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Abstract. In this paper, we introduce the statistical summability by the weighted mean method
in a two-normed space and establish necessary and sufficient Tauberian conditions under which
statistical convergence of a sequence (xn) follows from its statistical summability by weighted
mean method in a two-normed space. In particular, our Tauberian conditions are satisfied if (xn)
is statistically slowly oscillating in a two-normed space. The main theorem of this paper is the
statistical extension of a Tauberian theorem in Çanak et al. [Acta Comment. Univ. Tartu. Math.
24, 49-57 (2020)].
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1. INTRODUCTION

The concept of statistical convergence as an extension to the concept of ordinary
convergence was independently introduced by Fast [4] and Schoenberg [19].

A sequence (xn) of real or complex numbers is said to be statistically convergent
to some number l if for every ε > 0

lim
n→∞

1
n+1

|{k ≤ n : |xk− l| ≥ ε}|= 0,

where we denote by |S | the number of the elements in the set S of positive integers.
In symbol, we write

st− lim
n→∞

xn = l. (1.1)

The concept of two-normed spaces was first defined by S. Gähler [8] and has been
studied extensively by Cho, Diminnie, Freese, Gähler, Kim, White and many others
([3, 5, 6, 12, 13]).

Let X be a real vector space with dimX ≥ 2. A two-norm on X is a function
‖·, ·‖ : X×X → R which satisfies
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(i) ‖x,y‖= 0 if and only if x and y are linearly dependent;
(ii) ‖x,y‖= ‖y,x‖ for each x,y ∈ X ;

(iii) ‖αx,y‖= |α|‖x,y‖ for each x,y ∈ X and α ∈ R;
(iv) ‖x,y+ z‖ ≤ ‖x,y‖+‖x,z‖ for each x,y,z ∈ X .

The pair (X ,‖·, ·‖) is then called a two-normed space ([7]).
A standard example of a two-normed space is X = R2 being equipped with the

two-norm ‖x,y‖ := area of the parallelogram spanned by the vectors x and y, which
may be given explicitly by

‖x,y‖= |x1y2− x2y1| , where x = (x1,x2) and y = (y1,y2).

Let (pn) be a sequence of nonnegative numbers with p0 > 0 such that

Pn =
n

∑
k=0

pk→ ∞, n→ ∞. (1.2)

The weighted means of a sequence (xn) are defined by

σn =
1
Pn

n

∑
k=0

pkxk (n = 0,1,2, ...).

A sequence (xn) is said to be summable to l ∈ X by the weighted mean method
determined by the sequence p = (pn) (or briefly summable (N, p) to l ∈ X) if for
every y ∈ X ,

lim
n→∞
‖σn− l,y‖= 0. (1.3)

We note that if pn = 1 for all n = 0,1,2, ..., (N, p) summability method reduces to
the Cesàro summability method.

Savaş and Sezer [18] introduced the concept of Cesàro summability method and
obtained necessary and sufficient Tauberian conditions for Cesàro summability
method in two-normed spaces. Following Savaş and Sezer [18], Çanak et al. [2]
introduced the concept of weighted mean method of summability and established ne-
cessary and sufficient Tauberian conditions for the weighted mean summability of
sequences in two-normed spaces.

Gürdal and Pehlivan [9] defined the concept of statistical convergence and obtained
some properties of statistical convergence in two-normed spaces. A sequence (xn) in
two-normed space (X ,‖·, ·‖) is said to be statistically convergent to some number l if
for every ε > 0 and for every z ∈ X ,

lim
n→∞

1
n+1

|{k ≤ n : ‖xk− l,z‖ ≥ ε}|= 0.

In symbol, we write
st− lim

n→∞
‖xn,z‖= ‖l,z‖. (1.4)
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A sequence (xn) is said to be statistically summable to l in two-normed space
(X ,‖·, ·‖) by the weighted mean method determined by the sequence p = (pn)
(or briefly statistically summable (N, p) to l in (X ,‖·, ·‖) if for every z ∈ X ,

st− lim
n→∞
‖σn,z‖= ‖l,z‖. (1.5)

Notice that statistical summability (N, p) reduces to the statistical summability (C,1)
if pn = 1 for all n = 0,1,2, ...; to the statistical logarithmic summability (`,1) if
pn = 1/(n+1) for all n = 0,1,2, ....

Kolk [14] obtained necessary and sufficient Tauberian conditions under which
statistical convergence of a bounded sequence implies its statistical summability by
weighted means. But the converse implication is not true in general. Móricz and
Orhan [16] obtained Tauberian conditions under which the converse implication is
satisfied for sequences for real and complex numbers.

In 2020, Jena et al. [11] proved some Tauberian theorems for Cesàro summability
of double sequences of fuzzy numbers. Subsequently, Parida et al. [17] established
some new Tauberian theorems based on post-quantum calculus by means of statistical
Cesàro summability mean of real-valued continuous functions of one variable under
some appropriate conditions.

On the other hand, Srivastava et al. [21] obtained a new Korovkin-type approx-
imation theorem on a Banach space and verified that their theorem both extends and
improves most of the previous results. Later on, Srivastava et al. [25] introduced
the notions of statistical convergence and statistical summability for martingale se-
quences of random variables by means of deferred Cesàro mean and proved new
Korovkin-type approximation theorems with algebraic test functions for a martingale
sequence over a Banach space via these notions.

For recent developments in Korovkin and Voronovskaya type approximation the-
orems given in different contents, we refer to [1, 20, 22–24, 26].

In Çanak et al. [2], Tauberian theorems for summability by weighted mean method
were obtained in two-normed spaces. Recently, Loku et al. [15] established necessary
and sufficient Tauberian conditions under which ordinary convergence of a sequence
follows from its summability by Nörlund mean method in two-normed spaces. Al-
though a special case of summability by Nörlund mean method is summability by
weighted mean method, this present paper is roughly a statistical extension of the
results in Çanak et al. [2]. Therefore, the results obtained in Loku et al. [15] and this
present paper are completely independent of each other. But one can easily obtain a
statistical extension of the results in Loku et al. [15] by using the techniques in this
present paper.

In this paper, we investigate the problem under what conditions (1.4) follows from
(1.5) in two-normed spaces.
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2. MAIN RESULT

Theorem 1. Let (pn) be a sequence of nonnegative numbers such that p0 > 0 and

st− liminf
n→∞

Pλn

Pn
> 1 for every λ > 1, (2.1)

where λn := [λn] denotes the integer part of the product λn, and let (xn) be a sequence
in (X , ||·, ·||) which is statistically summable (N, p) to l ∈ X. Then (xn) is statistically
convergent to l if and only if for every z ∈ X, one of the following two conditions is
satisfied:

inf
λ>1

limsup
N→∞

1
N +1

∣∣∣∣∣
{

n≤ N :

∥∥∥∥∥ 1
Pλn−Pn

λn

∑
k=n+1

pk(xk− xn),z

∥∥∥∥∥≥ ε

}∣∣∣∣∣= 0, (2.2)

inf
0<λ<1

limsup
N→∞

1
N +1

∣∣∣∣∣
{

n≤ N :

∥∥∥∥∥ 1
Pn−Pλn

n

∑
k=λn+1

pk(xn− xk),z

∥∥∥∥∥≥ ε

}∣∣∣∣∣= 0. (2.3)

Following Hardy [10], a sequence (xn) is said to be statistically slowly oscillating
in two-norm if for every ε > 0 and for every z ∈ X ,

inf
λ>1

limsup
N→∞

1
N +1

∣∣∣∣{n≤ N : max
n<k≤λn

‖xk− xn,z‖ ≥ ε

}∣∣∣∣= 0 (2.4)

or equivalently,

inf
0<λ<1

limsup
N→∞

1
N +1

∣∣∣∣{n≤ N : max
λn<k≤n

‖xn− xk,z‖ ≥ ε

}∣∣∣∣= 0. (2.5)

These conditions imply conditions (2.2) and (2.3), respectively.
Thus, the following corollary of Theorem 1 is obvious.

Corollary 1. Let (pn) be a sequence of nonnegative numbers such that p0 > 0 and
condition (2.1) is satisfied. If (1.5) and (2.4) hold, then (1.4) also holds.

It is clear that (2.4) is satisfied if there exists a positive constant H such that for
every z ∈ X , n‖xn− xn−1,z‖ ≤ H holds for every n large enough, say n > n1.

For each 1 < n1 ≤ n < k ≤ λn and each z ∈ X , we have

‖xk− xn,z‖ ≤
k

∑
j=n+1

‖x j− x j−1,z‖ ≤ H
k

∑
j=n+1

1
j
≤ H

(
k−n

n

)
≤ H(λ−1). (2.6)

It follows from (2.6) that
max

n<k≤λn

‖xk− xn,z‖ ≤ ε (2.7)

for each ε > 0 and 1 < λ≤ 1+ ε

H . For n > n1 and for z ∈ X , the set{
n1 < n≤ N : max

n<k≤λn

‖xk− xn,z‖ ≥ ε

}
is empty. This shows that (2.4) is satisfied.
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3. AUXILIARY RESULTS

Lemma 1 ([16]). If (Pn) is a nondecreasing sequence of positive numbers, then
conditions (2.1) and

st− liminf
n→∞

Pn

Pλn

> 1 for every 0 < λ < 1 (3.1)

are equivalent.

Lemma 2. Let (pn) be a sequence of nonnegative numbers such that p0 > 0 and
condition (2.1) is satisfied, and let (xn) be a sequence in X which is statistically
summable (N, p) to l. Then for every λ > 0 and for every z ∈ X,

st− lim
n→∞
‖σλn ,z‖= ‖l,z‖. (3.2)

Lemma 2 is given for sequences of complex numbers in [16]. Since the proof of
Lemma 2 is similar to that of proof of Lemma 1 in [16], we omit the proof of it.

Lemma 3 ([9]). Let (xn) and (yn) be sequences in 2-normed space (X ,‖·, ·‖) and
L,L′ ∈ X and a ∈ R. If st-limn→∞ ‖xn,z‖= ‖L,z‖ and st-limn→∞ ‖yn,z‖= ‖L′,z‖, for
every nonzero z ∈ X, then

(i) st-limn→∞ ‖xn + yn,z‖= ‖L+L′,z‖, for each nonzero z ∈ X and
(ii) st-limn→∞ ‖axn,z‖= ‖aL,z‖, for each nonzero z ∈ X.

Lemma 4. Let (pn) be a sequence of nonnegative numbers such that p0 > 0 and
condition (2.1) is satisfied, and let (xn) be a sequence in X which is statistically
summable (N, p) to l. Then,

st− lim
n→∞

∥∥∥∥∥ 1
Pλn−Pn

λn

∑
k=n+1

pkxk,z

∥∥∥∥∥= ‖l,z‖ (3.3)

for every λ > 1 and for every z ∈ X,

st− lim
n→∞

∥∥∥∥∥ 1
Pn−Pλn

n

∑
k=λn+1

pkxk,z

∥∥∥∥∥= ‖l,z‖ (3.4)

for every 0 < λ < 1 and for every z ∈ X.

Proof. Case λ > 1. By definition, we have∥∥∥∥∥ 1
Pλn−Pn

λn

∑
k=n+1

pkxk− l,z

∥∥∥∥∥=
∥∥∥∥∥ 1

Pλn−Pn

λn

∑
k=n+1

pkxk +σλn−σλn− l,z

∥∥∥∥∥
=

∥∥∥∥∥ 1
Pλn−Pn

λn

∑
k=0

pkxk−
1

Pλn−Pn

n

∑
k=0

pkxk +
1

Pλn

λn

∑
k=0

pkxk−
1

Pλn

λn

∑
k=0

pkxk− l,z

∥∥∥∥∥
=

∥∥∥∥∥ Pn

Pλn−Pn

1
Pλn

λn

∑
k=0

pkxk−
Pn

Pλn−Pn

1
Pn

n

∑
k=0

pkxk +
1

Pλn

λn

∑
k=0

pkxk− l,z

∥∥∥∥∥
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≤ Pn

Pλn−Pn

∥∥σλn−σn,z
∥∥+∥∥σλn− l,z

∥∥ .
Thus we find∥∥∥∥∥ 1

Pλn−Pn

λn

∑
k=n+1

pkxk− l,z

∥∥∥∥∥≤ Pn

Pλn−Pn

∥∥σλn−σn,z
∥∥+∥∥σλn− l,z

∥∥ . (3.5)

By (2.1), we have

st− limsup
n→∞

Pn

Pλn−Pn
=

(
st− liminf

n→∞

Pλn

Pn
−1
)−1

< ∞. (3.6)

Now, (3.3) follows from (1.5), (3.2) and (3.5).
Case 0 < λ < 1. By definition, we have∥∥∥∥∥ 1

Pn−Pλn

n

∑
k=λn+1

pkxk− l,z

∥∥∥∥∥=
∥∥∥∥∥ 1

Pn−Pλn

n

∑
k=λn+1

pkxk +σn−σn− l,z

∥∥∥∥∥
=

∥∥∥∥∥ 1
Pn−Pλn

n

∑
k=0

pkxk−
1

Pn−Pλn

λn

∑
k=0

pkxk +
1
Pn

n

∑
k=0

pkxk−
1
Pn

n

∑
k=0

pkxk− l,z

∥∥∥∥∥
=

∥∥∥∥∥ Pλn

Pn−Pλn

1
Pn

n

∑
k=0

pkxk−
Pλn

Pn−Pλn

1
Pλn

λn

∑
k=0

pkxk +
1
Pn

n

∑
k=0

pkxk− l,z

∥∥∥∥∥
≤

Pλn

Pn−Pλn

∥∥σn−σλn ,z
∥∥+‖σn− l,z‖ .

Thus we find∥∥∥∥∥ 1
Pn−Pλn

n

∑
k=λn+1

pkxk− l,z

∥∥∥∥∥≤ Pλn

Pn−Pλn

∥∥σn−σλn ,z
∥∥+‖σn− l,z‖ . (3.7)

By (3.1), we have

st− limsup
n→∞

Pλn

Pn−Pλn

=

(
st− liminf

n→∞

Pn

Pλn

−1
)−1

< ∞. (3.8)

Now, (3.4) follows from (1.5), (3.2) and (3.7). �

4. PROOF OF THE MAIN RESULT

Proof of Theorem 1. Necessity. Assume that (1.4) and (1.5) are satisfied. Let λ> 1.
By Lemmas 3 and 4, we have

st− lim
n→∞

∥∥∥∥∥ 1
Pλn−Pn

λn

∑
k=n+1

pk(xk− xn),z

∥∥∥∥∥
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≤ st− lim
n→∞

∥∥∥∥∥ 1
Pλn−Pn

λn

∑
k=n+1

pkxk− l,z

∥∥∥∥∥+ st− lim
n→∞
‖xn− l,z‖= 0

for every z ∈ X . This proves (2.2) even in a stronger form.
Let 0 < λ < 1. We obtain in an analogous way that for every z ∈ X ,

st− lim
n→∞

∥∥∥∥∥ 1
Pn−Pλn

n

∑
k=λn+1

pk(xn− xk),z

∥∥∥∥∥= 0,

which is stronger than (2.3).

Sufficiency. Assume that (1.5), (2.1) and one of conditions (2.2) and (2.3) are
satisfied. To this end, let ε > 0 be given. In case λ > 1, we rewrite the difference
xn− l in the following form:

xn− l =

[
1

Pλn−Pn

λn

∑
k=n+1

pkxk− l

]
−

[
1

Pλn−Pn

λn

∑
k=n+1

pk(xk− xn)

]
= A+B, say.

Then, we have

{n≤ N : ‖xn− l,z‖ ≥ ε} ⊆
{

n≤ N : ‖A,z‖ ≥ ε

2

}
∪
{

n≤ N : ‖B,z‖ ≥ ε

2

}
for every z ∈ X . Hence,

|{n≤ N : ‖xn− l,z‖ ≥ ε}| ≤
∣∣∣{n≤ N : ‖A,z‖ ≥ ε

2

}∣∣∣+ ∣∣∣{n≤ N : ‖B,z‖ ≥ ε

2

}∣∣∣
(4.1)

for every z ∈ X .
In case 0 < λ < 1, we rewrite the difference xn− l in the following form:

xn− l =

[
1

Pn−Pλn

n

∑
k=λn+1

pkxk− l

]
+

[
1

Pn−Pλn

n

∑
k=λn+1

pk(xn− xk)

]
= A′+B′, say.

Then, we have

{n≤ N : ‖xn− l,z‖ ≥ ε} ⊆
{

n≤ N : ‖A′,z‖ ≥ ε

2

}
∪
{

n≤ N : ‖B′,z‖ ≥ ε

2

}
for every z ∈ X . Hence,

|{n≤ N : ‖xn− l,z‖ ≥ ε}| ≤
∣∣∣{n≤ N : ‖A′,z‖ ≥ ε

2

}∣∣∣+ ∣∣∣{n≤ N : ‖B′,z‖ ≥ ε

2

}∣∣∣
(4.2)
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for every z ∈ X . By (2.2), for every η > 0 there exists some λ > 1 such that

limsup
N→∞

1
N +1

∣∣∣∣∣
{

n≤ N :

∥∥∥∥∥ 1
Pλn−Pn

λn

∑
k=n+1

pk(xk− xn),z

∥∥∥∥∥≥ ε

2

}∣∣∣∣∣≤ η, (4.3)

for every z ∈ X or by (2.3), for every η > 0 there exists some 0 < λ < 1 such that

limsup
N→∞

1
N +1

∣∣∣∣∣
{

n≤ N :

∥∥∥∥∥ 1
Pn−Pλn

n

∑
k=λn+1

pk(xn− xk),z

∥∥∥∥∥≥ ε

2

}∣∣∣∣∣≤ η (4.4)

for every z ∈ X . Combining (4.1) and (4.4), in both cases we have by Lemma 4

lim
N→∞

1
N +1

|{n≤ N : ‖xn− l,z‖ ≥ ε}| ≤ η

for every z ∈ X . Since η > 0 is arbitrary, we necessarily have for every ε > 0,

lim
N→∞

1
N +1

|{n≤ N : ‖xn− l,z‖ ≥ ε}|= 0

for every z ∈ X . This completes the proof of the Theorem.

5. CONCLUDING REMARK

Theorem 1 is the statistical extension of the Tauberian theorem given in [2]. Con-
dition (2.2) is equivalent to the following: For given ε > 0 and η > 0, there exists
some λ > 1 such that

limsup
N→∞

1
N +1

∣∣∣∣∣
{

n≤ N :

∥∥∥∥∥ 1
Pλn−Pn

λn

∑
k=n+1

pk(xk− xn),z

∥∥∥∥∥≥ ε

}∣∣∣∣∣≤ η.

The equivalent form of condition (2.3) can be similarly given.
If conditions (1.4), (1.5) and (2.1) are satisfied, then we necessarily have

st− lim
n→∞

∥∥∥∥∥ 1
Pλn−Pn

λn

∑
k=n+1

pk(xk− xn),z

∥∥∥∥∥= 0 (5.1)

for every λ > 1 and for every z ∈ X , and

st− lim
n→∞

∥∥∥∥∥ 1
Pn−Pλn

n

∑
k=λn+1

pk(xn− xk),z

∥∥∥∥∥= 0 (5.2)

for every 0 < λ < 1 and for every z ∈ X .
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[8] S. Gähler, “Lineare 2-normierte Räume,” Math. Nachr., vol. 28, pp. 1–43, 1964, doi:
10.1002/mana.19640280102.
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