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Abstract. This paper deals with developing a new class of quaternions, called hyper-dual Hora-
dam quaternions which are constructed from the quaternions whose components are hyper-dual
Horadam numbers. We investigate the algebraic properties of these quaternions.
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1. INTRODUCTION

Dual numbers were invented by Clifford [3] as an extension of the real numbers.
The set of dual numbers is defined as

D= {d = a+a∗ε | a,a∗ ∈ R} ,

where ε is the dual unit with ε ̸= 0,ε2 = 0. Dual numbers have many interesting ap-
plications on mechanics, robotics, computer graphics, geometry, and physics. Espe-
cially, they are important to represent rigid body motions in 3D-space. The addition
and multiplication of two dual numbers d1 = a+a∗ε and d2 = b+b∗ε are defined as

d1 +d2 = (a+b)+(a∗+b∗)ε and d1d2 = ab+(ab∗+a∗b)ε,

respectively.
Similar to the quaternions, dual quaternions are defined by taking dual numbers

instead of real numbers as coefficients. A dual quaternion q̃ is defined as

q̃ = d0 +d1i+d2 j+d3k,

where d0,d1,d2,d3 ∈D, and the elements i, j,k satisfy the following noncommutative
quaternion multiplication rules:

i2 = j2 = k2 = i jk =−1. (1.1)

Since any dual quaternion can be written as a dual number with real quaternion coef-
ficients, it is constructed from eight real parameters. For the detailed information
related to these numbers and their applications, we refer to [3, 10, 16].
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Hyper-dual numbers can be seen as an extension of dual numbers in the same way
that quaternions are an extension of complex numbers. To get an advantage on exact
calculations of second (or higher) derivatives, Fike and Alanso [6, 7] introduced the
hyper-dual numbers. The set of hyper-dual numbers is defined by

HD= {D=a0 +a1ε1 +a2ε2 +a3ε1ε2 | a0,a1,a2,a3 ∈ R} ,
where the dual units ε1 and ε2 satisfy the following rules:

ε
2
1 = ε

2
2 = (ε1ε2)

2 = 0, ε1 ̸= ε2, ε1 ̸= 0,ε2 ̸= 0, ε1ε2 = ε2ε1 ̸= 0. (1.2)

Hyper-dual numbers form a 4-dimensional vector space over real numbers with basis
{1,ε1,ε2,ε1ε2} . Also, a hyper-dual number D can be written as D = d +d∗ε∗ where
d = a0 + a1ε,d∗ = a2 + a3ε ∈ D and ε1 = ε,ε2 = ε∗. The addition and the multi-
plication of hyper-dual numbers D1 = d1 + d∗

1ε∗ and D2 = d2 + d∗
2ε∗ are defined,

respectively, as:

D1 +D2 = (d1 +d2)+(d∗
1 +d∗

2)ε
∗ and D1D2 = d1d2 +(d1d∗

2 +d∗
1d2)ε

∗.

For applications of hyper-dual numbers, see [4, 5, 8].
Recently, Aslan et al. [1] have defined the hyper-dual split quaternions as

q̂ = D0 +D1i+D2 j+D3k

where D0,D1,D2,D3 ∈HD and i, j,k satisfy the split quaternion multiplication rules
i2 = −1, j2 = k2 = i jk = 1. It is clear to see that a hyper-dual quaternion is con-
structed from sixteen real parameters. For the algebraic properties and the geometric
interpretations of hyper-dual split quaternions, we refer to [1].

On the other hand, Horadam [11] introduced the quaternions whose components
are Fibonacci numbers. More generally, by using Horadam’s approach, Halıcı and
Karatas [9] defined the nth Horadam quaternion as

Qw,n = wn +wn+1i+wn+2 j+wn+3k,

where {wn} is the Horadam sequence [12] and is defined by

wn = pwn−1 +qwn−2, n ≥ 2

with the arbitrary initial values w0,w1 and nonzero integers p,q. It is clear to see that
the Horadam sequence {wn} := {wn (w0,w1; p,q)} generalizes many well known in-
teger sequences such as Fibonacci sequence {Fn}= {wn (0,1;1,1)} , Lucas sequence
{Ln} = {wn (2,1;1,1)} , generalized Fibonacci sequence {un} = {wn (0,1; p,q)} ,
and the generalized Lucas sequence {vn} = {wn (2, p; p,q)} . The Binet formula of
the Horadam sequence {wn} is

wn =
Aαn −Bβn

α−β

where A := w1 −w0β, B := w1 −w0α, and α,β are the roots of the characteristic

polynomial x2 − px − q, that is; α =
(p+

√
p2+4q)
2 , β =

(p−
√

p2+4q)
2 . Also we have
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αβ = −q, α+β = p, ∆ := α−β =
√

p2 +4q with p2 + 4q > 0. The Binet formula
for the Horadam quaternions is

Qw,n =
Aα∗αn −Bβ∗βn

α−β
, (1.3)

where α∗ = 1+αi+α2 j+α3k and β∗ = 1+βi+β2 j+β3k. For details, see [2,9,17].
Also, Nurkan and Guven [14] introduced the dual Fibonacci quaternions by taking

dual Fibonacci numbers instead of real numbers as coefficients. These numbers can
also be seen as dual numbers with Fibonacci quaternion coefficients. A generalization
of dual Fibonacci quaternions can be found in [18]. In [13], the author introduced the
dual Horadam quaternions as

Q̃w,n = w̃n + w̃n+1i+ w̃n+2 j+ w̃n+3k,

where w̃n = wn + wn+1ε is the nth dual Horadam number. Recently, in [15], the
authors defined the hyper-dual numbers whose coefficients are from the sequences
{Ukn} and {Vkn} which reduce to the sequences {wn (0,1; p,1)} and {wn (2, p; p,1)}
for k = 1, respectively.

In this paper, motivating the definition of hyper-dual split quaternions in [1], we
consider the quaternions whose coefficients are taken from hyper-dual Horadam num-
bers. To do this, first we define the hyper-dual Horadam numbers, then we intro-
duce the quaternions whose coefficients are taken from those numbers. We give
the generating function and the Binet formula for hyper-dual Horadam quaternions.
Some algebraic properties of these quaternions such as Vajda’s identity, Catalan’s
identity, Cassini’s identity, and d’Ocagne’s identity are derived with the aid of the
Binet formula. Moreover, we develop some matrix identities involving the hyper-dual
Horadam quaternions which allow us to obtain some properties of these quaternions.

2. MAIN RESULTS

In this section, first we define hyper-dual Horadam numbers, then by using these
numbers we introduce hyper-dual Horadam quaternions, and investigate the basic
properties of these quaternions.

Definition 1. The nth hyper-dual Horadam number is defined as

ŵn = wn +wn+1ε1 +wn+2ε2 +wn+3ε1ε2,

where wn is the nth Horadam number and ε1,ε2 are dual units satisfying the multi-
plication rules in (1.2) .

Definition 2. The nth hyper-dual Horadam quaternion is defined as

Q̂w,n = ŵn + ŵn+1i+ ŵn+2 j+ ŵn+3k,

where ŵn is the nth hyper-dual Horadam number and i, j,k satisfy the quaternion
multiplication rules in (1.1) .
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In the following table, we give the types of quaternions which are mentioned in
this paper.

Type of quaternion Definition

Horadam quaternion [9] Qw,n = wn +wn+1i+wn+2 j+wn+3k,
wn is the nth Horadam number

Dual Horadam quaternion [13] Q̃w,n = w̃n + w̃n+1i+ w̃n+2 j+ w̃n+3k,
w̃n is the nth dual Horadam number

Hyper-dual Horadam quaternion Q̂w,n = ŵn + ŵn+1i+ ŵn+2 j+ ŵn+3k,
ŵn is the nth hyper-dual Horadam number

Table 1

Note that the nth hyper-dual Horadam quaternion can be expressed as

Q̂w,n = Qw,n +Qw,n+1ε1 +Qw,n+2ε2 +Qw,n+3ε1ε2,

where Qw,n is the nth Horadam quaternion, and ε1,ε2 are dual units. The addition and
the multiplication of two hyper-dual Horadam quaternions Q̂w,n and Q̂w,m are defined
as

Q̂w,n + Q̂w,m = (Qw,n +Qw,m)+(Qw,n+1 +Qw,m+1)ε1

+(Qw,n+2 +Qw,m+2)ε2 +(Qw,n+3 +Qw,m+3)ε1ε2,

Q̂w,nQ̂w,m = Qw,nQw,m +(Qw,nQw,m+1 +Qw,n+1Qw,m)ε1

+(Qw,nQw,m+2 +Qw,n+2Qw,m)ε2

+(Qw,nQw,m+3 +Qw,n+1Qw,m+2 +Qw,n+2Qw,m+1 +Qw,n+3Qw,m)ε1ε2,

respectively.
The norm of a hyper-dual Horadam quaternion Q̂w,n is defined as

N(Q̂w,n) := Q̂w,nQ̂w,n = Q̂w,nQ̂w,n = ŵ2
n + ŵ2

n+1 + ŵ2
n+2 + ŵ2

n+3,

where Q̂w,n := ŵn − ŵn+1i− ŵn+2 j− ŵn+3k is the conjugate of Q̂w,n. Also the norm
of Q̂w,n can be obtained by the determinant of the matrix(

ŵn + ŵn+1i −ŵn+2 j− ŵn+3i
ŵn+2 j− ŵn+3i ŵn − ŵn+1i

)
.

Theorem 1. The hyper-dual Horadam quaternions satisfy the following relation:

Q̂w,n = pQ̂w,n−1 +qQ̂w,n−2, n ≥ 2.
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Proof. From the definition of the hyper-dual Horadam quaternions and the Hora-
dam quaternions, we have

pQ̂w,n−1 +qQ̂w,n−2 = p(Qw,n−1 +Qw,nε1 +Qw,n+1ε2 +Qw,n+2ε1ε2)

+q(Qw,n−2 +Qw,n−1ε1 +Qw,nε2 +Qw,n+1ε1ε2)

= (pQw,n−1 +qQw,n−2)+(pQw,n +qQw,n−1)ε1

+(pQw,n+1 +qQw,n)ε2 +(pQw,n+2 +qQw,n+1)ε1ε2

= Qw,n +Qw,n+1ε1 +Qw,n+2ε2 +Qw,n+3ε1ε2.

□

Theorem 2. The generating function for hyper-dual Horadam quaternions is

G(x) =
Q̂w,0 +

(
Q̂w,1 − pQ̂w,0

)
x

1− px−qx2 .

Proof. Let

G(x) :=
∞

∑
n=0

Q̂w,nxn = Q̂w,0 + Q̂w,1x+
∞

∑
n=2

Q̂w,nxn.

From Theorem 1, we have(
1− px−qx2)G(x) = Q̂w,0 + Q̂w,1x+

∞

∑
n=2

Q̂w,nxn

− pQ̂w,0x− p
∞

∑
n=2

Q̂w,n−1xn −q
∞

∑
n=2

Q̂w,n−2xn

= Q̂w,0 + Q̂w,1x− pQ̂w,0x+
∞

∑
n=2

(
Q̂w,n − pQ̂w,n−1 −qQ̂w,n−2

)
xn

= Q̂w,0 +
(

Q̂w,1 − pQ̂w,0

)
x.

Thus, we get the desired result. □

Theorem 3. The Binet formula of hyper-dual Horadam quaternions is

Q̂w,n =
Aα∗ααn −Bβ∗ββn

α−β
,

where

α
∗ = 1+αi+α

2 j+α
3k, β

∗ = 1+βi+β
2 j+β

3k,

α = 1+αε1 +α
2
ε2 +α

3
ε1ε2, β = 1+βε1 +β

2
ε2 +β

3
ε1ε2.
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Proof. From the Binet formula of Horadam quaternions in (1.3), we have

Q̂w,n = Qw,n +Qw,n+1ε1 +Qw,n+2ε2 +Qw,n+3ε1ε2

=

(
Aα∗αn −Bβ∗βn

α−β

)
+

(
Aα∗αn+1 −Bβ∗βn+1

α−β

)
ε1

+

(
Aα∗αn+2 −Bβ∗βn+2

α−β

)
ε2 +

(
Aα∗αn+3 −Bβ∗βn+3

α−β

)
ε1ε2

=
Aα∗αn

α−β

(
1+αε1 +α

2
ε2 +α

3
ε1ε2

)
− Bβ∗βn

α−β

(
1+βε1 +β

2
ε2 +β

3
ε1ε2

)
=

Aα∗ααn −Bβ∗ββn

α−β
.

□

From Theorem 3, the Binet formulas of the hyper-dual generalized Fibonacci and
Lucas quaternions can be obtained as

Q̂u,n =
α∗ααn −β∗ββn

α−β
and Q̂v,n = α

∗
αα

n +β
∗
ββ

n,

respectively.
By using (2), we obtain the following relation between the hyper-dual Fibonacci

quaternions and the hyper-dual Lucas quaternions.

Theorem 4. Let n be a positive integer. For hyper-dual Fibonacci quaternions
and hyper-dual Lucas quaternions, the following equality holds:

Q̂v,n = Q̂u,n+1 +qQ̂u,n−1.

Now we need the following lemma which allows us a remarkable simplification
for obtaining the properties of hyper-dual Horadam quaternions.

Lemma 1. Let θ := 1− q+ q2 − q3 and ω := (1−q) i+
(
1+ p2 +q

)
k. Then we

have

αβ = v̂0 − (1+ pqε1ε2) ,

α
∗
β
∗ = Qv,0 −θ−∆q(Qu,0 −ω) ,

β
∗
α
∗ = Qv,0 −θ+∆q(Qu,0 −ω) .

Proof. The proof can be done by using the multiplication rules in (1.1) and (1.2).
We should note that the set of hyper-dual numbers form a commutative algebra.
Therefore we have αβ = βα. But since the quaternion multiplication is noncom-
mutative, α∗β∗ need not be equal to β∗α∗. The results for α∗β∗ and β∗α∗ can also be
found in [2, Lemma 1]. □
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Theorem 5. (Vajda’s Identity) For integers n,r, and s, we have

Q̂w,n+rQ̂w,n+s − Q̂w,nQ̂w,n+r+s = AB(−q)n (v̂0 − (1+ pqε1ε2))

·ur ((Qv,0 −θ)us +q(Qu,0 −ω)vs) .

Proof. From the Binet formula of hyper-dual Horadam quaternions, we have

∆
2
(

Q̂w,n+rQ̂w,n+s − Q̂w,nQ̂w,n+r+s

)
=

=
(

Aα
∗
αα

n+r −Bβ
∗
ββ

n+r
)(

Aα
∗
αα

n+s −Bβ
∗
ββ

n+s
)

−
(

Aα
∗
αα

n −Bβ
∗
ββ

n
)(

Aα
∗
αα

n+r+s −Bβ
∗
ββ

n+r+s
)

= A2 (α∗
α)2

α
2n+r+s −ABα

∗
β
∗
αβα

n+r
β

n+s −ABβ
∗
α
∗
βαα

n+s
β

n+r

+B2
(

β
∗
β

)2
β

2n+r+s −A2 (α∗
α)2

α
2n+r+s +ABα

∗
β
∗
αβα

n
β

n+r+s

+ABβ
∗
α
∗
βαβ

n
α

n+r+s −B2
(

β
∗
β

)2
β

2n+r+s

= AB(αβ)n
αβ
(
α
∗
β
∗ (−α

r
β

s +β
r+s)+β

∗
α
∗ (−α

s
β

r +α
r+s)) .

By using Lemma 1, we have

Q̂w,n+rQ̂w,n+s − Q̂w,nQ̂w,n+r+s =

=
AB
∆2 (−q)n

αβ(−α
∗
β
∗
β

s (αr −β
r)+β

∗
α
∗
α

s (αr −β
r))

=
AB
∆

(−q)n
αβur (β

∗
α
∗
α

s −α
∗
β
∗
β

s)

=
AB
∆

(−q)n
αβur (Qv,0 −θ+∆q(Qu,0 −ω))α

s

− AB
∆

(−q)n
αβur (Qv,0 −θ−∆q(Qu,0 −ω))β

s

= AB(−q)n (v̂0 − (1+ pqε1ε2))ur ((Qv,0 −θ)us +q(Qu,0 −ω)vs) .

□

From Theorem 5, we have the following results:
If we set r →−s, we get the following Catalan’s identity for hyper-dual Horadam

quaternions:

Q̂w,n−sQ̂w,n+s − Q̂2
w,n =−AB(−q)n−s (v̂0 − (1+ pqε1ε2))us ((Qv,0 −θ)us

+q(Qu,0 −ω)vs) .

Here note that u−n =
−un
(−q)n .

If we set s =−r = 1, we get the following Cassini’s identity for hyper-dual Hora-
dam quaternions:
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Q̂w,n−1Q̂w,n+1 − Q̂2
w,n =

=−AB(−q)n−1 (v̂0 − (1+ pqε1ε2))(Qv,0 −θ+ pq(Qu,0 −ω)) . (2.1)

If we set s → m− n, and fix r = 1, we get the following d’Ocagne’s identity for
hyper-dual Horadam quaternions:

Q̂w,n+1Q̂w,m − Q̂w,nQ̂w,m+1 =

= AB(−q)n (v̂0 − (1+ pqε1ε2))((Qv,0 −θ)um−n +q(Qu,0 −ω)vm−n) .

Next, we give some summation formulas for hyper-dual Horadam quaternions.

Theorem 6. For n ≥ 2, we have

n−1

∑
r=1

Q̂w,r =
Q̂w,n − Q̂w,1 +q

(
Q̂w,n−1 − Q̂w,0

)
p+q−1

.

Proof. From the Binet formula for hyper-dual Horadam quaternions, we have
n−1

∑
r=1

Q̂w,r =
n−1

∑
r=1

Aα∗ααr −Bβ∗ββr

α−β
=

Aα∗α

α−β

n−1

∑
r=1

α
r −

Bβ∗β

α−β

n−1

∑
r=1

β
r

=
Aα∗α

α−β

(
αn −α

α−1

)
−

Bβ∗β

α−β

(
βn −β

β−1

)
=

1
(α−β)(1− p−q)

(
−
(

Aα
∗
αα

n −Bβ
∗
ββ

n
)

−q
(

Aα
∗
αα

n−1 −Bβ
∗
ββ

n−1
)
+q
(

Aα
∗
α−Bβ

∗
β

)
+
(

Aα
∗
αα−Bβ

∗
ββ

))
=

−Q̂w,n −qQ̂w,n−1 +qQ̂w,0 + Q̂w,1

1− p−q
.

□

Theorem 7. For nonnegative integers n and r, we have
n

∑
m=0

(
n
m

)
qn−m pmQ̂w,m+r = Q̂w,2n+r.

Proof. From the Binet formula for hyper-dual Horadam quaternions, we have

n

∑
m=0

(
n
m

)
qn−m pmQ̂w,m+r =

n

∑
m=0

(
n
m

)
qn−m pm

(
Aα∗ααm+r −Bβ∗ββm+r

α−β

)
=

=
Aα∗ααr

α−β

n

∑
m=0

(
n
m

)
qn−m (pα)m −

Bβ∗ββr

α−β

n

∑
m=0

(
n
m

)
qn−m (pβ)m
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=
Aα∗ααr

α−β
(q+ pα)n −

Bβ∗ββr

α−β
(q+ pβ)n

=
Aα∗αα2n+r −Bβ∗ββ2n+r

α−β
= Q̂w,2n+r.

□

Finally, we give some matrix representations for hyper-dual Horadam quaternions,
and derive some properties of hyper-dual Horadam quaternions by using matrix ap-
proach.

Let define the matrices U:=
[

p q
1 0

]
, Wn:=

[
wn+2 qwn+1
wn+1 qwn

]
. It is well-known

that for the Horadam numbers, we have the matrix equality:

W0Un = Wn. (2.2)

For details, see [17]. Now let define the matrix Mw,n :=
[

Q̂w,n+2 qQ̂w,n+1

Q̂w,n+1 qQ̂w,n

]
. Con-

sidering the relation (2.2), we have the matrix equalities

Mw,0Un = Mw,n (2.3)

and

Mu,0
(
W0Un−1)= Mw,n, (2.4)

which can be proven by using induction.

Theorem 8. For integers n,m ≥ 1, we have the following equalities:

Q̂w,m+n = Q̂w,m+1un +qQ̂w,mun−1, (2.5)

Q̂w,m+n = wnQ̂u,m+1 +qwn−1Q̂u,m. (2.6)

Proof. From the matrix equality Mw,0Um+n−2 =
(
Mw,0Um−1

)
Un−1, we have[

Q̂w,m+n qQ̂w,m+n−1

Q̂w,m+n−1 qQ̂w,m+n−2

]
=

[
Q̂w,m+1 qQ̂w,m

Q̂w,m qQ̂w,m−1

][
un qun−1

un−1 qun−2

]
.

By equating the corresponding entries of both sides of the matrix equation, we get
the identity (2.5).

Now consider the matrix equality Mu,0
(
W0Um+n−2

)
=
(
W0Un−1

)
Um−1Mu,0.

Then we have[
Q̂w,m+n+1 qQ̂w,m+n

Q̂w,m+n qQ̂w,m+n−1

]
=

[
wn+1 qwn
wn qwn−1

][
Q̂u,m+1 qQ̂u,m

Q̂u,m qQ̂u,m−1

]
.

Similarly, by equating the corresponding entries of both sides of the above matrix
equation, we get the desired result in (2.6). □
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From the matrix equalities (2.3) and (2.4), one can obtain several results for the
hyper-dual Horadam quaternions. For example, if we take the determinant of the
both side of this matrix identity (2.3), then we get the Cassini’s identity in terms of
hyper-dual Horadam quaternions as:

Q̂w,n−1Q̂w,n+1 − Q̂2
w,n = (−q)n−1

(
Q̂w,0Q̂w,2 − Q̂2

w,1

)
. (2.7)

Note that different from the identity (2.1), here the right hand side of the equation
(2.7) is expressed in terms of only the hyper-dual Horadam quaternions.

3. CONCLUSION

In this paper, we define quaternions whose components are hyper-dual Horadam
numbers. The main advantage of introducing hyper-dual Horadam quaternions is
that many hyper-dual numbers with celebrated numbers such as Fibonacci, Lucas,
Pell, Pell-Lucas, Jacosthal, Jacobsthal-Lucas numbers can be deduced as particular
cases of hyper-dual Horadam quaternions. We give the generating function and the
Binet formula for these quaternions. With the help of the Binet formula of hyper-
dual Horadam quaternions, we derive many properties of these quaternions such as
summation formulas, binomial sum identities, Vajda’s identity, Catalan’s identity,
Cassini identity, and d’Ocagne’s identity. Also by means of the matrix represent-
ation of hyper-dual Horadam quaternions, we examine several identities for these
quaternions. The algebra of quaternions is noncommutative, whereas the algebra of
hyper-dual numbers is commutative. So, it is interesting to study special type of
numbers which are involving both quaternionic and hyper-dual units. For the inter-
ested readers, the results of this paper could be applied for higher order hyper-dual
numbers which were given in [8].
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