

ON GENERALIZED PROJECTIVE CURVATURE TENSOR OF PARA-KENMOTSU MANIFOLDS

TEERATHRAM RAGHUWANSHI, GITESHWARI PANDEY, MANOJ KUMAR PANDEY, AND ANIL GOYAL

Received 21 February, 2021

Abstract. The object of the present paper is to generalize projective curvature tensor of para-Kenmotsu manifold with the help of a new generalized (0,2) symmetric tensor Z introduced by Mantica and Suh [8]. Various geometric properties of generalized projective curvature tensor of para-Kenmotsu manifold have been studied. It is shown that a generalized projectively ϕ symmetric para-Kenmotsu manifold is an Einstein manifold.

2010 Mathematics Subject Classification: 53C15; 53C25

Keywords: Projective curvature tensor, para-Kenmotsu manifold, Einstein manifold, Generalized projective curvature tensor

1. INTRODUCTION

A relevant tensor from the differential geometric point of view is the projective curvature tensor. Under a geodesic conserving transformation on a semi-Riemannian manifold, the projective curvature tensor *P* is invariant. In 1982 Szabo [15,16] studied Riemannian space satisfying $R(X,Y) \cdot R = 0$. In De and Samui [4] studied $P \cdot R = 0$, $R \cdot P = 0$ and $P \cdot S = 0$ in an *LP*-Sasakian manifold. The projective curvature tensor is therefore a measure of a Riemannian manifold's failure to be of constant curvature. Afterwards several researchers have carried out the study of projective curvature tensor in a variety of directions such as [10, 13, 14].

Several years ago, the notion of paracontact metric structures were introduced in [7]. Since the publication of [19], paracontact metric manifolds have been studied by many authors in recent years. The importance of para-Kenmotsu geometry, have been pointed out especially in the last years by several papers highlighting the exchanges with the theory of para-Kähler manifolds and its role in semi-Riemannian geometry and mathematical physics [3, 5, 6, 11].

In this paper, we consider the generalized projective curvature tensor of para-Kenmotsu manifolds and study some properties of generalized projective curvature

© 2023 Miskolc University Press

tensor. The organisation of the paper is as follows: After preliminaries on para-Kenmotsu manifold in section 2, we describe briefly the generalized projective curvature tensor on para-Kenmotsu manifold in section 3 and also we study some properties of generalized projective curvature tensor in para-Kenmotsu manifold. In section 4, we study a generalized projectively semi-symmetric para-Kenmotsu manifold is an Einstein manifold. Further in the section 5, we show that a generalized projectively Ricci semi-symmetric para-Kenmotsu manifold or $\Psi = 1 - n$ on it. The last section is devoted to the study of the generalized projectively ϕ -symmetric para-Kenmotsu manifold is an Einstein manifold.

2. PRELIMINARIES

The notion of an almost para-contact manifold was introduced by I. Sato [12]. An *n*-dimensional differentiable manifold M^n is said to have almost para-contact structure (ϕ, ξ, η) , where ϕ is a tensor field of type (1,1), ξ is a vector field known as characteristic vector field and η is a 1-form satisfying the following relations

$$\phi^2(X) = X - \eta(X)\xi, \qquad (2.1)$$

$$\eta(\phi X) = 0, \tag{2.2}$$

$$\phi(\xi) = 0, \tag{2.3}$$

and

$$\eta(\xi) = 1. \tag{2.4}$$

A differentiable manifold with almost para-contact structure (ϕ, ξ, η) is called an almost para-contact manifold. Further, if the manifold M^n has a semi Riemannian metric g satisfying

$$\eta(X) = g(X,\xi) \tag{2.5}$$

and

$$g(\phi X, \phi Y) = -g(X, Y) + \eta(X)\eta(Y).$$
(2.6)

then the structure (ϕ, ξ, η, g) satisfying conditions (2.1) to (2.6) is called an almost para-contact Riemannian structure and the manifold M^n with such a structure is called an almost para-contact Riemannian manifold [1, 12].

On a para-Kenmotsu manifold [2, 11], the following relations hold:

$$(\nabla_X \phi) Y = g(\phi X, Y) \xi - \eta(Y) \phi X, \qquad (2.7)$$

$$\nabla_X \xi = X - \eta(X)\xi, \tag{2.8}$$

$$(\nabla_X \eta) Y = g(X, Y) - \eta(X) \eta(Y), \qquad (2.9)$$

$$\eta(R(X,Y,Z)) = g(X,Z)\eta(Y) - g(Y,Z)\eta(X), \qquad (2.10)$$

$$R(X,Y,\xi) = \eta(X)Y - \eta(Y)X, \qquad (2.11)$$

$$R(X,\xi,Y) = -R(\xi,X,Y) = g(X,Y)\xi - \eta(Y)X, \qquad (2.12)$$

 $K(X, \zeta, I) = -K(\zeta, X, I) = g(X, I)\zeta - \Pi(I)X, \qquad (2.12)$ $S(\phi X, \phi Y) = -(n-1)g(\phi X, \phi Y), \qquad (2.13)$

$$S(X,\xi) = -(n-1)\eta(X),$$
 (2.14)

$$Q\xi = -(n-1)\xi,$$
 (2.15)

$$r = -n(n-1),$$
 (2.16)

for any vector fields X, Y, Z, where Q is the Ricci operator that is g(QX, Y) = S(X, Y), S is the Ricci tensor and r is the scalar curvature.

In [2], Blaga have given an example on para-Kenmotsu manifold:

Example 1. We consider the three dimensional manifold $M^3 = \{(x, y, z) \in \mathbb{R}^3, z \neq 0\}$, where (x, y, z) are the standard co-ordinates in \mathbb{R}^3 . The vector fields

$$e_1 := \frac{\partial}{\partial x}, e_2 := \frac{\partial}{\partial y}, e_3 := -\frac{\partial}{\partial z}$$

are linearly independent at each point of the manifold.

Define

$$\Phi := \frac{\partial}{\partial y} \otimes dx + \frac{\partial}{\partial x} \otimes dy, \xi := -\frac{\partial}{\partial z}, \eta := -dz,$$
$$g := dx \otimes dx - dy \otimes dy + dz \otimes dz.$$

Then it follows that

$$\phi e_1 = e_2, \phi e_2 = e_1, \phi e_3 = 0,$$

 $\eta(e_1) = 0, \eta(e_2) = 0, \eta(e_3) = 1.$

Let ∇ be the Levi-Civita connetion with respect to metric g. Then, we have

$$[e_1, e_2] = 0, [e_2, e_3] = 0, [e_3, e_1] = 0$$

The Riemannian connection ∇ of the metric g is deduced from Koszul's formula

$$2g(\nabla_X Y, Z) = X(g(Y, Z)) + Y(g(Z, X)) - Z(g(X, Y)) - g(X, [Y, Z]) + g(Y, [Z, X]) + g(Z, [X, Y]).$$

Then Koszul's formula yields

$$\begin{aligned} \nabla_{e_1} e_1 &= -e_3, \nabla_{e_1} e_2 = 0, \nabla_{e_1} e_3 = e_1, \\ \nabla_{e_2} e_1 &= 0, \nabla_{e_2} e_2 = e_3, \nabla_{e_2} e_3 = e_2, \\ \nabla_{e_3} e_1 &= e_1, \nabla_{e_3} e_2 = e_2, \nabla_{e_3} e_3 = 0. \end{aligned}$$

These results shows that the manifold satisfies

$$\nabla_X \xi = X - \eta(X)\xi,$$

for $\xi = e_3$. Hence the manifold under consideration is para-Kenmotsu manifold of dimension three.

3. GENERALIZED PROJECTIVE CURVATURE TENSOR OF PARA-KENMOTSU MANIFOLD

In this section, we give a brief account of generalized projective curvature tensor of para-Kenmotsu manifold and studied various geometric properties of it.

The projective curvature tensor is defined by R.S. Mishra [9]

$$P(X,Y,U) = R(X,Y,U) - \frac{1}{(n-1)} [S(Y,U)X - S(X,U)Y],$$
(3.1)

where S is a Ricci tensor, such a tensor field P is known as projective curvature tensor. Also, the type (0,4) tensor field 'P is given by

$${}^{\prime}P(X,Y,U,V) = {}^{\prime}R(X,Y,U,V) - \frac{1}{(n-1)}[S(Y,U)g(X,V) - S(X,U)g(Y,V)]$$
(3.2)

where

$$'P(X,Y,U,V) = g(P(X,Y,U),V)$$

and

$$'R(X,Y,U,V) = g(R(X,Y,U),V)$$

for the arbitrary vector fields X, Y, U, V.

Differentiating covariantly equation (3.1) with respect to W, we get

$$(\nabla_W P)(X,Y)U) = (\nabla_W R)(X,Y)U) - \frac{1}{(n-1)} [(\nabla_W S)(Y,U)X \qquad (3.3) - (\nabla_W S)(X,U)Y].$$

A new generalized (0,2) symmetric tensor Z is defined by Mantica and Suh [8]

$$\mathcal{Z}(X,Y) = S(X,Y) + \psi g(X,Y), \qquad (3.4)$$

where ψ is an arbitrary scalar function.

From equation (3.4), we have

$$\mathcal{Z}(\phi X, \phi Y) = S(\phi X, \phi Y) + \psi g(\phi X, \phi Y), \qquad (3.5)$$

which on using equations (2.6) and (2.13), gives

$$Z(\phi X, \phi Y) = [\psi - (n-1)][-g(X,Y) + \eta(X)\eta(Y)].$$
(3.6)

From equation (3.2), we have

$${}^{\prime}P(X,Y,U,V) = {}^{\prime}R(X,Y,U,V) - \frac{1}{(n-1)}[S(Y,U)g(X,V) - S(X,U)g(Y,V)].$$
(3.7)

From equation (3.4) above equation reduces to

$$'P(X,Y,U,V) = 'R(X,Y,U,V) - \frac{1}{(n-1)} [\mathcal{Z}(Y,U)g(X,V)$$
(3.8)

ON GENERALIZED PROJECTIVE CURVATURE TENSOR OF PARA-KENMOTSU MANIFOLDS 387

$$-\mathcal{Z}(X,U)g(Y,V)]+\frac{\Psi}{(n-1)}[g(Y,U)g(X,V)-g(Y,V)g(X,U)],$$

Let

$${}^{\prime}P^{*}(X,Y,U,V) = {}^{\prime}R(X,Y,U,V) - \frac{1}{(n-1)} [\mathcal{Z}(Y,U)g(X,V) - \mathcal{Z}(X,U)g(Y,V)],$$
(3.9)

In the above equation, we get

$$'P^*(X,Y,U,V) = 'P(X,Y,U,V) - \frac{\Psi}{(n-1)}[g(X,V)g(Y,U) - g(Y,V)g(X,U)].$$
(3.10)

Thus $'P^*$ defined in equation (3.9) is called generalized projective curvature tensor of para-Kenmotsu manifold.

If ψ =0, then from equation (3.10), we have

$$'P^{*}(X,Y,U,V) = 'P(X,Y,U,V).$$
(3.11)

Lemma 1. If the scalar function ψ vanishes on para-Kenmotsu manifold, then the projective curvature tensor and generalized projective curvature tensor are identicle.

Lemma 2. Generalized projective curvature tensor of para-Kenmotsu manifold satisfies Bianchi's first identity.

Remark 1. Generalized projective curvature tensor P^* of para-Kenmotsu manifold is

- (a) skew symmetric in first two slots.
- (b) skew symmetric in last two slots.
- (c) symmetric in pair of slots.

Proposition 1. *Generalized projective curvature tensor of para-Kenmotsu manifold satisfies the following identities:*

(a)
$$P^*(\xi, Y, U) = -P^*(Y, \xi, U) = \left[\frac{1-n-\psi}{n-1}\right]g(Y, U)\xi$$
 (3.12)
 $-\frac{1}{(n-1)}S(Y, U)\xi + \frac{\psi}{(n-1)}\eta(U)Y,$

(b)
$$P^*(X,Y,\xi) = -\frac{\Psi}{(n-1)}[\eta(Y)X - \eta(X)Y]$$
 (3.13)

$$(c) \eta(P^*(U,V,Y)) = \left[-1 - \frac{\Psi}{(n-1)}\right] [g(V,Y)\eta(U) - g(U,Y)\eta(V)] \qquad (3.14)$$
$$-\frac{1}{(n-1)} [S(V,Y)\eta(U) - S(U,Y)\eta(V)].$$

4. GENERALIZED PROJECTIVELY SEMI-SYMMETRIC PARA-KENMOTSU MANIFOLD

Definition 1. Para-Kenmotsu manifold is said to be semi-symmetric if it satisfies the condition

$$R(X,Y) \cdot R = 0, \tag{4.1}$$

where R(X,Y) is considered as the derivative of the tensor algebra at each point of the manifold.

Definition 2. Para-Kenmotsu manifold is said to be generalized projectively semisymmetric if it satisfies the condition

$$R(X,Y) \cdot P^* = 0, \tag{4.2}$$

where P^* is generalized projective curvature tensor and R(X,Y) is considered as the derivative of the tensor algebra at each point of the manifold.

Theorem 1. A generalized projectively semi-symmetric para-Kenmotsu manifold is an Einstein manifold.

Proof. Consider

$$(R(\xi, X) \cdot P^*)(U, V, Y) = 0,$$

for any $X, Y, U, V \in T_L M$, where P^* is generalized projective curvature tensor. Then we have

$$0 = R(\xi, X, P^*(U, V, Y)) - P^*(R(\xi, X, U), V, Y)$$

$$-P^*(U, R(\xi, X, V), Y) - P^*(U, V, R(\xi, X, Y)).$$
(4.3)

In view of the equation (2.12) above equation takes the form

$$0 = \eta(P^*(U, V, Y))X - P^*(U, V, Y, X)\xi - \eta(U)P^*(X, V, Y)$$

+ g(X, U)P^*(\xi, V, Y) - \eta(V)P^*(U, X, Y) + g(X, V)P^*(U, \xi, Y)
- \eta(Y)P^*(U, V, X) + g(X, Y)P^*(U, V, \xi).

Taking inner product of above equation with ξ and using equations (2.4), (3.10), (3.12), (3.13), (3.14), we get

$$0 = -{}^{\prime}P(U,V,Y,X) + \frac{\Psi}{(n-1)}[g(X,U)g(Y,V) - g(X,V)g(Y,U)] + \left[1 + \frac{\Psi}{(n-1)}\right][g(X,V)\eta(U)\eta(Y) - g(X,U)\eta(V)\eta(Y)] + \left[\frac{1 - n - \Psi}{(n-1)}\right]g(X,U)g(Y,V) - \left[\frac{1 - n - \Psi}{(n-1)}\right]g(X,V)g(Y,U) + \frac{\Psi}{(n-1)}g(X,U)\eta(Y)\eta(V) - \frac{\Psi}{(n-1)}g(X,V)\eta(Y)\eta(U)$$

$$+\frac{1}{(n-1)}g(X,V)S(Y,U) - \frac{1}{(n-1)}g(X,U)S(Y,V) +\frac{1}{(n-1)}[S(X,V)\eta(U)\eta(Y) - S(X,U)\eta(V)\eta(Y)].$$

By virtue of equation (3.2) above equation reduces to

$$\begin{split} {}^{\prime}R(U,V,Y,X) &= \frac{\Psi}{(n-1)} \big[g(X,U)g(Y,V) - g(X,V)g(Y,U) \big] \\ &+ \Big[1 + \frac{\Psi}{(n-1)} \Big] \left[g(X,V)\eta(U)\eta(Y) - g(X,U)\eta(V)\eta(Y) \right] \\ &+ \frac{1}{(n-1)} \big[S(X,V)\eta(Y)\eta(U) - S(X,U)\eta(Y)\eta(V) \big] \\ &+ \Big[\frac{1-n-\Psi}{(n-1)} \Big] g(X,U)g(Y,V) - \Big[\frac{1-n-\Psi}{(n-1)} \Big] g(X,V)g(Y,U) \\ &+ \frac{\Psi}{(n-1)} g(X,U)\eta(Y)\eta(V) - \frac{\Psi}{(n-1)} g(X,V)\eta(Y)\eta(U). \end{split}$$

Let $\{e_i : i = 1, 2, ..., n\}$ be an orthonormal basis vector putting $X = U = e_i$ in above equation and taking summation over *i*, we get

$$S(Y,V) = -(n-1)g(Y,V).$$

This shows that generalized projectively semi-symmetric para-Kenmotsu manifold is an Einstein manifold. $\hfill \Box$

5. GENERALIZED PROJECTIVELY RICCI SEMI-SYMMETRIC PARA-KENMOTSU MANIFOLD

Definition 3. Para-Kenmotsu manifold M is said to be Ricci semi-symmetric if the condition

$$R(X,Y) \cdot S = 0, \tag{5.1}$$

holds for all $X, Y \in T_L M$.

Definition 4. Para-Kenmotsu manifold is said to be generalized projectively Ricci semi-symmetric if the condition

$$P^*(X,Y) \cdot S = 0, \tag{5.2}$$

holds for all X, Y, where P^* is generalized projective curvature tensor of para-Kenmotsu manifold.

Theorem 2. A generalized projectively Ricci semi-symmetric para-Kenmotsu manifold is either Einstein manifold or $\Psi = 1 - n$ on it.

Proof. Consider

$$(P^*(\xi, X) \cdot S)(U, V) = 0,$$

which gives

$$S(P^*(\xi, X, U), V) + S(U, P^*(\xi, X, V)) = 0$$

Using equations (2.14) and (3.12) in above equation, we get

$$\left[\frac{n-1+\Psi}{(n-1)}\right]\left[S(X,V)\eta(U)+S(X,U)\eta(V)\right]$$
$$-(1-n-\Psi)\left[g(X,U)\eta(V)+g(X,V)\eta(U)\right]=0.$$

Putting $U = \xi$ in the above equation and using (2.4), (2.5) and (2.14), we get

$$(n-1+\psi)[S(X,V)+g(X,V)(n-1)] = 0,$$

which gives either $\psi = 1 - n$ or

$$S(X,V) = -(n-1)g(X,V).$$

This shows that generalized projectively Ricci semi-symmetric para-Kenmotsu manifold is an Einstein manifold. $\hfill \Box$

6. GENERALIZED PROJECTIVELY \$\$\\$YMMETRIC PARA-KENMOTSU MANIFOLD

Definition 5. A para-Kenmotsu manifold M^n is said to be locally ϕ -symmetric if

$$\phi^2((\nabla_W R)(X, Y, U)) = 0, \tag{6.1}$$

for all vector fields X, Y, U, W orthogonal to ξ .

This notion was introduced by Takahashi for Sasakian manifold [17].

Definition 6. A para-Kenmotsu manifold is said to be ϕ -symmetric if

$$\phi^2((\nabla_W R)(X, Y, U)) = 0, \tag{6.2}$$

for arbitrary vector fields X, Y, U, W.

This notion was also introduced by Takahashi for Sasakian manifold [18]. Also analogous to these definitons, we define

Definition 7. A para-Kenmotsu manifold M^n is said to be generalized projective locally ϕ -symmetric para-Kenmotsu manifold if

$$\phi^2((\nabla_W P^*)(X, Y, U)) = 0, \tag{6.3}$$

for all vector fields X, Y, U, W orthogonal to ξ .

And also

Definition 8. A para-Kenmotsu manifold M^n is said to be generalized projectively ϕ -symmetric para-Kenmotsu manifold if

$$\phi^2((\nabla_W P^*)(X, Y, U)) = 0, \tag{6.4}$$

for arbitrary vector fields X, Y, U, W.

Theorem 3. A generalized projectively ϕ -symmetric para Kenmotsu manifold is an Einstein manifold.

Proof. Taking covariant derivative of equation (3.10) with respect to vector field W, we obtain

$$(\nabla_W P^*)(X, Y, U) = (\nabla_W P)(X, Y, U) - \frac{dr(\Psi)}{(n-1)} [g(Y, U)X - g(X, U)Y],$$
(6.5)

Using equation (3.3) in the above equation, we yields

$$(\nabla_{W}P^{*})(X,Y,U) = (\nabla_{W}R)(X,Y,U) - \frac{dr(\Psi)}{(n-1)}[g(Y,U)X$$

$$-g(X,U)Y)] - \frac{1}{(n-1)}[(\nabla_{W}S)(Y,U)X - (\nabla_{W}S)(X,U)Y],$$
(6.6)

Assume that the manifold is generalized projectively ϕ -symmetric, then from equation (6.4), we have

$$\phi^2((\nabla_W P^*)(X,Y,U))=0,$$

which on using equation (2.1), gives

$$(\nabla_W P^*)(X, Y, U) = \eta((\nabla_W P^*)(X, Y, U))\xi.$$
 (6.7)

Using equation (6.6) in above equation, we get

$$(\nabla_{W}R)(X,Y,U) - \frac{dr(\Psi)}{(n-1)} [g(Y,U)X - g(X,U)Y)]$$

$$- \frac{1}{(n-1)} [(\nabla_{W}S)(Y,U)X - (\nabla_{W}S)(X,U)Y]$$

$$= \eta((\nabla_{W}R)(X,Y,U))\xi - \frac{dr(\Psi)}{(n-1)} [g(Y,U)\eta(X) - g(X,U)\eta(Y))]\xi$$

$$- \frac{1}{(n-1)} [(\nabla_{W}S)(Y,U)\eta(X) - (\nabla_{W}S)(X,U)\eta(Y)]\xi,$$
(6.8)

Taking inner product of the above equation with V, we get

$$g((\nabla_W R)(X, Y, U), V) - \frac{dr(\Psi)}{(n-1)} [g(Y, U)g(X, V) - g(X, U)g(Y, V)] - \frac{1}{(n-1)} [(\nabla_W S)(Y, U)g(X, V) - (\nabla_W S)(X, U)g(Y, V)]$$

$$= \eta((\nabla_{W}R)(X,Y,U))\eta(V) - \frac{dr(\psi)}{(n-1)}[g(Y,U)\eta(X)$$
(6.9)

$$-g(X,U)\eta(Y)]\eta(V) - \frac{1}{(n-1)}[(\nabla_W S)(Y,U)\eta(X) - (\nabla_W S)(X,U)\eta(Y)]\eta(V),$$

Putting $X = V = e_i$ and taking summation over *i*, we obtain

$$-dr(\Psi)g(Y,U) = \eta((\nabla_W R)(e_i, Y, U))\eta(e_i) - \frac{1}{(n-1)}[(\nabla_W S)(Y, U) - (\nabla_W S)(e_i, U)\eta(Y)\eta(e_i)] - \frac{dr(\Psi)}{(n-1)}[g(Y, U) - \eta(Y)\eta(U)],$$
(6.10)

Taking $U = \xi$ in the above equation, we have

$$\eta((\nabla_W R)(e_i, Y, \xi))\eta(e_i) + dr(\psi)\eta(Y) - \frac{1}{(n-1)}[(\nabla_W S)(Y, \xi) - (\nabla_W S)(e_i, \xi)\eta(e_i)\eta(Y)] = 0.$$
(6.11)

Now

$$\eta((\nabla_W R)(e_i, Y, \xi)\eta(e_i) = g((\nabla_W R)(e_i, Y, \xi), \xi)g(e_i, \xi).$$
(6.12)

Also

$$g((\nabla_W R)(e_i, Y, \xi), \xi) = g(\nabla_W R(e_i, Y, \xi), \xi) - g(R(\nabla_W e_i, Y, \xi), \xi) - g(R(e_i, \nabla_W Y, \xi), \xi) - g(R(e_i, Y, \nabla_W \xi), \xi).$$
(6.13)

Since $\{e_i\}$ is an orthonormal basis, so $\nabla_X e_i = 0$ and using equation (2.11), we get

$$g(R(e_i, \nabla_W Y, \xi), \xi) = 0$$

As

$$g(R(e_i,Y,\xi),\xi)+g(R(\xi,\xi,Y),e_i)=0,$$

we have

$$g(\nabla_W R(e_i, Y, \xi), \xi) + g(R(e_i, Y, \xi), \nabla_W \xi) = 0.$$

Using this fact, we get

$$g((\nabla_W R)(e_i, Y, \xi), \xi) = 0.$$
 (6.14)

Using equation (6.14) in (??), we have

$$(\nabla_W S)(Y,\xi) = (n-1)dr(\psi)\eta(Y). \tag{6.15}$$

Taking $Y = \xi$ in above equation and using equations (2.4) and (2.14), we get

$$dr(\mathbf{\Psi}) = 0, \tag{6.16}$$

which shows that r is constant. Now we have

$$(\nabla_W S)(Y,\xi) = \nabla_W S(Y,\xi) - S(\nabla_W Y,\xi) - S(Y,\nabla_W \xi),$$

Then by using (2.8), (2.9), (2.14) in the above equation, it follows that

$$(\nabla_W S)(Y,\xi) = -S(Y,W) - (n-1)g(Y,W).$$
(6.17)

So from equation (6.15), (6.16) and (6.17), This shows that

$$S(Y,W) = -(n-1)g(Y,W),$$
(6.18)

which shows that M^n is an Einstein manifold.

ACKNOWLEDGEMENTS

The authors are very thankful to the referee for his/her careful reading of the paper and valuable suggestions.

REFERENCES

- [1] T. Adati and T. Miyazawa, "On paracontact Riemannian manifolds," *TRU Math.*, vol. 13, no. 2, pp. 27–39, 1977.
- [2] A.-M. Blaga, "Eta-Ricci solitons on para-Kenmotsu manifolds," Balkan J. Geom. Appl., vol. 20, no. 1, pp. 1–13, 2015.
- [3] B. Cappelletti Montano, I. K. Erken, and C. Murathan, "Nullity conditions in paracontact geometry," *Differ. Geom. Appl.*, vol. 30, no. 6, pp. 665–693, 2012, doi: 10.1016/j.difgeo.2012.09.006.
- [4] K. De and S. Samui, "On a class of LP-Sasakian manifolds," Bull. Transilv. Univ. Braşov, Ser. III, Math. Inform. Phys., vol. 7, no. 2, pp. 45–58, 2014.
- [5] I. K. Erken, "Yamabe solitons on three-dimensional normal almost paracontact metric manifolds," *Period. Math. Hung.*, vol. 80, no. 2, pp. 172–184, 2020, doi: 10.1007/s10998-019-00303-3.
- [6] İ. K. Erken and C. Murathan, "A study of three-dimensional paracontact (κ̃, μ̃, ν̃)-spaces," *Int. J. Geom. Methods Mod. Phys.*, vol. 14, no. 7, p. 35, 2017, id/No 1750106, doi: 10.1142/S0219887817501067.
- [7] S. Kaneyuki and F. L. Williams, "Almost paracontact and parahodge structures on manifolds," Nagoya Math. J., vol. 99, pp. 173–187, 1985, doi: 10.1017/S0027763000021565.
- [8] C. A. Mantica and Y. J. Suh, "Pseudo Z symmetric Riemannian manifolds with harmonic curvature tensors," *Int. J. Geom. Methods Mod. Phys.*, vol. 9, no. 1, pp. 1250004, 21, 2012, doi: 10.1142/S0219887812500041.
- [9] R. S. Mishra, "Structures on a differentiable manifold and their applications," Contributed by Kuwait University. Allahabad: Chandrama Prakashan. ii, iv, 396 p. (1984)., 1984.
- [10] S. K. Pal, M. K. Pandey, and R. N. Singh, "On a type of projective semi-symmetric connection," *Int. J. Anal. Appl.*, vol. 7, no. 2, pp. 153–161, 2015.
- [11] A. Sardar and U. C. De, "η-Ricci solitons on para-Kenmotsu manifolds," *Differ. Geom. Dyn. Syst.*, vol. 22, pp. 218–228, 2020.
- [12] I. Sato, "On a structure similar to the almost contact structure," *Tensor, New Ser.*, vol. 30, pp. 219–224, 1976.
- [13] R. N. Singh, M. K. Pandey, and D. Gautam, "On nearly quasi Einstein manifold," Int. J. Math. Anal., Ruse, vol. 5, no. 33-36, pp. 1767–1773, 2011.
- [14] R. N. Singh, S. K. Pandey, and G. Pandey, "On a type of Kenmotsu manifold," *Bull. Math. Anal. Appl.*, vol. 4, no. 1, pp. 117–132, 2012.
- [15] Z. I. Szabó, "Structure theorems on Riemannian spaces satisfying $R(X,Y) \cdot R = 0$. I: The local version," *J. Differ. Geom.*, vol. 17, pp. 531–582, 1982, doi: 10.4310/jdg/1214437486.
- [16] Z. I. Szabó, "Structure theorems on Riemannian spaces satisfying $R(X, Y) \cdot R = 0$. II. Global versions," *Geom. Dedicata*, vol. 19, pp. 65–108, 1985, doi: 10.1007/BF00233102.
- [17] T. Takahashi, "Sasakian manifold with pseudo-Riemannian metric," *Tôhoku Math. J.* (2), vol. 21, pp. 271–290, 1969, doi: 10.2748/tmj/1178242996.

- [18] T. Takahashi, "Sasakian φ-symmetric spaces," *Tôhoku Math. J.* (2), vol. 29, pp. 91–113, 1977, doi: 10.2748/tmj/1178240699.
- [19] S. Zamkovoy, "Canonical connections on paracontact manifolds," Ann. Global Anal. Geom., vol. 36, no. 1, pp. 37–60, 2009, doi: 10.1007/s10455-008-9147-3.

Authors' addresses

Teerathram Raghuwanshi

(**Corresponding author**) University Institute of Technology, Rajiv Gandhi Proudyogiki Vishwavidyalaya, Department of Mathematics, 462033, Bhopal, Madhya Pradesh, India

E-mail address: teerathramsgs@gmail.com

Giteshwari Pandey

Govt. Tulsi College, Department of Mathematics, 484224, Anuppur, Madhya Pradesh, India *E-mail address:* math.giteshwari@gmail.com

Manoj Kumar Pandey

University Institute of Technology, Rajiv Gandhi Proudyogiki Vishwavidyalaya, Department of Mathematics, 462033, Bhopal, Madhya Pradesh, India

E-mail address: mkp_apsu@rediffmail.com

Anil Goyal

University Institute of Technology, Rajiv Gandhi Proudyogiki Vishwavidyalaya, Department of Mathematics, 462033, Bhopal, Madhya Pradesh, India

E-mail address: anil_goyal03@rediffmail.com