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Abstract. This paper is mainly concerned with existence of mild solutions for a first order im-
pulsive neutral fractional integrodifferential inclusions with nonlocal initial conditions in ˛-
norm. We assume that the linear part generates an analytic semigroup and transform it into an
integral inclusion. By using a fixed point theorem for multi-valued maps due to Dhage, a main
existence theorem is established. Finally, we present an example to illustrate this main theorem.
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1. INTRODUCTION

In recent years, impulsive differential and partial differential equations have be-
come more important in some mathematical models of real phenomena, especially
in control, biological, and medical domains. In these models, the investigated sim-
ulating processes and phenomena usually have short-time perturbations during their
evolution. The perturbations are performed discretely and their duration is negligible
in comparison with the total duration of the processes. That is why the perturbations
are considered to take place instantaneously in the form of impulses. The theory of
impulsive differential equations has seen considerable development; see the mono-
graphs of Bainov and Simeonov [1], Lakshmikantham et al. [12], and Samoilenko
and Perestyuk [17], where numerous properties of their solutions are studied and
detailed bibliographies are given.

The starting point of this paper is the work in paper [9], where the authors have
investigated the existence of solutions for the neutral partial differential equations in
˛-norm

d

dt
Œu.t/�F.t;u.h1.t///�D�AŒu.t/�F.t;u.h1.t///�CG.t;u.h2.t///; t 2 J

u.0/Cg.u/D u0:
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Furthermore, in [5], authors studied the following impulsive neutral partial differen-
tial equations in ˛-norm

d

dt
Œu.t/�F.t;u.h1.t///� 2 Au.t/C

Z t

0

K.t;s/G.s;u.h2.s///ds;

t 2 J n ft1; t2; � � � ; tmg ; where J D Œ0;a�;

�ujtk D Ik.u.t
�
k //; k D 1;2; � � � ;m:

u.0/D g.u/ 2X:

Motivated by the above-mentioned works, in this paper we study the existence of
mild solutions for the following system in a general Banach space X with ˛-norm:

cD
q

aC
Œu.t/�F.t;u.h1.t///� 2 �Au.t/C

Z t

0

K.t;s/G.s;u.h2.s///ds;

t 2 J n ft1; t2; � � � ; tmg ; where J D Œ0;a�;0 < q � 1; (1.1)

�ujtk D Ik.u.t
�
k //; k D 1;2; � � � ;m:

u.0/Cg.u/D u0 2X:

Here A is the infinitesimal generator of a compact, analytic semigroup
fT .t/; t > 0g, G is a multi-valued map and �ujtDtk D u.tC

k
/� u.t�

k
/; where

u.tC
k
/ and u.t�

k
/represent the right and left limits of u.t/ at t D tk . Let K WD! R;

DD f.t; s/ 2 J �J W 0� s � tg and F;G;g;Ik.kD 1;2; � � � ;m/ and h1;h2 are given
functions to be specified later.

The nonlocal Cauchy problem was considered by Byszewski [2] and the import-
ance of nonlocal conditions in different fields has been discussed in [2,7] and the ref-
erences therein. For example, in [7] the author described the diffusion phenomenon
of a small amount of gas in a transparent tube by using the formula

g.u/D

pX
jD0

cju.tj /;

where cj ;j D 0;1; � � � ;p are given constants and 0 < t0 < t1 < � � � < tp < a: In this
case the above equation allows the additional measurement at tj ;j D 0;1; � � � ;p: In
the past several years theorems about existence, uniqueness and stability of differ-
ential and functional differential abstract evolution Cauchy problem with nonlocal
conditions have been studied by Byszewski and Lakshmikantham [4], by Byszewski
[2, 3], by Fu [10], by Fu and Ezzinbi [11] and recently, Cheng et al. [5] studied
the existence results for impulsive neutral integrodifferential equations with nonlocal
conditions.



EXISTENCE SOLUTION OF NEUTRAL F. D. E. WITH FRACTIONAL OPERATOR 693

2. PRELIMINARIES

In this section, we introduce some definitions, notations and preliminary facts from
multi-valued analysis which are used throughout this paper.
Let .X;k:k/ be a Banach space. C.J;X/ is the Banach space of continuous func-
tions from J to X with the norm kukJ D supfu.t/ W t 2 J g. B.X/ denotes the
Banach space of bounded linear operators from X to X , with norm kN kB.X/ D
supfkN.x/k W kxk D 1g. A measurable function � W J ! X is Bochner integrable
if and only if k�k is Lebesgue integrable (for properties of the Bochner integral see
Yosida [18]). L1.J;X/ denotes the Banach space of Bochner integrable functions
� W J !X with norm k�kL1 D

R a
0 k�.t/k dt for all x 2 L1.J;X/.

We use the notations P .X/ for the family of all subsets of X: Let Pb;cl.X/ and
Pcp;c.X/ denote respectively the classes of all bounded-closed and compact-convex
subsets of X: Similarly, Pbcc.X/ denotes the classes of all bounded, closed and con-
vex subsets of X: A multi-valued map G W X ! P.X/ is convex (closed) for all
x 2 X: G is said to be bounded on bounded sets if G.B/D

S
x2BG.x/ is bounded

in X for all B 2 Pb.X/ (i.e.,
supx2B fsupfkyk W y 2G.x/gg <1). G is called upper semicontinuous (u.s.c.)

on X if for each x0 2 X the set G.x0/ is a nonempty, closed subset of X , and if for
each open subset U of X containing G.x0/, there exists an open neighborhood � of
x0 such that G.� /�U:

G is said to be completely continuous if G.B/ is relatively compact for every
B 2 Pb.X/. If the multi-valued map G is completely continuous with nonempty
compact values, then G is u.s.c. if and only if G has a closed graph, i.e., xn !
x�;yn! y�;yn 2G.xn/ imply y� 2G.x�/. We say that G has a fixed point if there
is x 2X such that x 2G.x/.

A multi-valued map G W J ! Pcl.X/ is said to be measurable if for each x 2 X
the function Y W J ! R defined by Y.t/ D d.x;G.t// D inffkx�´k W ´ 2G.t/g is
measurable. For more details on multi-valued maps we refer to the book by Deimling
[6].
Let�A be the infinitesimal generator of an analytic semigroup fT .t/; t � 0g inX . We
note that if�A is the infinitesimal generator of an analytic semigroup then�.AC˛I /
is invertible and generates a bounded analytic semigroup for ˛ > 0 large enough. This
allows us to reduce the general case in which �A is the infinitesimal generator of an
analytic semigroup to the case in which the semigroup is bounded and the generator
is invertible. Hence for convenience, we suppose that kT .t/k �M for t � 0.

We assume without loss of generality that 02 �.�A/where �.�A/ is the resolvent
set of �A. This allows us to define the fractional power A˛ for 0 < ˛ < 1, as a closed
linear operator on its domain D.A˛/ with inverse A�˛. We have the following basic
properties A˛.
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Theorem 1 ([16]).
(1) X˛ DD.A˛/ is a Banach space with norm kxk˛ D kA

˛xk for x 2D.A˛/.
(2) T .t/ WX !X˛ for each x > 0.
(3) A˛T .t/x D T .t/A˛X for each x 2D.A˛/ and t > 0.
(4) For every t > 0, A˛T .t/ is bounded on X and there exist C˛ > 0 and ı > 0

such that
kA˛T .t/k � C˛t

�˛e�ıt � C˛t
�˛:

(5) A�˛ is a bounded linear operator in X with D.A˛/D im.A�˛/.
(6) If 0 < ˛ � ˇ, then D.Aˇ / ,!D.A˛/.

Remark 1. Observe as in [14] that by Theorem 1 (2) and (3), the restriction T˛.t/
of T .t/ to X˛ is exactly the part of T .t/ in X˛. Let x 2X˛. Since

kT .t/xk˛ D kA
˛T .t/xk D kT .t/A˛xk � kT .t/kkA˛xk D kT .t/kkxk˛

and as t decreases to 0

kT .t/x�xk˛ D kA
˛T .t/x�A˛xk D kT .t/A˛x�A˛xk! 0

for all x 2X˛ it follows that .T .t/t�0/ is a family of strongly continuous semigroup
on X˛ and kT˛.t/k � kT .t/k for all t � 0.

To begin with the analysis we need some basic definitions and properties from the
fractional calculus theory.

Definition 1. A real function f .x/;x � 0 is said to be space C�, � 2 R if there
exist a real number p.> �/, such that f .x/D xpf1.x/, where f1 2 C Œ0;1/ and it
is said to be in the space Cm� if and only if f .m/ 2 C�, m 2N.

Definition 2. The Riemann-Liouville fractional integral operator of order 0 � ˛,
of a function f 2 C�, �� �1 is defined as

I˛f .x/D
1

� .˛/

Z x

0

.x� t /˛�1f .t/dt; ˛ > 0;x > 0;

I 0f .x/Df .x/:

While modeling some real world phenomena with fractional differential equation
the Riemann-Liouville derivative has certain disadvantage. Therefore, we shell intro-
duce a modified fractional differential operator D˛� proposed by M. Caputo.

Definition 3. The fractional derivative of f .x/ in the Caputo sense is defined as

DI˛x f .x/DI
m�˛Dmf .x/

D
1

� .m�˛/

Z x

0

.x� t /m�˛�1Dmf .t/dt;

for m�1� ˛ < m;m 2N;x > 0;f 2 Cm�1:
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In order to define the solution of system (1.1) we shall consider the space

˝ D fu W Œ0;a�!X˛ W u 2 C..tk�1; tk�;X/;k D 1;2; � � � ;m and there exist

u.t�k / and u.tC
k
/;k D 1;2; � � � ;m

with u.t�k /D u.tk/;u.0/Cg.u/D u0g:

which is a Banach space with the norm

kuk˝ D sup
t2J

ku.t/k˛ :

Now we define the mild solution for the system (1.1).

Definition 4. A continuous function u, such that
(i) u.0/Cg.u/D u0 for each 0� t � aI

(ii) �ujtDtk D Ik.u.t
�
k
//;k D 1;2; � � � ;m, the restriction of u.:/ to the interval

Œ0;a/n ft1; t2; � � � ; tkg is continuous.
satisfying the integro-differential equation

u.t/D T .t/ Œu0�g.u/�F.0;u.h1.0///�CF.t;u.h1.t///

C
1

� .q/

Z t

0

.t � s/q�1T .t � s/F.s;u.h1.s///ds

C
1

� .q/

Z t

0

.t � s/q�1T .t � s/

Z s

0

K.s;w/v.w/dwds

C

mX
kD1

T .t � tk/Ik.u.t
�
k //; t 2 J; v.t/ 2G.t;u.h2.t///

is called a mild solution of problem (1.1).

Our main results are based on the following lemmas.

Lemma 1 ([13]). Let X be a Banach space. Let G W J �X! Pb;cl;c.X/ satisfied
that

(i) For each u 2X , .t;u/!G.t;u/ is measurable with respect to t ;
(ii) For each t 2 J , .t;u/!G.t;u/ is u.s.c. with respect to u;

(iii) For each fixed u 2 C.J;X/, the set

SG;u D
˚
v 2 L1.J;X/ W v.t/ 2G.t;u.h2.t/// for a.e t 2 J

	
is nonempty. Let � be a linear continuous mapping fromL1.J;X/ to C.J;X/.
Then the operator

� ıSG W C.J;X/! Pcp;c.C.J;X//; u! .� ıSG/.u/ WD � .SG;u/

is a closed graph operator in C.J;X/�C.J;X/:
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Lemma 2 ([8]). Let B.0;r/ and BŒ0;r� denote respectively the open and closed
balls in a Banach space X centered at the origin and of radius r and let A W X !

Pbcc.X/ and B W BŒ0;r�! Pcp;c.X/ be two multi-valued operators satisfying:
(a) A is a multi-valued contraction, and
(b) B is upper semicontinuous and completely continuous. Then either

(i) the operator inclusion u 2AuCBu has a solution in BŒ0;r�, or
(ii) there exists a w 2 X with kwk D r such that ıw 2AwCBw for some

ı > 1.

We have the following result from [14].

Lemma 3. T .t/t�0 is an immediately compact semigroup in X˛, and hence it is
immediately norm-continuous.

3. MAIN RESULT

In this section, we state and prove the existence theorem for the system (1.1). Let
us list the following hypothesis: for some ˛ 2 .0;1/;

(H1) There exists a constant ˇ 2 .0;1/ with ˛ � ˇ � 1 such that F W Œ0;a��
X˛ ! Xˇ is a continuous function, and AˇF W Œ0;a��X˛ ! X˛ satisfies
the Lipschitz condition, that is, there exists a constant L> 0 such thatAˇF.t1;u1/�AˇF.t2;u2/� L.jt1� t2jCku1�u2k˛/ ;
for any .t1;u1/; .t2;u2/ 2 Œ0;a��X˛:Moreover, there exists a constant L1 >
0 such that the inequalityAˇF.t;u/

˛
� L1.kuk˝C1/

holds for any u 2X˛ with

L0 D

"
.M C1/LC

LM˛�ˇa
qC˛�ˇ

� .q/.qC˛�ˇ/

#
< 1: (3.1)

(H2) The multi-valued map G W J �X˛! Pc;cp.X/ satisfies the following condi-
tions:
(i) For each t 2 J , the function G.t; :/ W X˛ ! Pc;cp.X/ is u.s.c.; and for

each x 2 X˛, the function G.:;u/ is measurable. And for each fixed
u 2˝ the set

SG;u D
˚
v 2 L1.J;X/ W v.t/ 2G.t;u/ for a.e t 2 J

	
is nonempty.

(ii) For each positive number l > 0, there exists a positive function w.l/
dependent on l such that

sup
kuk˛�l

kG.t;u/k � w.l/;
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where

kG.t;u/k D supfkvk W v 2G.t;u/g ; kuk˛ D sup
0�s�a

ku.s/k˛ :

(H3) hi 2 C.J;J /; i D 1;2: g W˝!X˛ satisfies that
(i) There exist positive constants L2 and L3 such that

kg.u/k˛ <L2 kuk˝CL3 for all u 2˝:

(ii) g is a completely continuous map.
(H4) For each t 2 J , K.t;s/ is measurable on J and

K.t/D ess supfjK.t;s/j;0� s � tg

is bounded on J . The map t !Kt is continuous from J to L1.J;R/, here
Kt .s/DK.t;s/ and K D supt2J K.t/:

(H5) Ik 2 C.X˛;X˛/;k D 1;2; � � � ;m; and there exist nondecreasing functions
 k 2 C.J;RC/;k D 1;2; � � � ;m such that

kIk.u/k˛ �  k.kuk˛/�N kuk˝ ; for u 2X˛;N 2 RC

(H6) There exists a real number r > 0 such that

r �

2CM.ku0k˛CL3/C
M˛a

q�˛.1Caw.r/K/

.q�˛/� .q/

1�

�
M.L2CmN/C2L1C

M˛L1a
q�˛

.q�˛/� .q/

� ; (3.2)

where �
M.L2CmN/C2L1C

M˛L1a
q�˛

.q�˛/� .q/

�
< 1: (3.3)

Theorem 2. Let u0 2 X˛. If the hypotheses .H1/� .H6/ are satisfied, then the
system (1.1) admits at least one mild solution on J .

Proof. Consider the operator N W˝!P .˝/ defined by

N.u/D fw 2˝ W w.t/D T .t/Œu0�g.u/�F.0;u.h1.0///�CF.t;u.h1.t///

C
1

� .q/

Z t

0

.t � s/q�1T .t � s/F.s;u.h1.s///ds

C
1

� .q/

Z t

0

.t � s/q�1T .t � s/

Z s

0

K.s;w.s/v.w/dwds

C

mX
kD1

T .t � tk/Ik.u.t
�
k //; t 2 J;v.t/ 2G.t;u.h2.t///g:

Clearly the fixed point of N are solutions of the system (1.1). Let

A.u/D F.t;u.h1.t///�T .t/F.0;u.h1.0///
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C
1

� .q/

Z t

0

.t � s/q�1T .t � s/F.s;u.h1.s///ds

and

B.u/D fw 2˝ W w.t/D T .t/Œu0�g.u/�

C
1

� .q/

Z t

0

.t � s/q�1T .t � s/

Z s

0

K.s;w.s/v.w/dwds

C

mX
kD1

T .t � tk/Ik.u.t
�
k //; v 2 SG;ug:

In order to apply Lemma 2, we give the proof in several steps.
Step 1. A is a contraction.

Take x;y 2 Bl . Then for each t 2 J and by condition .H1/, we have that

kA.x/.t/�A.y/.t/k˛

� kF.t;x.h1.t///�F.t;y.h1.t///k˛CkT .t/ŒF .0;x.h1.0///�F.0;y.h1.0///�k˛

C

 1

� .q/

Z t

0

.t � s/q�1T .t � s/F.t;x.h1.t///�F.t;y.h1.t///


˛

D kA˛ŒF .t;x.h1.t///�F.t;y.h1.t///�k

CkA˛T .t/ŒF .0;x.h1.0///�F.0;y.h1.0///�k

C

 1

� .q/

Z t

0

.t � s/q�1A˛�ˇT .t � s/Aˇ ŒF .t;x.h1.t///�F.t;y.h1.t///�ds


�

"
.M C1/LC

LM˛�ˇa
qC˛�ˇ

� .q/.qC˛�ˇ/

#
sup
s2J

kx.s/�y.s/k˛

D L0 sup
s2J

kx.s/�y.s/k˛ :

Thus,
kA.x/�A.y/k � L0 kx�yk˛ :

Therefore, by assumption 0 < L0 < 1, we can see that A is a contraction.
Step 2. B.u/ is convex for each u 2˝:

Indeed, if w1;w2 2B.x/, then there exist v1;v2 2 SG;x; such that for each
t 2 J we have

wi D T .t/Œu0�g.u/�C

mX
kD1

T .t � tk/Ik.u.t
�
k //

C
1

� .q/

Z t

0

.t � s/q�1T .t � s/

Z s

0

K.s;w/vi .w/dwds; i D 1;2:
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Let 0� �� 1: Then for each t 2 J we have

�w1C .1��/w2 D T .t/Œu0�g.u/�C

mX
kD1

T .t � tk/Ik.u.t
�
k //

C
1

� .q/

Z t

0

.t � s/q�1T .t � s/

Z s

0

K.s;w/Œ�v1.w/C .1��/v2.w/�dwds:

Since SG;u is convex (because G has convex values), then
�w1C .1��/w2 2N.u/:

Step 3. B is bounded on bounded sets of ˝:
Let Bl D fu 2˝ W kuk˛ � lg be a bounded set in ˝: Now for each u 2
Bl ;x 2B.u/, there exists a function v 2 SG;u such that for each t 2 J . We
have

kx.t/k˛ � kT .t/.x0�g.x//k˛

C

 1

� .q/

Z t

0

.t � s/q�1T .t � s/

Z s

0

K.s;x/v.x/dwds


˛

C

mX
kD1

T .t � tk/Ik.x.t�k //˛
� kT .t/kk.x0�g.x//k˛C 1

� .q/

Z t

0

.t � s/q�1A˛T .t � s/

Z s

0

K.s;x/v.x/dwds


C

mX
kD1

A˛T .t � tk/Ik.x.t�k //
�M.L2 kxk˝CL3Ckx0k˛/

C
aw.l/supt2J K.t/

� .q/

Z t

0

M˛.t � s/
q�1

.t � s/˛
dsCM

mX
kD1

 k.kxk˛/

�M.lL2CL3Ckx0k˛/C
w.l/supt2J K.t/M˛

.q�˛/� .q/
aq�˛C1CM

mX
kD1

 k.l/:

Hence B is bounded on bounded sets of ˝ for each x 2B.B.l//.
Step 4. B sends bounded sets into equicontinuous sets on ˝:

Let �1; �2 2 J;�1 < �2. Let u 2 Bl and x 2B.u/, then there exists v 2 SG;u
such that, for each t 2 J , we have

x.t/D T .t/.x0�g.x//C
1

� .q/

Z t

0

.t � s/q�1T .t � s/

Z s

0

K.s;x/v.x/dxds
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C

mX
kD1

T .t � tk/Ik.x.t
�
k //:

Then

kx.�2/�x.�1/k˛

� kŒT .�2/�T .�1/�.x0�g.x//k˛

C

 1

� .q/

Z �1

0

Œ.�2� s/
q�1T .�2� s/� .�1� s/

q�1T .�1� s/�Z s

0

K.s;x/v.x/dxds


˛

C

 1

� .q/

Z �2

�1

.�2� s/
q�1T .�2� s/

Z s

0

K.s;x/v.x/dxds


˛

C


X

0<tk<�1

ŒT .�2� tk/�T .�1� tk/�Ik.x.t
�
k //


˛

C

 X
�1<t<�2

T .�2� tk/Ik.x.t
�
k //


˛

� A1CA2CA3CA4CA5CA6;

Actually, A1;A2;A3;A4;A5 and A6 tend to 0 independently of Bl when
�2� �1! 0: Indeed, let x 2 Bl , we have

A1 D kŒT .�2/�T .�1/�.x0�g.x//k˛

� kT .�2/�T .�1/k˛ k.x0�g.x//k˛

� kT .�2/�T .�1/k˛ .kx0k˛CL2 kxk˝CL3/

from which we deduce that lim�2!�1A1D 0 since by Lemma 3 the function
t !kT .t/k˛ for t 2 .0;a�:

A2 D

 1

� .q/

Z �1

0

Œ.�2� s/
q�1ŒT .�2� s/�T .�1� s/�

Z s

0

K.s;x/v.x/dxds


˛

�
aq�1

� .q/

Z �1

0

ŒT .�2� s/�T .�1� s/�Z s

0

K.s;x/v.x/


˛

dxds

�
aq�1

� .q/

Z �1

0

ŒT .�2� �1
2
C
�2� s

2
/�T .

�1� s

2
/�A˛T .

�1� s

2
/Z s

0

K.s;x/v.x/

 dxds
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�
aq�˛�1M˛ supt2J K.t/w.l/

� .q/

Z �1

0

ŒT .
�2� �1

2
C
�2� s

2
/�T .

�1� s

2
/�ds:

Therefore, the continuity of the function t!kT .t/k˛ for t 2 .0;a� allows us
to conclude that lim�!�1A2 D 0:

A3 D

 1

� .q/

Z �1

0

Œ.�2� s/
q�1
� .�1� s/

q�1�T .�1� s/

Z s

0

K.s;x/v.x/dxds


˛

�
1

� .q/

Z �1

0

Œ.�2� s/
q�1
� .�1� s/

q�1�

A˛T .�1� s/Z s

0

K.s;x/v.x/dx

 ds
�
M˛a

�˛

� .q/

Z �1

0

Œ.�2� s/
q�1
� .�1� s/

q�1�

Z s

0

K.s;x/v.x/dx

 ds
�
M˛a

�˛ supt2J w.l/
� .q/

Z �1

0

Œ.�2� s/
q�1
� .�1� s/

q�1�ds

�
M˛a

�˛ supt2J w.l/
q� .q/

j�2� �1j
q:

Hence lim�2!�1A3 D 0:

A4 D

 1

� .q/

Z �2

�1

.�2� s/
q�1T .�2� s/

Z s

0

K.s;x/v.x/dxds


˛

�
aq�1 supt2J K.t/w.l/

� .q/

Z �2

�1

kA˛T .�2� s/k ds

�
M˛a

q�1 supt2J K.t/w.l/
� .q/

Z �2

�1

.�2� s/
�˛ ds

�
M˛a

q�1 supt2J K.t/w.l/
.1�˛/� .q/

j�2� �1j
1�˛:

Since 1�˛ > 0, we deduce that lim�2!�1A4 D 0:

A5 D


X

0<tk<�1

ŒT .�2� tk/�T .�1� tk/�Ik.x.t
�
k //


˛

�

X
0<tk<�1

kŒT .�2� tk/�T .�1� tk/�k˛
Ik.x.t�k //˛

�

X
0<tk<�1

 k.kxk˛/kŒT .�2� tk/�T .�1� tk/�k˛ :

Hence, we deduce lim�2!�1A5 D 0:

A6 D

 X
�1<t<�2

T .�2� tk/Ik.x.t
�
k //


˛
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�

X
�1<t<�2

 k.kxk˛ kT .�2� tk/k˛ :

Therefore, lim�2!�1A6 D 0:
Step 5. .BBl/.t/ is relatively compact for each t 2 J , where .BBl/.t/D

fx.t/Ix 2BBl ; t 2 J g : Obviously, by condition .H3/.i i/; .BBl/.t/ is
relatively compact in ˝ for t D 0. Let 0 < t � a be fixed and 0 < � < t . For
u 2 Bl and x 2B.u/, there exists a function v 2 SG;u such that

x.t/D T .t/.x0�g.x//C
1

� .q/

Z t��

0

.t � s/q�1T .t � s/

Z s

0

K.s;x/v.x/dxds

C
1

� .q/

Z t

t��

.t � s/q�1T .t � s/

Z s

0

K.s;x/v.x/dxdsC
X

0<tk<t

T .t � tk/Ik.x.t
�
k //:

Define

x�.t/D T .t/.x0�g.x//C
1

� .q/

Z t��

0

.t � s/q�1T .t � s/

Z s

0

K.s;x/v.x/dxds

C

X
0<tk<t��

T .t � tk/Ik.x.t
�
k //

D T .t/.x0�g.x//C
T .�/

� .q/

Z t��

0

.t � s/q�1T .t � �� s/

Z s

0

K.s;x/v.x/dxds

C

X
0<tk<t��

T .t � tk/Ik.x.t
�
k //:

Since fT .t/; t > 0g is compact, the set U� D fx.t/ W x 2B.Bl/g is relatively
compact in ˝ for every �;0 < � < t . Moreover, for every x 2B.Bl/;

kx.t/�x�.t/k˛ D
1

� .q/

Z t

t��

.t � s/q�1T .t � s/

Z s

0

K.s;x/v.x/dxds


˛

CM
X

t��<tk<t

 .l/:

Therefore, letting � ! 0, we see that, there are relatively compact sets ar-
bitrarily close to the set fx.t/ W x 2B.Bl/g. Hence the set x.t/Ix 2 B.Bl/

is relatively compact in ˝: As a consequence of steps .3� 5/ together with
the Arzela-Ascoli theorem, we can conclude that B is a compact multivalued
map.

Step 6. B has a closed graph.
Let un! u�,un 2 Bl ; fxn 2B.un/g, and xn! x�. We shall prove that

x� 2 B.u�/: xn 2 B.un/ means that there exists vn 2 SG;un such that, for
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each t 2 J;

xn.t/D T .t/.u0�g.un//C
1

� .q/

Z t

0

.t � s/q�1T .t � s/

Z s

0

K.s;x/vn.x/dxds

C

X
0<tk<t

T .t � tk/Ik.un.t
�
k //:

We must prove that there exists v� 2 SG;u� such that, for each t 2 J ,

x�.t/D T .t/.u0�g.u�//C
1

� .q/

Z t

0

.t � s/q�1T .t � s/

Z s

0

K.s;x/v�.x/dxds

C

X
0<tk<t

T .t � tk/Ik.u�.t
�
k //:

Clearly since Ik;k D 1;2; � � � ;m and g are continuous we have that

k

0@xn�T .t/.u0�g.un//� X
0<tk<t

T .t � tk/Ik.un.t
�
k //

1A
�

0@x��T .t/.u0�g.u�//� X
0<tk<t

T .t � tk/Ik.u�.t
�
k //

1Ak˝ ! 0

as n!1: Consider the linear continuous operator

˚ W L1.J;X/! C.J;X/ v! ˚.v/.t/

D
1

� .q/

Z t

0

.t � s/q�1T .t � s/

Z s

0

K.s;x/vn.x/dxds

From Lemma 1, it follows that˚ ıSG;u is a closed graph operator. Moreover
we have that

xn.t/�T .t/.u0�g.un//�
X

0<tk<t

T .t � tk/Ik.un.t
�
k // 2 ˚.SG;un/:

Since un! u� it follows from Lemma 1 that

x�.t/�T .t/.u0�g.u�//�
X

0<tk<t

T .t � tk/Ik.u�.t
�
k // 2 ˚.SG;u�/;

that is, there must exist a v� 2 SG;u� such that

x�.t/�T .t/.u0�g.u�//�
X

0<tk<t

T .t � tk/Ik.u�.t
�
k //

D ˚..v�/.t//D
1

� .q/

Z t

0

.t � s/q�1T .t � s/

Z s

0

K.s;x/v�.x/dxds:

Therefore, B has a closed graph and so B is u.s.c.
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Step 7. The operator inclusion u 2A.u/CB.u/ has a solution in BŒ0;r�.
Define an open ball B.0;r/ in ˝, where the real number r satisfies the in-
equality given in condition (H6). As a consequence of steps .1�6/, we can
see that the operators A and B satisfy all conditions of Lemma 2. Now
we show that the second assertion of Lemma 2 is not true. Let u 2˝ be a
possible solution for �x 2AxCBx for some � > 1 with kxk˛ D r . Then
we have,

x.t/D ��1T .t/Œu0�g.u/�F.0;u.h1.0///�C�
�1F.t;u.h1.t///

C
��1

� .q/

Z t

0

.t � s/q�1T .t � s/F.s;x.h1.s///ds

C
��1

� .q/

Z t

0

.t � s/q�1T .t � s/

Z s

0

K.s;x/v.x/dwds

C��1
mX
kD1

T .t � tk/Ik.u.t
�
k //:

Thus by .H1/� .H5/

kx.t/k˛ � �
�1
kT .t/Œu0�g.u/�F.0;u.h1.0///�k˛C�

�1
kF.t;u.h1.t///k˛

C
��1

� .q/

Z t

0

.t � s/q�1T .t � s/F.s;x.h1.s///ds˛
C
��1

� .q/

Z t

0

.t � s/q�1T .t � s/Z s

0

K.s;x/v.x/dwds


˛

C��1
mX
kD1

T .t � tk/Ik.u.t�k //˛
� I1CI2CI3CI4CI5

where,

I1 D �
�1
kT .t/Œu0�g.u/�F.0;u.h1.0///�k˛

�M ku0�g.u/k˛CkA
˛F.0;u.h1.0///k

�M.ku0k˛Ckg.u/k˛/C .L1 kuk˝C1/

�M.ku0k˛CL2 kuk˝CL3/C .L1 kuk˝C1/:

I2 D �
�1
kF.t;u.h1.t///k˛

� kA˛F.t;u.h1.t///k

� .L1 kuk˝C1/:
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I3 D
��1

� .q/

Z t

0

.t � s/q�1T .t � s/F.s;x.h1.s///ds˛
�

1

� .q/

Z t

0

.t � s/q�1A˛T .t � s/F.s;x.h1.s///ds
�
M˛.L1 kuk˝C1/

� .q/

Z t

0

.t � s/q�1�˛ ds

�
M˛.L1 kuk˝C1/a

q�˛

� .q/.q�˛/

I4 D
��1

� .q/

Z t

0

.t � s/q�1T .t � s/Z s

0

K.s;x/v.x/dwds


˛

�
aw.kuk˛/supt2J K.t/

� .q/

Z t

0

.t � s/q�1 kA˛T .t � s/k ds

�
w.kuk˛/M˛a

q�˛C1 supt2J K.t/
.q�˛/� .q/

I5 D �
�1

mX
kD1

T .t � tk/Ik.u.t�k //˛
�

mX
kD1

T .t � tk/Ik.u.t�k //˛
�M

mX
kD1

 k.kuk˛/:

Taking the supremum over t we obtain,

kx.t/k˝ �M.ku0k˛CL2 kuk˝CL3/C .L1 kuk˝C1/C .L1 kuk˝C1/

C
M˛.L1 kuk˝C1/a

q�˛

� .q/.q�˛/
C
w.kuk˝/M˛a

q�˛C1 supt2J K.t/
.q�˛/� .q/

CM

mX
kD1

 k.kuk˝/:

Substituting kuk˝ D r in the above inequality and noting that (3.2) holds,
we have

r �M.ku0k˛CL2rCL3/C .L1rC1/C .L1rC1/C
M˛.L1rC1/a

q�˛

� .q/.q�˛/

C
w.r/M˛a

q�˛C1 supt2J K.t/
.q�˛/� .q/

CM

mX
kD1

 k.r/;
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and hence

r �

2CM.ku0k˛CL3/C
M˛a

q�˛.1Caw.r/K/

.q�˛/� .q/

1�

�
M.L2CmN/C2L1C

M˛L1a
q�˛

.q�˛/� .q/

�
which is contradiction to (3.2). Hence the operator inclusions u 2 A.u/C

B.u/ has a solution in BŒ0;r�. It further implies that the system (1.1) has at
least one mild solution x in ˝. The proof is complete.

�

4. AN EXAMPLE

As an application of previous sections, we study the fractional neutral differential
equation of order q; where 0 < q � 1:

@q

@tq

�
u.t;x/�

Z �

0

�.t;y;x/Œu.sin t;y/C
@

@y
u.sin t;y/�dy

�
D

@2

@x2
u.t;x/C

Z s

0

K.t;s/g

�
t;u.sin t;x/;

@

@x
u.sin t;x/

�
ds;

0� t � 1;0� x � �0� s � t; t ¤ tk; k D 1; � � � ;m

u.t;0/D u.t;�/D 0: (4.1)

u.tC
k
/�u.t�k /D Ik.u.t

�
k // k D 1; � � � ;m

u.0;x/C

pX
iD0

Z �

0

ki .y;x/u.si ;y/dy D u0.x/; 0� x � �;

where 0 < q � 1, 0 < t1 < � � � ; tp;u0 2X DL2.Œ0;1�;R/ equipped with the L2-norm
k:k2 and ki .:; :/ 2 L2.Œ0;1�� Œ0;1�;R/ for i D 1;2:

Consider the operator A WD.A/�X !X defined by�
D.A/DH 2

0 .Œ0;�/�/D ff 2X W f;f
00 2X;f .0/D f .�/D 0g ;

Af D�f 00: .

Then �A generates a compact, analytic semigroup T .:/ of uniformly bounded linear
operators. It is well known that 0 2 �.A/ and so the fractional powers of A are well
defined. Moreover, the eigenvalues of A are n2 and the corresponding normalized

eigenvectors are en.x/ D
q
2
�

sin.nx/;n D 1;2; � � � . The following results are well
known:

(A1) If ´ 2D.A/; then

A´D

1X
nD1

n2h´;enien:
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(A2) For each ´ 2X;

A�
1
2´D

1X
nD1

1

n
h´;enien:

(A3) The operator A
1
2 is given by

A
1
2´D

1X
nD1

nh´;enien

for each ´ 2D.A
1
2 / WD

˚
f 2X W

P1
nD1nh´;enien 2X

	
:

We assume that the following conditions hold:
(i) The function � is measurable and

sup
0�t�1

Z �

0

Z �

0

�2.t;y;x/dydx <1:

(ii) For each t 2 J , K.t;s/ is measurable on J and
K.t/D ess supfjK.t;s/j;0� s � tg, is bounded on J:

(iii) The function
@2

@x2
is measurable, �.t;y;0/D�.t;y;�/D 0, and

sup
0�t�1

"Z �

0

Z �

0

�
@2

@x2
�2.t;y;x/

�2
dydx

# 1
2

<1:

(iv) For the function g W J �R�R! R the following three conditions are satis-
fied:

(a) For each t 2 J;g.t; :; :/ is continuous.
(b) For each u 2X 1

2
; g.:;u;u0/ is measurable.

(c) There is a positive number � such thatg.t;u;u0/� � kuk ; for all .t;u/ 2 J �X 1
2
:

(v) Ik 2C.X˛;X˛/, kD 1;2; � � � ;m and there exist nondecreasing function k 2
C.J;RC/ such that for each u 2X˛

kIk.u/k �  k.kuk˛/:

Here we choose ˛ D ˇ D 1
2

. It follows from [15] that if u 2 X 1
2

, then u is
absolutely continuous, u0 2 X , and u.0/D u.�/D 0. In view of this result,
for .t;u/ 2 J �X 1

2
w 2˝, we can define respectively that

F.t;u/.x/D

Z �

0

�.t;y;x/Œu.y/Cu0.y/�dy0;

G.t;u/.x/D g.t;u.x/;u0.x// and
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g.w.t//D

pX
iD0

Ki .u/.x/w.ti /D

pX
iD0

Z �

0

ki .y;x/u.y/dy; w 2˝:

So G W J �X 1
2
! X: And it is easy to see that F W J �X 1

2
! X 1

2
; A

1
2F W

J �X 1
2
!X 1

2
: In fact, for each t 2 J , we have

hF.t;u/;uni D
1

n

r
2

�

�Z �

0

@

@x
�.t;y;x/Œu.y/Cu0.y/�dy;cos.n�/

�
and also

hA
1
2F.t;u/;uni D

1

n2

r
2

�

�Z �

0

@2

@x2
�.t;y;x/Œu.y/Cu0.y/�dy;sin.n�/

�
:

It shows that F and A
1
2F both take values in X 1

2
in terms of properties A1

and A3, and so does the function g: Since, for any x1;x2 2X 1
2
;

kx2�x1k
2
D

1X
nD1

hx2�x1; eni
2

�

1X
nD1

n2hx2�x1; eni
2

� kx2�x1k 1
2
:

from which and conditions (iii) we see that .H1/ and .H2/ are satisfied. In
addition, G satisfies condition .H4/ while g verifies .H5/. From (i) it is
clear that F.t;u/ is bounded linear operator on X . Let h1.t/D h2.t/D sin t .
If conditions (3.1)-(3.3) are satisfied, then from Theorem 2, system (4.1)
admits a mild solution on Œ0;1� under the above assumptions.
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