Miskolc Mathematical Notes

n-FINE RINGS

NABIL ZEIDI

Received 16 February, 2021

Abstract

A ring R is said to be n-fine if every nonzero element in R can be written as a sum of a nilpotent and n units in R. The class of these rings contains fine rings and n-good rings in which each element is a sum of n units. Fundamental properties of such rings are obtained. One of the main results of this paper is that the $m \times m$ matrix ring $M_{m}(R)$ over any arbitrary ring R is 2-fine. Furthermore, the $m \times m$ matrix ring $M_{m}(R)$ over a n-fine ring R is n-fine.

2010 Mathematics Subject Classification: 15B33; 16N40; 16U60
Keywords: units, nilpotents, 2-good rings, clean rings, fine rings

1. Introduction

All rings in this paper are assumed to be associative with identity. For a ring R, our terminology and notations are mainly in agreement with [4]. For instance, $U(R)$ is the multiplicative group of units of $R, \operatorname{Nil}(R)$ is the set of all nilpotent elements of R and $\operatorname{Id}(R)$ is the set of all idempotents of R. If R is commutative, then $\operatorname{Nil}(R)=N(R)$ is the nil-radical of R. We denote by $M_{m}(R)$ the ring of $m \times m$ matrices over R with the identity I_{m}.

In the last four decades, an additive theory has emerged in the study of these three interesting sets. A ring R is called n-good if every element of R is a sum of n units Many mathematicians for instance Vámos and Ashrafi studied 2-good rings extensively (see [1, 6, 7]). In 1977, Nicholson defined a ring element $a \in R$ to be clean if it can be written in the form $e+u$ where $e \in I d(R)$ and $u \in U(R)$ [5]. If every $a \in R$ is clean, R is said to be a clean ring. The interest in the clean property of rings stems from its close connection to exchange rings, since clean is a concise property that implies exchange. Prompted by this, Xiao and Tong [9] called a ring $R n$-clean if every element of R is the sum of an idempotent and n units (see also [8]). The class of these rings contains clean rings and n-good rings. Recently, G. Călugăreanu and T. Y. Lam defined a property in [2] related to 2-good in the following way: a nonzero element $a \in R$ is fine if $a=t+u$ where $t \in \operatorname{Nil}(R)$ and $u \in U(R)$. The ring R is called fine if every nonzero element of R is fine. It is shown that fine rings form a proper class of simple ring [2, Theorem 2.3].

Guided by these definitions, we introduce in this work the following definition. Given a positive integer n, we call a ring $R n$-fine if every nonzero element of R can be written as the sum of a nilpotent and n units in R. It is clear that fine rings are 1 -fine. In section 2, some fundamental properties of n-fine rings are studied. We shall prove every n-fine ring is $(n+1)$-good. Furthermore, we prove that the class of n-fine rings is closed under factor rings and direct products. The main result of this section states that a ring R is n-fine if and only if every factor ring of R is n-fine if and only if every indecomposable factor ring of R is n-fine. Then in Section 3 we will look at matrix rings and, more generally, endomorphism rings of free modules of infinite rank. In fact, over any ring R, we give an explicit 2-fine decomposition for generic matrices of orders 2 and 3. In the main theorem, we prove that over any ring R, the matrix ring $M_{m}(R)$ is 2 -fine for each $m \geq 2$. As a consequence, we will revisit Henriksen's result that a proper matrix ring over any ring has unit sum number at most 3 . An example shows that there exists a 2 -fine ring that is not fine. This shows that n-fine rings are a proper generalization of fine rings. We also show that if R is n-fine, then so is the matrix ring $M_{m}(R)$ for any integer $m \geq 1$. Moreover, we prove that for any ring R, the endomorphism ring of a free R-module of rank at least 2 is 2-fine.

2. BASIC PROPERTIES OF n-FINE RINGS

Definition 1. Let n be a positive integer. A nonzero element x of R is called n-fine if $x=t+u_{1}+\ldots+u_{n}$ where t is a nilpotent element of R and u_{1}, \ldots, u_{n} are units in R. A ring R is called n-fine if every nonzero element of R is n-fine.

Proposition 1. Let R be a ring. Then the following statements hold:
(1) If R is n-fine, then it is also m-fine for all $m \geq n$.
(2) If $\operatorname{Nil}(R)$ is additively closed (in particular, if R is a commutative ring), then the sum of n-fine and m-fine elements of R is $(n+m)$-fine.
(3) Every n-good ring is n-fine; if R is n-fine, then R is $(n+1)$-good.

Proof.

(1) Let r be a nonzero element of R and let $m>n$. Then, we can write $r=$ $(r-(m-n) .1)+(m-n) .1$ and expressing $(r-(m-n) .1)$ as a sum of a nilpotent element and n units of R gives a representation of r as a sum of a nilpotent and m units.
(2) It suffices to notice that if $\operatorname{Nil}(R)$ is additively closed, then the sum of two nilpotent elements is a nilpotent element.
(3) It is clear that every n-good ring is n-fine. For the second statement, let r be a nonzero element of R. By hypothesis, $r-1=t+u_{1}+\ldots+u_{n}$ where $t \in \operatorname{Nil}(R)$ and $u_{1}, \ldots, u_{n} \in U(R)$. Hence, $r=(1+t)+u_{1}+\ldots+u_{n}$. Since, $(1+t) \in U(R)$. Then, r is $(n+1)$-good.

In the next two lemmas we consider the effect of some ring operations on our invariants

Lemma 1. Let R be a ring, I an ideal of R and let $J(R)$ denote the Jacobson radical of R. If $a \in R$ is n-fine, then so is $\bar{a} \in R / I$. The converse also holds if $I \subseteq J(R)$ and $J(R)$ is nil.

Proof. The first part of the statement is clear since the image of a unit (resp., a nilpotent) is again a unit (resp., a nilpotent).
Assume now that $I \subseteq J(R)$ and $J(R)$ is nil. Let $a \in R$ be such that \bar{a} is n-fine in R / I. Then there are unit elements $\overline{u_{i}} \in R / I, 1 \leq i \leq n$ and a nilpotent element $\bar{t} \in R / I$ such that $\bar{a}=\bar{t}+\overline{u_{1}}+\ldots+\overline{u_{n}}$. Then $u_{i} \in U(R)$ for all $1 \leq i \leq n$, and $h=a-\left(t+u_{1}+\ldots\right.$ $\left.+u_{n}\right) \in J(R)$. So, $u_{1}+h \in U(R)$. Also, $t^{m} \in I$ for some integer $m \geq 2$. Hence, there is an integer $m^{\prime} \geq 2$ such that $t^{m m^{\prime}}=0$ since $I \subseteq J(R)$ is nil; that is t is a nilpotent element of R. It follows that $a=t+\left(u_{1}+h\right)+u_{2}+\ldots+u_{n}$. This shows that a is n-fine.

Lemma 2. Let n be a positive integer. The following hold:
(1) A homomorphic image of a n-fine ring is n-fine.
(2) A direct product $\prod R_{\alpha}$ of rings $\left\{R_{\alpha}\right\}$ is n-fine if and only if so is each $\left\{R_{\alpha}\right\}$.

Proof.
(1) The proof of (1) is clear.
(2) Suppose that each $\left\{R_{\alpha}\right\}$ is n-fine. Let $x=\left(x_{\alpha}\right) \in \Pi R_{\alpha}$. For each α, write $x_{\alpha}=t_{\alpha}+u_{\alpha}^{1}+\ldots+u_{\alpha}^{n}$, where $u_{\alpha}^{i} \in U\left(R_{\alpha}\right)$ for all $1 \leq i \leq n$ and $t_{\alpha} \in \operatorname{Nil}\left(R_{\alpha}\right)$. Then, $x=t+u^{1}+\ldots+u^{n}$, where $u_{i}=\left(u_{\alpha}^{i}\right) \in U\left(\Pi R_{\alpha}\right)$ for all $1 \leq i \leq n$ and $t=\left(t_{\alpha}\right) \in \operatorname{Nil}\left(\Pi R_{\alpha}\right)$. Hence, ΠR_{α} is n-fine.

The converse immediately follows from Lemma 1.

We next determine when a polynomial ring or power series ring is a n-fine ring.
Proposition 2. Let R be a nonzero commutative ring and n be a positive integer.
(1) $R[X]$ is never a n-fine ring.
(2) $R[[x]]$ is n-fine if and only if so is R.

Proof.
(1) Note that $\operatorname{Nil}(R[X])=\left\{r_{0}+r_{1} X+\ldots+r_{n} X^{n} \mid r_{i} \in \sqrt{0}(i=0, \ldots, n)\right\}$ and $U(R[X])=\left\{r_{0}+r_{1} X+\ldots+r_{n} X^{n} \mid r_{0} \in U(R), r_{i} \in \sqrt{0}(i=1, \ldots, n)\right\}$. If X is n-fine, we may let

$$
X=t+\left(u_{1}+r_{1} X+\ldots\right)+\left(u_{2}+r_{2} X+\ldots\right)+\ldots+\left(u_{n}+r_{n} X+\ldots\right)
$$

where $t \in \operatorname{Nil}(R), u_{1}, \ldots, u_{n} \in U(R)$ and $r_{1}, \ldots, r_{n} \in \sqrt{0} \subseteq J(R)$ Jacobson radical of R, for each $1 \leq i \leq n$. Then $\sum_{i=1}^{n} r_{i}=1 \in J(R)$, which is a contradiction. Thus $R[X]$ is not a n-fine ring.
(2) By Lemma 2(1), $R[[x]]$ is a n-fine ring, and this gives that $R=R[[x]] /(x)$ is a n-fine ring. Conversely, suppose that R is n-fine. Let $f=\sum_{i=0}^{\infty} r_{i} x^{i} \in R[[x]]$. Write $r_{0}=t+u_{1}+\ldots+u_{n}$, where $t \in \operatorname{Nil}(R)$ and u_{1}, \ldots, u_{n} are units in R. Then, $f=t+\left(u_{1}+r_{1} x+r_{2} x^{2}+\ldots\right)+u_{2}+\ldots+u_{n}$, where $t \in \operatorname{Nil}(R) \subseteq$ $\operatorname{Nil}(R[[x]])$ and $\left(u_{1}+r_{1} x+r_{2} x^{2}+\ldots\right) \in U(R[[x]]), u_{i} \in U(R) \subseteq U(R[[x]])$ for all $2 \leq i \leq n$. Thus, $R[[x]]$ is n-fine.

The next result shows that the n-fine property needs to be checked only for indecomposable rings.

Theorem 1. Let R be a nonzero ring. Then the following are equivalent:
(1) R is n-fine;
(2) Every factor ring of R is n-fine;
(3) Every indecomposable factor ring of R is n-fine.

Proof.
$(1) \Rightarrow(2)$ Follows from Lemma 1.
$(2) \Rightarrow(3)$ It is clear.
$(3) \Rightarrow(1)$ Suppose that (3) holds and R is not n-fine. Then there is an element $a \in R$ which is not n-fine. Now let S be the set of all proper ideals I of R such \bar{a} is not n-fine in R / I. Clearly $0 \in S$, and the set S is not empty. If $\left\{I_{\alpha}, \alpha \in A\right\}$ is a chain in S, let $I=\bigcup_{\alpha \in A} I_{\alpha}$. We prove that \bar{a} is not n-fine in R / I. Suppose that \bar{a} is n-fine in R / I. Then there are $\overline{u_{1}}, \ldots, \overline{u_{n}} \in U(R / I)$ (with inverses $\overline{v_{1}}, \ldots, \overline{v_{n}}$ respectively) and $\bar{t} \in \operatorname{Nil}(R / I)$ such that $\bar{a}=\bar{t}+\overline{u_{1}}+\ldots+\overline{u_{n}}$. Note that $t^{m} \in \bigcup_{\alpha \in A} I_{\alpha}$ for some positive integer $m \geq 2$ and $u_{i} v_{i}-1, v_{i} u_{i}-1 \in$ $\bigcup_{\alpha \in A} I_{\alpha}$, hence $t^{m} \in I_{\alpha_{0}}, u_{i} v_{i} \in I_{\alpha_{i}}$ and $v_{i} u_{i} \in I_{\alpha_{i}^{\prime}}$ for α_{0}, α_{i} and $\alpha_{i}^{\prime} \in A$. Now, we can use Zorn's lemma to pick an ideal I_{0} of R maximal with respect to the property that a is not n-fine in R / I. Then R / I is decomposable as a ring by (3): $R / I_{0}=R / I_{1} \bigoplus R / I_{2}$, where both the ideals I_{1}, I_{2} strictly contain I_{0} and so by the choice of I_{0}, \bar{a} is n-fine in R / I_{1} and R / I_{2}. But then \bar{a} is n-fine in R / I_{0} by Lemma 2(2), a contradiction.

3. n-Fineness of Matrix Rings

The purpose of this section is to investigate n-fine property of matrices over any arbitrary ring and of the endomorphism ring of a free R-module of rank at least 2 . First we give the following interesting decomposition.

Theorem 2. Over any ring, the 2×2 and 3×3 matrices are 2 -fine.

Proof. Let R be a ring and let $M=\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right) \in M_{2}(R) \backslash\{0\}$. Put $N=$ $\left(\begin{array}{ll}a_{11}-1 & 1-a_{11} \\ a_{11}-1 & 1-a_{11}\end{array}\right)$. It is checked easily that then $N^{2}=0$. Thus we have

$$
M-N=\left(\begin{array}{cc}
1 & a_{12}+a_{11}-1 \\
a_{21}-a_{11}+1 & a_{22}-a_{11}-1
\end{array}\right)
$$

Now there exist invertible matrices P and Q such that

$$
P(M-N) Q=\left(\begin{array}{ll}
1 & 0 \\
0 & c
\end{array}\right)=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)+\left(\begin{array}{cc}
0 & -1 \\
-1 & c
\end{array}\right)
$$

for an appropriate c and thus is a sum of two units. Hence M is 2-fine. Now, let

$$
M=\left(\begin{array}{lll}
b_{11} & b_{12} & b_{13} \\
b_{21} & b_{22} & b_{23} \\
b_{31} & b_{32} & b_{33}
\end{array}\right)
$$

be 3×3 matrix over $R \backslash\{0\}$. We first construct an nilpotent in order to show 2-fineness of M. Set

$$
N=\left(\begin{array}{ccc}
b_{11}-1 & b_{22}-1 & 2-b_{11}-b_{22} \\
b_{11}-1 & b_{22}-1 & 2-b_{11}-b_{22} \\
b_{11}-1 & b_{22}-1 & 2-b_{11}-b_{22}
\end{array}\right)
$$

It may be directly verified that $N^{2}=0$. Thus

$$
M-N=\left(\begin{array}{ccc}
1 & b_{12}-b_{22}+1 & b_{13}+b_{11}+b_{22}-2 \\
b_{21}-b_{11}+1 & 1 & b_{23}+b_{11}+b_{22}-2 \\
b_{31}-b_{11}+1 & b_{32}-b_{22}+1 & b_{33}+b_{11}+b_{22}-2
\end{array}\right)
$$

We only need to show that $M-N$ is 2-good. Now there exist invertible matrices P and Q such that

$$
P(M-N) Q=\left(\begin{array}{ccc}
c_{1} & 0 & c_{2} \\
c_{3} & 1 & 0 \\
0 & c_{4} & c_{5}
\end{array}\right)=\left(\begin{array}{ccc}
0 & 1 & c_{2} \\
0 & 0 & 1 \\
1 & c_{4} & c_{5}
\end{array}\right)+\left(\begin{array}{ccc}
c_{1} & -1 & 0 \\
c_{3} & 1 & -1 \\
-1 & 0 & 0
\end{array}\right)
$$

for an appropriate c_{i} where $i \in\{1, \ldots, 5\}$ and thus is a sum of two units. Hence M is 2 -fine. This completes the proof.

Remark 1.

(1) For any ring R, R can be embedded in the 2×2 matrix ring $M_{2}(R)$. That is, all rings can be embedded in a 2-fine ring by Theorem 2.
(2) It is known that fine rings are 2-fine rings. However, the converse is not true. For example, taking $R=M_{2}(\mathbb{Z})$, then R is a 2 -fine ring by Theorem 2. Let $M=\left(\begin{array}{ll}3 & 5 \\ 0 & 0\end{array}\right)$, then M is not fine in R by [2, Corollary 5.4$]$, that is, R is not a fine ring.

To facilitate the proof of Theorem 3, we isolate the following lemma, which is of some independent interest.

Lemma 3. Let R be a ring, $n, m \geq 1$ and $k \geq 2$. If the matrix rings $M_{n}(R)$ and $M_{m}(R)$ are both k-fine, then so is the matrix ring $M_{n+m}(R)$.

Proof. Let $M \in M_{n+m}(R)$ which we will write in the block decomposition form

$$
M=\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right)
$$

where $A_{11} \in M_{n}(R), A_{22} \in M_{m}(R)$ and A_{12}, A_{21} are appropriately sized rectangular matrices. By hypothesis, there exist invertible $n \times n, m \times m$ matrices $U_{1}, U_{2}, \ldots, U_{k}$ and $V_{1}, V_{2}, \ldots, V_{k}$, and nilpotent matrices N_{1}, N_{2} such that $A_{11}=N_{1}+U_{1}+U_{2}+\ldots$ $+U_{k}$ and $A_{22}=N_{2}+V_{1}+V_{2}+\ldots+V_{k}$. Thus the decomposition

$$
\begin{aligned}
\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right)= & \left(\begin{array}{cc}
U_{1} & A_{12} \\
0 & V_{1}
\end{array}\right)+\left(\begin{array}{cc}
U_{2} & 0 \\
A_{21} & V_{2}
\end{array}\right)+\ldots \\
& +\left(\begin{array}{cc}
U_{k} & 0 \\
0 & V_{k}
\end{array}\right)+\left(\begin{array}{cc}
N_{1} & 0 \\
0 & N_{2}
\end{array}\right)
\end{aligned}
$$

shows that M is k-fine.
We now present the titular result.
Theorem 3. Over any ring R, the matrix ring $M_{m}(R)$ is 2-fine for any positive integer $m \geq 2$.

Proof. The result follows directly by combining Theorem 2 and Lemma 3.
Remark 2. Commenting on Theorem 3, [2, Proposition 2.12] ensures that over any ring S, the ring $R=M_{n}(S)$ where $n \geq 2$ is 3 -fine. Indeed, if M is a matrix of R, then $M-I_{n}=T_{1}+T_{2}$ where T_{1} and T_{2} are two fine matrices. Then, there are $N_{1}, N_{2} \in \operatorname{Nil}(R)$ and $U_{1}, U_{2} \in U(R)$ such that $M-I_{n}=\left(N_{1}+U_{1}\right)+\left(N_{2}+U_{2}\right)$. Hence, $M=N_{1}+\left(N_{2}+I_{n}\right)+U_{1}+U_{2}$ where $N_{2}+I_{n} \in U(R)$, this implies that M is 3-fine.

Again, combining Proposition 1 and Theorem 3 we recover a result due to Henriksen [3, Theorem 3].

Corollary 1. If R is any nonzero ring with identity, and $m \geq 2$, then every matrix in $M_{m}(R)$ is the sum of three invertible matrices in $M_{m}(R)$.

Theorem 4. Let $n \geq 1$. If R is a n-fine ring, then so is the matrix ring $M_{m}(R)$ for any positive integer m.

Proof. For $n=1$, the result follows from [2, Theorem 3.1]. For $n \geq 2$, it is clear by induction and by Lemma 3.

We will conclude this section by considering the 2 -fineness of the endomorphism ring of a free R-module of rank at least 2 .

Proposition 3. Let R be a ring and let the free R-module F be (isomorphic to) the direct sum of $\alpha \geq 2$ copies of R where α is a cardinal number. Then the ring of endomorphisms E of F is 2-fine.

Proof. Assume first that $\alpha \geq 2$ is finite, so $E \cong M_{\alpha}(R)$. Then E is 2 -fine for $\alpha=2,3$ by Theorem 2 and the values $\alpha<\omega$ for which E is 2-fine are closed under addition by Theorem 3. So E is 2-fine for all finite α.
Assume now that α is infinite. Then from $F \cong F \oplus F, E \cong M_{2}(E)$, and so E is 2-fine by Theorem 2.

Acknowledgment

Thanks are due to the referee for corrections and comments.

References

[1] N. Ashrafi and P. Vámos, "On the unit sum number of some rings," Quarterly Journal of Mathematics, vol. 56, no. 1, pp. 1-12, 2005, doi: 10.1093/qmath/hah023.
[2] G. Călugăreanu and T.-Y. Lam, "Fine rings: A new class of simple rings," Journal of Algebra and Its Applications, vol. 15, no. 09, p. 1650173, 2016, doi: 10.1142/S0219498816501735.
[3] M. Henriksen, "Two classes of rings generated by their units," Journal of algebra, vol. 31, no. 1, pp. 182-193, 1974, doi: 10.1016/0021-8693(74)90013-1.
[4] T.-Y. Lam, A first course in noncommutative rings. Springer Science \& Business Media, 2013, vol. 131.
[5] W. K. Nicholson, "Lifting idempotents and exchange rings," Transactions of the American Mathematical Society, vol. 229, pp. 269-278, 1977, doi: 10.2307/1998510.
[6] P. Vámos, "2-good rings," Quarterly Journal of Mathematics, vol. 56, no. 3, pp. 417-430, 2005, doi: 10.1093/qmath/hah023.
[7] Y. Wang and Y. Ren, "2-good rings and their extensions," Bulletin of the Korean Mathematical Society, vol. 50, no. 5, pp. 1711-1723, 2013, doi: 10.4134/BKMS.2013.50.5.1711.
[8] Z. Wang and J. L. Chen, "2-clean rings," Canadian Mathematical Bulletin, vol. 52, no. 1, pp. 145153, 2009, doi: 10.4153/CMB-2009-017-5.
[9] G. Xiao and W. Tong, " n-clean rings and weakly unit stable range rings," Communications in Algebra, vol. 33, no. 5, pp. 1501-1517, 2005, doi: 10.1081/AGB-200060531.

Author's address
Nabil Zeidi
Sfax University, Faculty of Sciences, Departments of Mathematics, B.P. 1171., 3000 Sfax, Tunisia
E-mail address: zeidi.nabil@gmail.com; zeidi_nabil@yahoo.com

