lipschitz
functions are obtained. In this paper, we will study the Toeplitz type operators ge-
nerated by the singular integral operators with general kernel and the Lipschitz and
BM O functions.

2. PRELIMINARIES

First, let us introduce some notations. Throughout this paper, Q will denote a cube
of R™ with sides parallel to the axes. For any locally integrable function f, the sharp
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maximal function of f is defined by

M) = s o / 1fO)— foldy.

10|

where, and in what follows, fo = |0|7! 0 f(x)dx. It is well-known that (see
[7,19])

WA~ s inf o / F () —cldy.

We say that f belongs to BMO(R”) if M*(f) belongs to L®(R") and define
[l fllBmo = ||M*(f)||Leo. It has been known that (see [19])

II.f = faxgllBMoO < Ckl| flIBMO-
Let
MU = s oo [ 1 3)ldy.

For 1> 0, let My (f)(x) = M(Ifl")””(x)-
ForO<n<mnand1 <r < oo, set

1/r
My (£)(x) = sup(| e / O dy) |

The A, weight is defined by (see [7]), for 1 < p < oo,

p—1
Ap= g w e LIOC(R") sup(|Q| / w(x)dx) (IQI / w(x)_l/(p_l)dx) < oo}

and
Ay ={we IOC(R”) M(w)(x) < Cw(x),a.e.}.

For B >0and p > 1, let Ff "°(R™) be the homogeneous Triebel-Lizorkin space (see

[14]).
For B > 0, the Lipschitz space Lipg(R") is the space of functions f such that

1 llzipy = sup LSO

X, yERN |X ylﬂ
X#y
Definition 1. Let ¢ be a positive, increasing function on R™ and there exists a
constant D > 0 such that
©(2t) < De(t) for t > 0.

Let f be alocally integrable function on R". Set, for 1 < p < oo,

1 fllLpe = sup

1/p
L If(y)l”dy) ,
xeR", d>o(90(d) x,d)
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where Q(x,d) ={y € R" : |[x —y| < d}. The generalized Morrey space is defined
by
LPO(R") = {f € L], (R") || fllLrw < o0}.

If o(d) = d%, § > 0, then LP?(R") = LP"5(R™), which is the classical Morrey
space (see [15, 16]). If p(d) = 1, then L?*(R") = L?(R™), which is the Lebesgue
space (see [13]).

As the Morrey space may be considered as an extension of the Lebesgue space,
it is natural and important to study the boundedness of the operator on the Morrey
spaces (see [5,6, 12, 13]).

In this paper, we will study some singular integral operators as following (see [1]).

Definition 2. Let 7 : S — S’ be a linear operator such that 7' is bounded on
L?(R™) and there exists a locally integrable function K (x, y) on R” x R"\ {(x,y) €
R"™ x R"™ : x = y} such that

TN = [ K /0y

for every bounded and compactly supported function f, where K satisfies: there is a
sequence of positive constant numbers {C; } such that for any j > 1,

/ (K (r.y) = K(xr.2)| + 1K (rox) = K(z.x)dx < C,
2|y—z|<|x—y|

and
1/q
(/ ‘ (IK(x,y)—K(x,Z)I+|K(y,X)—K(Z,X)I)qdy)
2/ |z—y|<|x—y|<2/t1|z—y|

<G |z—yh™,
where 1 <¢q¢' <2and 1/q+1/q' =1.

Moreover, let b be a locally integrable function on R”. The Toeplitz type operator
related to T is defined by

m
T, =Y TF'M,T*2,
k=1

where T%1 are T or +1 (the identity operator), T*:2 are the bounded linear operators
on LP(R")forl<p<oo,k=1,...m, Mp(f)=0>bf.

Note that the classical Calderén-Zygmund singular integral operator satisfies De-
finition 2 with C; = 2778 (see [7,19]). And note that the commutator [b, T](f) =
bT(f)—T(bf) is a particular operator of the Toeplitz type operator Tp. The Toep-
litz type operator Tj are the non-trivial generalizations of the commutator. It is well
known that commutators are of great interest in harmonic analysis and have been
widely studied by many authors (see [17, 18]). The main purpose of this paper is to
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prove the sharp maximal inequalities for the Toeplitz type operator 7. As the app-
lication, we obtain the the L?-norm inequality, Morrey and Triebel-Lizorkin spaces
boundedness for the Toeplitz type operators Tp.

3. THEOREMS
We shall prove the following theorems.

Theorem 1. Let T be the singular integral operator as in Definition 2, the sequ-
ence {C;j}ell,0<B<1,g <s<ooandbe Lipg(R"). Ifg€ L*(R")(1 <u <
00) and T1(g) = 0, then there exists a constant C > 0 such that, for any f € C§°(R")
and X € R",

MATy(/)E) < ClIbllLip, Y Mps(TR2(f)(E).
k=1

Theorem 2. Let T be the singular integral operator as in Definition 2, the sequ-
ence {2/PC;yel', 0<B<1,¢q' <s<ooandb e Lipg(R"). If g € L*(R")(1 <
u < 00) and T1(g) = 0O, then there exists a constant C > 0 such that, for any [ €
Cg°(R™) and X € R",

1 m
sup ————— [ |Ty(f)(x)—Co|dx < C|[b]|Li M(T*?(f)(5).
053 [Q[1 A/ /Q " ,;

Theorem 3. Let T be the singular integral operator as in Definition 2, the sequ-
ence {jC;j}€ll, ¢’ <s <ooandb € BMO(R"). If g € L*(R™)(1 <u < 00) and
T1(g) = O, then there exists a constant C > 0 such that, for any f € C§°(R") and
X €eR",

m
M*(Ty(£))F) < ClibllBmo Y Mo(TF2(£) ().
k=1
Theorem 4. Let T be the singular integral operator as in Definition 2, the se-
quence {C;} €11, 0 < B <min(1,n/q’), ¢/ < p <n/B, 1/r =1/p—B/n and
b e Lipg(R"). If g€ L*(R")(1 <u < o0) and T1(g) = 0, then T} is bounded
from LP(R") to L"(R").

Theorem 5. Let T be the singular integral operator as in Definition 2, the sequ-
ence {C;}el',0< B <min(1,n/q"), q'<p<n/B, 1/r=1/p—B/n,0<D <2"
and b € Lipg(R"). If g € L"(R")(1 <u < o0) and T1(g) = 0, then T}, is bounded
from LP?(R™) to L™?(R").

Theorem 6. Let T be the singular integral operator as in Definition 2, the se-
quence {2/PC;y €1, 0 < B <min(1,n/q’), ¢ < p <n/P and b € Lipg(R").
If g e LY(R")(1 <u < o0) and T1(g) = 0, then Ty is bounded from LP(R") to
P> (R,
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Theorem 7. Let T be the singular integral operator as in Definition 2, the sequ-
ence {jC;yell, ¢’ < p<n/Bandbe BMO(R"). Ifg € L*(R")(1 <u < 00) and
T1(g) =0, then Ty, is bounded on LP (R").

Theorem 8. Let T be the singular integral operator as in Definition 2, the sequ-
ence {jC;tell,q' <p<n/B,0<D <2"andb e BMO(R"). Ifg € L*(R")(1 <
u <o0) and T1(g) =0, then Ty, is bounded on LP-?(R").

4. PROOFS OF THE THEOREMS

To prove the theorems, we need the following lemmas.

Lemma 1. (see [/]) Let T be the singular integral operator as in Definition 2.
Then T is bounded on LP (R") for 1 < p < oo.

Lemma 2. (see [/4]) For0 < < 1and 1 < p < oo, we have

1
1o~ |fsop oz [ 170 folds
1
A supinf—[ | f(x)—cl|dx
0> ¢ |Q|1+ﬂ/n 0 LP

Lemma 3. (see [7]) Let 0 < p < 00 and w € Uy <y <o Ar. Then, for any smooth
function f for which the left-hand side is finite,

/ M(f)(x)Pw(x)dx < C / M*(F)(x)Pw(x)dx.
Rn Rﬂ

Lemma 4. (see [2]). Suppose that0 <n<n, 1 <s<p<n/nand1/r=1/p—
n/n. Then

| My,s ()Lr < ClLflILe.

Lemma 5. Let 1 < p <00, 0 < D < 2" Then, for any smooth function f for
which the left-hand side is finite,

IM(NILre < CIIM*(f)|Lreo.
Proof. For any cube O = Q(xo.d) in R", we know M(xp) € A; for any cube
Q = Q(x,d) by [7]. Noticing that M()o) < 1 and M(y0)(x) < m if
x € Q€, by Lemma 3, we have, for f € LP¢(R"),
[ reras= [ mirer o

< [ M@ M @dx <€ [ M@ M)
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c ( | M@ Muowdx+ Y [ M#(f)(x)pM(XQ)(X)dx)
Q k=0

2k+1 Q\ZkQ

o0 19|
c| | M*)xrd MDY G g?
< (/VQ (fH(x) x+]§)£k+lg\2kQ (f)(x) |2k+1Q| X)

< # D o # pHr—kn
_c(/QM () d”kZ:OLkHQM (NP2 dy)

o0
<ClIM* (O 0 D> 27* 24 a)
k=0

<CIIM*(OIIF 0 D@ DY o(d)
k=0

< ClIIM*(N)II] po(d),
thus

o rax) < (; b PP )”P
((p(d)/QM(f)(X) dx) <c (p(d)/QM (f)x)Pdx

IM()l|Lre < CIIM*(N)|Lro.
This finishes the proof. O

and

Lemma6. LetO< D <2", 1 <s<p<n/nand1/r =1/p—n/n. Then
[|My,s ()|Lre < Cl fllLre.

Lemma 7. Let T be the bounded linear operators on L4(R") forany 1 < g < oc.
Then, for 1 < p <oo, 0 < D < 2",

”T(f)”LP-‘ﬁ = C||f||Lp.<p.

The proofs of the last two Lemmas are similar to that of Lemma 5 by Lemma 4,
we omit the details.

Proof of Theorem 1. It suffices to prove for f € C5°(R") and some constant Co,
the following inequality holds:

1
1o
Without loss of generality, we may assume Tk are T(k = 1,...,m). Fix a cube
0 = Q(xo.d) and X € Q. Write, for fi = fy20 and f> = fX(zQ)C,
Tp(f)(X) =Tp—bo (S )(X) = To—bo) 320 (S )X) +Th—bo)x 200 (S)(X) = f1(x) + f2(x).

/Q ITy(£)(x) — Coldx < ClibllLips 3 Mp o (TE2()(R).
k=1
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Then

o / ITy(f)(x) — falxo) dx < / L1 () ldx

[
IQI/ ()~ faxo)ldx = I + 1.

For I, by Holder’s inequality, we obtain

1
T /Q 75 Moy a0 TF2(F) () dx
<(i / 75 Mg T"J(f)(x)wdx)l/s
— |Q| R Q)X20

1/s
<ClOI ([ 1Mo-borae TH NP )

1/s
<clol ( / (Ib(x) —bQIITk’Z(f)(x)I)SdX)

20

1/s
5CIQI_I/SIIbIILipB|2Q|5/”|Q|1/S_’3/”(l = / T2 dx)

< ClbllLipsMp s (T*2(f))(F),
thus

m
1
I = Z—/ IT5 M p—bg)poo TF2(F) () dx
101 /o

< ClIbllLips Y Mp (TF(/))(F).

k=1

For I, by the boundedness of T and recalling that s > ¢’, we get, for x € Q,
T M p—bo) 000 T2 () = T Mp_b ) y0re TEZ (F) (X0)]

< [ 16(y) —baglIK(x. y) — K (xo. NITF2(£) () |dy
29)¢

o0

/ | ) —baollK(x.y) — Ko WIIT2(£) ()| dy
—1/2/d<ly—xol<2/*1d

o0
< ClbllLip, 32+ Q)" (/2

1/q
| | |K(x,y)—1<(xo,y)|4dy)
=1 Jd<|y—xp|<2/tld



166 LANZHE LIU

, 1/q’
x ( [ ik dy)
2/+10Q

o0
<Clbl|Lips Y _12/*! QB/nC; (2] dy /4 pi+1 |V a Bl
j=1

1 k.2 Rk 1/s
- (W/MIQIT (I dy)

< ClIbllLips Mp o (TH2(fN(H) D C;

Jj=1
< C|bllLip, Mg (TF2(f))(F),
thus

b= / DT Mir—oyrooe TF2())()
—Tk! M(b—bQ)x(ZQ)c ©2(f)(xo)ldx

m
< ClIbllLips ) Mps(TE* (/D).
k=1
These complete the proof of Theorem 1. U

Proof of Theorem 2. 1t suffices to prove for f € C§°(R") and some constant Co,
the following inequality holds:

1 m
——— | Ty (f)(x) = Coldx < CllblILips Y Mo(TE2(f))(F).
|Q[1+A/ /Q " ,;

Without loss of generality, we may assume 7% are T(k = 1,...,m). Fix a cube
Q = Q(xo.d) and X € Q. For f1 = fy20 and f2 = fx)c, write
Tp(f)(x) =Tp—bo (S)(X) =To—bo)x20 (X)) +To=bo) x20yc (SI(X) = f1(x) + f2(x)

and

1 1
Wme(f)(x)—fz(xo)msW/ Al

/'fZ(x) f2(xo)|dX—I3+I4

By using the same argument as in the proof of Theorem 1, we get

T

m

/ Z C b o) B/n 1/s Tk,2 f) )sd Vs
5= X i Plin20P 0 ([ it 0Heorax

k=1
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< ClbllLs i(L [ ITk’z(f)(x)|de)l/s
=P £\ 1201 Jag

< ClIbllLips Y Ms(T*2(£) ().

k=1

m [ee]
1
I < —/ / 5O —baol
,§I|Q|l+ﬁ/” ng1 2/d<|y—xol<2/*1d ©

x | K(x, ) — K(xo, I T*2(f)(y)|dydx

m C 1% . ) L
= TAI1+8/n b|lLi 2/+1 n(/ Tk2 q’d )
_kg:l |Q|1+ﬂ/n /Q;H ||Lll7/5| Ql 2j+1Q| (f)(y)| y

1/q
. ( / | | |K(x,y)_1<<xo,y)|qdy) dx
2/d <|y—xo|<2/+1d

m o0
< CllbllLips Y 1017 it QB/ne 27 ay ™/ |2/ o V4
— j=1

k=1
1 k,2 K s
(g g T2 )

< ClIbllLips Y Mo(T*2(N(® Y27 ¢;
k=1 j=1

< ClbllLips Y Ms(T*2(f))(H).
k=1

This completes the proof of Theorem 2. U

Proof of Theorem 3. 1t suffices to prove for f € C§°(R™) and some constant Co,
the following inequality holds:
1

i /Q Ty (/)(x) = Col dx < C|Ibllza0 k; TR ) D)

Without loss of generality, we may assume Tk are T(k = 1,...,m). Fix a cube
Q = Q(xo.d)and x € Q. For f1 = fx20 and f2 = fx20)c, similar to the proof
of Theorem 1, we have
Tp(f)(xX) = Tp—po (S)(X) = T(o—b0) 320 (S)(X)

+ T-bo)roor (F)X) = fi(x) + f(x)
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and

o / ITy(f)(x) — fa(xo)|dx

|Q|/ 1 (0)ldx +|Q|/ () — falxo)ldx = Is + Is.

For Is, choose 1 < r < s, by Holder’s inequality and the boundedness of 7', we obtain

1 / k.1 k.2
— | [T Mp_p T=(f)(x)|dx
|Q| 0 ( Q)XZQ
< (— [T M by T J(f)(x)de)
| Q] Jrn
1/r
< C|Q|_1/r (/Rn |M(b—bQ)X2Q Tk’z(f)(x)|rdx)

1/s (s—r)/sr
=clor ([ ireneoras) ([ w—pol e ax)

1 1/s
< ClIbllsmo (| 5 / IT"’Z(f)(x)Isdx)

< C||bl|BaoMs(TH2(£)) (),
thus

m
1
1523 o [ 1T Mgy TR 0l
191 Jo

< Clbllsmo Y M(TF2(£))(®).

k=1

For I, recalling that s > ¢/, taking 1 < p <oo,l <r<swith1/p+1/g+1/r=1
by the boundedness of 7', we get, for x € Q,

|Tk’1M(b—bQ)X<2Q)c TR2(f)(x) = T*! M@p-bo)xao)e TE2(f) o)

S — _ k,2
SZ/mmy xo|<2J+ld|K(x’y) K(xo, )I1b(y) = b20lI T (/) (»)Idy

e 1/q
SZ(/ , IK(x,y)—K(xo,y)lqdy)
: 27 d<|y—xo|<2/*1ld

» 1/p ra . 1/r
([, por=berar) ([ macnoray)
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o0
< Clbllspo Y _C; 27 d)y™7 j@ dy"'P 2] dy"/s
j=1

1 k2 s Vs
(rgi L, P20 )

< ClbllBaoMs(TF*(fN(E) Y JC;
j=1

< C||b||Baro Ms(T*2(1))(%),

thus

1 m
I < @/Q Y AT M p—boyyo0p T () = TH My )y 000 THZ () (x0) dx
k=1

<C|lbllamo Y Ms(TH2())(%).
k=1

This completes the proof of Theorem 3. U

Proof of Theorem 4. Choose ¢’ < s < p in Theorem 1, we have, by Lemma 1, 3
and 4,

o (DL < IM(T(f DIl < CIM* (T (f)lzr

m m
< ClIbllLips Y _ 1M (T*2 (DL < ClIblILips D NTE2(F)llLe
k=1 k=1

< ClIbllLipgll f Lo

This completes the proof. O

Proof of Theorem 5. Choose ¢’ < s < p in Theorem 1, we have, by Lemma 5, 6
and 7,

ITs(Nlzre < IMTp(f)lILre < CUM*(Ty(£))Lre

m m
< ClIblILipy Y IMp s (TH2(fllLre < CllblILips 3 NTH2(F) Lo
k=1 k=1

< ClbllLipgll f Lo

This completes the proof. O
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Proof of Theorem 6. Choose ¢’ < s < p in Theorem 2, we have, by Lemma 1, 2
and 3,

1Ty ()l ppoe < C

s g [ [T~ Colds

Lr

< ClIblILips Y IM(TR2(fDllr < ClIblILips Z IT%2(f)Lr

k=1 k=1
< ClIbllLipsll fllLr-
This completes the proof. (]

Proof of Theorem 7. Choose ¢’ <s < p in Theorem 3, we have, by Lemma 1, 3
and 4,

s (DllLr < IM(Ts(fDllr < CIM*(T(f)Lr

m m
< ClIbllsmo Y _ IMs(T*2(f)Lr < ClIbllmo Y _IT**(f)lLr
k=1 k=1
<C|Ibllzaoll f L

This completes the proof. (]

Proof of Theorem 8. Choose ¢’ <s < p in Theorem 3, we have, by Lemma 5, 6
and 7,

15 (NllLre < IM(Tp(fDIIee < CIM*(Tp(f))l|Lre

m m
< ClIbllsao Y IM(T (/) Lre = Clbllaro Y IT*2(F)lzre
k=1 k=1
<Cl|bllamoll fllLre.

This completes the proof. (]
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