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Abstract. T.Z. Mirković [14] obtained new inequalities of Wirtinger type by using some clas-
sical inequalities and special means for convex function. So in this paper, we obtain some in-
equalities of Wirtinger type for s-convex function, m-convex function, (α,m)-convex function,
quasi-convex function and P-function. Also several special cases are discussed, which can be
deduced from our main results.
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1. INTRODUCTION

W.Wirtinger proved the following Theorem 1 regarding periodic functions.The
proof of Wirtinger was published in 1916 in the book [5] by W. Blaschke.

Theorem 1. Let f be a periodic function with period 2π and let f
′ ∈ L2. Then, if∫ 2π

0 f (x)dx = 0, the following inequality holds

∫ 2π

0
f 2(x)dx ≤

∫ 2π

0
( f ′)2(x)dx (1.1)

with equality if and only if f (x) = Acosx+Bsinx, where A and B are constants.

Inequality (1.1) is known in the literature as Wirtinger’s inequality. Wirtinger’s
inequality compares the integral of a square of a function with that of a square of
its first derivative. Last years, a large number of papers which generalize and extend
Wirtinger’s inequality have been appeared in the literature (see [1], [4], [13] [15], [3],
[12], [17], [19]).

In 1905, E.Almansi proved the following theorem [2].
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Theorem 2. Let f and f ′ are continuous the interval (a,b), that f (a) = f (b) and
that

∫ b
a f (x)dx = 0 then the following inequality holds∫ b

a
f 2(x)dx ≤

(
b−a

2π

)2 ∫ b

a
[ f ′(x)]2dx. (1.2)

We recall some previously known definitions of different type of convexity.

Definition 1. The function f : [a,b]⊆R→R is said to be convex if the following
inequality holds

f (λx+(1−λ)y)≤ λ f (x)+(1−λ) f (y)

for all x,y ∈ [a,b] and λ ∈ [0,1]. We say that f is concave if (− f ) is convex.

Definition 2. (see [8],[16]) Let 0 < s ≤ 1. A function f : [0,∞)→ R is said to be
s-Orlicz convex or s-convex in the first sense, if for every x,y ∈ [0,∞) and α,β ≥ 0
with αs +βs = 1, we have:

f (αx+βy)≤ α
s f (x)+β

s f (y). (1.3)

We denote the set of all s-convex functions in the first sense by K1
s .

Definition 3. (see [6],[11]) Let 0 < s ≤ 1. A function f : [0,∞) → R, is said to
be s-Breckner convex or s-convex in the second sense, if for every x,y ∈ [0,∞) and
α,β ≥ 0 with α+β = 1, we have:

f (αx+βy)≤ α
s f (x)+β

s f (y). (1.4)

The set of all s-convex functions in the second sense is denoted by K2
s .

Definition 4. ([7]) A function f : I ⊆ R → R is P-function or that f belongs to
the class of P(I), if it is nonnegative and, for all x,y ∈ I and λ ∈ [0,1], satisfies the
following inequality;

f
(
λx+(1−λ)y

)
≤ f (x)+ f (y). (1.5)

Definition 5. (see, e.g., [9]) The function f : [0,b] → R is said to be m-convex,
where m ∈ [0,1], if for every x,y ∈ [0,b] and t ∈ [0,1] we have:

f (tx+m(1− t)y)≤ t f (x)+m(1− t) f (y).

Denote by Km(b) the set of the m-convex functions on [0,b] for which f (0)≤ 0.

Definition 6. (see, e.g., [9]) The function f : [0,b]→R is said to be (α,m)-convex,
where (α,m) ∈ [0,1]2, if for every x,y ∈ [0,b] and t ∈ [0,1] we have:

f (tx+m(1− t)y)≤ tα f (x)+m(1− tα) f (y).

Denote by Kα
m(b) the set of the (α,m)-convex functions on [0,b] for which f (0)≤ 0.
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Definition 7. [10] Let f : I ⊆R→R for all t ∈ [0,1] and all x,y∈ I, if the following
inequality

f (tx+(1− t)y)≤ max{ f (x), f (y)}

holds, then f is called a quasi-convex function on I.

We recall definition of Beta function (see, e.g., [18])

Definition 8. Assume that ℜ(a) > 0 and ℜ(b) > 0, the Beta function is denoted
by B(a,b) and defined as

B(a,b) =
∫ 1

0
ta−1 (1− t)b−1 dt.

An important property connecting the Gamma and Beta functions can be stated as
following:

B(a,b) =
Γ(a)Γ(b)
Γ(a+b)

.

T.Z. Mirković [14] proved the following theorems involving inequalities of Wir-
tinger type for convex functions.

Theorem 3. Let f and f ′ are continuous on the interval (a,b) , with f (a) = f (b)
and

∫ b
a f (x)dx = 0. If ( f ′)2 is convex on [a,b], then the following inequality holds∫ b

a
[ f (x)]2dx ≤ (b−a)3

8π2

(
[ f ′(a)]2 +[ f ′(b)]2

)
. (1.6)

Theorem 4. Let f and f ′ are continuous on the interval (a,b) , with f (a) = f (b)
and

∫ b
a f (x)dx = 0. If f ′ is convex on [a,b], then the following inequality holds∫ b

a
[ f (x)]2dx ≤ (b−a)3

(2π)2

(
[ f ′(a)]2 +[ f ′(a)][ f ′(b)]+ [ f ′(b)]2

3

)
. (1.7)

Theorem 5. Let f and f ′ are continuous on the interval (a,b) , with f (a) = f (b)

and
∫ b

a f (x)dx = 0. If f ′ is positive, ( f ′)
1
α and ( f ′)

1
β are convex on [a,b], then the

following inequality holds∫ b

a
[ f (x)]2dx (1.8)

≤ α(b−a)3 [ f
′(a)]

1
α +[ f ′(b)]

1
α

8π2 +β(b−a)3 [ f
′(a)]

1
β +[ f ′(b)]

1
β

8π2

where α,β > 0 and α+β = 1.
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2. MAIN RESULTS

In this section, we obtained some new inequalities of Wirtinger type for different
kinds of convex functions.

Theorem 6. Let f and f ′ are continuous on the interval (a,b) , with f (a) = f (b)
and

∫ b
a f (x)dx= 0. If ( f ′)2 is P-function on [a,b], then the following inequality holds:∫ b

a
[ f (x)]2dx ≤ (b−a)3

(2π)2

(
[ f ′(a)]2 +[ f ′(b)]2

)
. (2.1)

Proof. Since ( f ′)2 is a P-function on [a,b], therefore for t ∈ [0,1] we have

1
b−a

∫ b

a
[ f ′(x)]2dx =

∫ 1

0

[
f ′(ta+(1− t)b)

]2 dt

≤
∫ 1

0

(
[ f ′(a)]2 +[ f ′(b)]2

)
dt

= [ f ′(a)]2 +[ f ′(b)]2.

Multiplying the both sides of above inequality by (b−a)3

(2π)2 , we get(
b−a

2π

)2 ∫ b

a
[ f ′(x)]2dx ≤ (b−a)3

(2π)2

(
[ f ′(a)]2 +[ f ′(b)]2

)
.

By using inequality (1.2), we get inequality (2.1) and the proof is completed. □

Theorem 7. Let f and f ′ are continuous on the interval (a,b), 0 ≤ a < b, with
f (a) = f (b) and

∫ b
a f (x)dx = 0. If ( f ′)2 is s-convex in the second sense on [a,b], then

the following inequality holds:∫ b

a
[ f (x)]2dx ≤ (b−a)3

(2π)2

(
[ f ′(a)]2 +[ f ′(b)]2

s+1

)
where s ∈ (0,1]. (2.2)

Proof. Since ( f ′)2 is a s-convex function on [a,b], therefore for t ∈ [0,1], we have

1
b−a

∫ b

a
[ f ′(x)]2dx =

∫ 1

0

[
f ′(ta+(1− t)b)

]2 dt

≤
∫ 1

0

[
ts[ f ′(a)]2 +(1− t)s[ f ′(b)]2

]
dt

=
1

s+1
[

f ′(a)
]2
+

1
s+1

[
f ′(b)

]2
=

[ f ′(a)]2 +[ f ′(b)]2

s+1
.
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By multiplying by (b−a)3

(2π)2 , the both sides of above inequality, we can write(
b−a

2π

)2 ∫ b

a
[ f ′(x)]2dx ≤ (b−a)3

(2π)2
[ f ′(a)]2 +[ f ′(b)]2

(s+1)
.

With the help of the inequality (1.2), we obtain (2.2) and the proof is completed. □

Remark 1. In Theorem 7, if we choose s = 1, the inequality (2.2) reduces to the
inequality (1.6).

Theorem 8. Let f and f ′ are continuous on the interval (a,b) , with f (a) = f (b)
and

∫ b
a f (x)dx = 0. If ( f ′)2 is quasi-convex on [a,b], then the following inequality

holds: ∫ b

a
[ f (x)]2dx ≤ (b−a)3

(2π)2 max
{
[ f ′(a)]2, [ f ′(b)]2

}
. (2.3)

Proof. Since ( f ′)2 is a quasi-convex on [a,b], we have

1
b−a

∫ b

a
[ f ′(x)]2dx =

∫ 1

0

[
f ′(ta+(1− t)b)

]2 dt

≤
∫ 1

0
max

{
[ f ′(a)]2, [ f ′(b)]2

}
dt

= max
{
[ f ′(a)]2, [ f ′(b)]2

}
for t ∈ [0,1]. Multiplying the both sides of above inequality by (b−a)3

(2π)2 , we get(
b−a

2π

)2 ∫ b

a
[ f ′(x)]2dx ≤ (b−a)3

(2π)2 max
{
[ f ′(a)]2, [ f ′(b)]2

}
.

By using inequality (1.2) for the resulting inequality, the proof is completed. □

Theorem 9. Let f and f ′ are continuous on the interval (a,mb), 0 ≤ a < mb ,
with f (a) = f (mb) and

∫ mb
a f (x)dx = 0. If ( f ′)2 is m-convex function on [a,b], then

the following inequality holds∫ mb

a
[ f (x)]2dx ≤ (mb−a)3

(2π)2

[
[ f ′(a)]2 +m[ f ′(b)]2

2

]
(2.4)

for m ∈ [0,1].

Proof. By using the m-convexity of ( f ′)2 on [a,b], we have

1
mb−a

∫ mb

a
[ f ′(x)]2dx =

∫ 1

0

[
f ′(ta+m(1− t)b)

]2 dt

≤
∫ 1

0

(
t[ f ′(a)]2 +m(1− t)[ f ′(b)]2

)
dt

=
[ f ′(a)]2 +m[ f ′(b)]2

2
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for t ∈ [0,1]. Multiplying the both sides of above inequality by (mb−a)3

(2π)2 , we get(
mb−a

2π

)2 ∫ mb

a
[ f ′(x)]2dx ≤ (mb−a)3

(2π)2

[
[ f ′(a)]2 +m[ f ′(b)]2

2

]
By using inequality (1.2), we conclude the desired result. □

Remark 2. In Theorem 9, if we set m = 1, the inequality (2.4) reduces to the
inequality (1.6).

Theorem 10. Let f and f ′ are continuous on the interval (a,mb), 0 ≤ a < mb ,
with f (a) = f (mb) and

∫ mb
a f (x)dx = 0. If ( f ′)2 is (α,m)-convex on [a,b], then the

following inequality holds:∫ mb

a
[ f (x)]2dx ≤ (mb−a)3

(2π)2

[
[ f ′(a)]2 +αm[ f ′(b)]2

α+1

]
(2.5)

where (α,m) ∈ [0,1]2.

Proof. Since ( f ′)2 is a (α,m)-convex on [a,b], we have

1
mb−a

∫ mb

a
[ f ′(x)]2dx =

∫ 1

0

[
f ′(ta+m(1− t)b)

]2dt

≤
∫ 1

0

(
tα[ f ′(a)]2 +m(1− tα)[ f ′(b)]2

)
dt

=
1

α+1
[

f ′(a)
]2
+m

α

α+1
[

f ′(b)
]2

for t ∈ [0,1] and (α,m) ∈ [0,1]2. Multiplying the both sides of above inequality by
(mb−a)3

(2π)2 and using inequality (1.2) for the resulting inequality, we get the required
inequality. □

Remark 3. In Theorem 10, if we take m = 1 and α = 1 the inequality (2.5) reduces
to the inequality (1.6).

Theorem 11. Let f and f ′ are continuous on the interval (a,b) , with f (a) = f (b)
and

∫ b
a f (x)dx = 0. If f ′ is P-function on [a,b], then the following inequality holds:∫ b

a
[ f (x)]2dx ≤ (b−a)3

(2π)2

[
f ′(a)+ f ′(a)

]2
. (2.6)

Proof. By using the change of the variable, it is easy to see that(
b−a

2π

)2 ∫ b

a
[ f ′(x)]2dx =

(b−a)3

(2π)2

∫ 1

0

[
f ′(ta+(1− t)b)

]2 dt

≤ (b−a)3

(2π)2

∫ 1

0

[
f ′(a)+ f ′(b)

]2 dt
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=
(b−a)3

(2π)2

[
f ′(a)+ f ′(b)

]2
.

By using inequality (1.2), we get inequality (2.6) and the proof is completed. □

Theorem 12. Let f and f ′ are continuous on the interval (a,b) , with f (a) =
f (b) and

∫ b
a f (x)dx = 0. If f ′ is quasi-convex function on [a,b], then the following

inequality holds: ∫ b

a
[ f (x)]2dx ≤ (b−a)3

(2π)2

[
max

{
f ′(a), f ′(b)

}]2
. (2.7)

Proof. From the definition of quasi-convex functions and by using the change of
the variable, we have(

b−a
2π

)2 ∫ b

a
[ f ′(x)]2dx =

(b−a)3

(2π)2

∫ 1

0

[
f ′(ta+(1− t)b)

]2 dt

≤ (b−a)3

(2π)2

∫ 1

0

[
max

{
f ′(a), f ′(b)

}]2 dt

=
(b−a)3

(2π)2

[
max

{
f ′(a), f ′(b)

}]2
.

By using inequality (1.2) in the above inequality, the proof is completed. □

Theorem 13. Let f and f ′ are continuous on the interval (a,mb), 0 ≤ a < mb ,
with f (a) = f (mb) and

∫ mb
a f (x)dx = 0. If f ′ is m-convex function on [a,b], then the

following inequality holds:∫ mb

a
[ f (x)]2dx ≤ (mb−a)3

(2π)2

[
[ f ′(a)]2 +m[ f ′(a)][ f ′(b)]+m2[ f ′(b)]2

3

]
(2.8)

for m ∈ [0,1].

Proof. By using the m-convexity of f ′ on [a,b], we have(
mb−a

2π

)2 ∫ mb

a
[ f ′(x)]2dx =

(mb−a)3

(2π)2

∫ 1

0

[
f ′(ta+m(1− t)b)

]2dt

≤ (mb−a)3

(2π)2

∫ 1

0

[
t f ′(a)+m(1− t) f ′(b)

]2
dt

=
(mb−a)3

(2π)2

∫ 1

0

[
t2[ f ′(a)]2

+(2mt −2mt2) f ′(a) f ′(b)+(m2 −2m2t +m2t2)[ f ′(b)]2
]
dt

=
(mb−a)3

(2π)2

[
[ f ′(a)]2 +m[ f ′(a)][ f ′(b)]+m2[ f ′(b)]2

3

]
.

By using inequality (1.2) we get inequality (2.8) and the proof is complete. □
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Remark 4. In Theorem 13, if we take m = 1, the inequality (2.8) reduces to the
inequality (1.7)

Theorem 14. Let f and f ′ are continuous on the interval (a,mb), 0 ≤ a < mb ,
with f (a) = f (mb) and

∫ mb
a f (x)dx = 0. If f ′ is (α,m)-convex function on [a,b], then

the following inequality holds:∫ mb

a
[ f (x)]2dx ≤ (mb−a)3

(2π)2

[
(α+1)[ f ′(a)]2 +2mα[ f ′(a)][ f ′(b)]+2α2m2[ f ′(b)]2

(α+1)(2α+1)

]
(2.9)

(α,m) ∈ [0,1]2.

Proof. From the definition of f ′ and by using the change of the variable, we have(
mb−a

2π

)2 ∫ mb

a
[ f ′(x)]2dx =

(mb−a)3

(2π)2

∫ 1

0

[
f ′(ta+m(1− t)b)

]2dt

≤ (mb−a)3

(2π)2

∫ 1

0

[
tα f ′(a)+m(1− tα) f ′(b)

]2
dt

=
(mb−a)3

(2π)2

∫ 1

0

[
t2α[ f ′(a)]2

+(2mtα −2mt2α) f ′(a) f ′(b)+(m2 −2m2tα +m2t2α)[ f ′(b)]2
]
dt

=
(mb−a)3

(2π)2

[
(α+1)[ f ′(a)]2 +2mα[ f ′(a)][ f ′(b)]+2α2m2[ f ′(b)]2

(α+1)(2α+1)

]
.

By a similar argument to the proof of previous theorems, by using inequality (1.2),
we get the desired result. □

Remark 5. In Theorem 14, if we take m = 1, α = 1 the inequality (2.9) reduces to
the inequality (1.7)

Theorem 15. Let f and f ′ are continuous on the interval (a,b), 0 ≤ a < b , with
f (a) = f (b) and

∫ b
a f (x)dx = 0. If f ′ is s-convex function in the second sense on

[a,b], then the following inequality holds:∫ b

a
[ f (x)]2dx (2.10)

≤ (b−a)3

(2π)2

[
1

2s+1
[ f ′(a)]2 +2 B(s+1,s+1) f ′(a) f ′(b)+

1
2s+1

[ f ′(b)]2
]

for s ∈ (0,1].

Proof. Since f ′ is s-convex function in the second sense, we can write(
b−a

2π

)2 ∫ b

a
[ f ′(x)]2dx
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=
(b−a)3

(2π)2

∫ 1

0

[
f ′(ta+(1− t)b)

]2dt

≤ (b−a)3

(2π)2

∫ 1

0

[
ts f ′(a)+(1− t)s f ′(b)

]2dt

=
(b−a)3

(2π)2

∫ 1

0

[
t2s[ f ′(a)]2 +2ts(1− t)s f ′(a) f ′(b)+(1− t)2s[ f ′(b)]2

]
dt

=
(b−a)3

(2π)2

[
[ f ′(a)]2

∫ 1

0
t2sdt +2 f ′(a) f ′(b)

∫ 1

0
ts(1− t)sdt

+[ f ′(b)]2
∫ 1

0
(1− t)2sdt

]
=

(b−a)3

(2π)2

[
1

2s+1
[ f ′(a)]2 +2 B(s+1,s+1) f ′(a) f ′(b)+

1
2s+1

[ f ′(b)]2
]
.

By using inequality (1.2), we get inequality (2.10) and the proof is complete. □

Remark 6. In Theorem 15, if we take s = 1, the inequality (2.10) reduces to the
inequality (1.7)

Theorem 16. Let f and f ′ are continuous on the interval (a,b), 0 ≤ a < b , with

f (a) = f (b) and
∫ b

a f (x)dx = 0. If f ′ is positive, ( f ′)
1
α and ( f ′)

1
β are s-convex in the

second sense on [a,b], then the following inequality holds:∫ b

a
[ f (x)]2dx (2.11)

≤ (b−a)3

(2π)2

{
α

s+1

[
( f ′(a))

1
α +( f ′(b))

1
α

]
+

β

s+1

[
( f ′(a))

1
β +( f ′(b))

1
β

]}
where s ∈ (0,1], α,β > 0 and α+β = 1.

Proof. From the definition of ( f ′)
1
α and ( f ′)

1
β on [a,b], by using inequality cd ≤

αc
1
α +βd

1
β α,β,c,d > 0 and α+β = 1, we get(

b−a
2π

)2 ∫ b

a
[ f ′(x)]2dx

=
(b−a)3

(2π)2

∫ 1

0
f ′
(
ta+(1− t)b

)
f ′
(
ta+(1− t)b

)
dt

≤ (b−a)3

(2π)2

{
α

∫ 1

0

[
f ′
(
ta+(1− t)b

)] 1
α

dt +β

∫ 1

0

[
f ′
(
ta+(1− t)b

)] 1
β

dt

}

≤ (b−a)3

(2π)2

{
α

∫ 1

0

[
ts( f ′(a)

) 1
α +(1− t)s( f ′(b)

) 1
α

]
dt
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+β

∫ 1

0

[
ts( f ′(a)

) 1
β +(1− t)s( f ′(b)

) 1
β

]
dt

}

=
(b−a)3

(2π)2

{
α

[
1

s+1
(

f ′(a)
) 1

α +
1

s+1
(

f ′(b)
) 1

α

]

+β

[
1

s+1
(

f ′(a)
) 1

β +
1

s+1
(

f ′(b)
) 1

β

]}

=
(b−a)3

(2π)2

{
α

s+1

[(
f ′(a)

) 1
α +
(

f ′(b)
) 1

α

]
+

β

s+1

[(
f ′(a)

) 1
β +
(

f ′(b)
) 1

β

]}
.

By applying (1.2), we get required inequality (2.11) and the proof is complete. □

Remark 7. In Theorem 16, if we take s = 1, the inequality (2.11) reduces to the
inequality (1.8)

Theorem 17. Let f and f ′ are continuous on the interval (a,b) , with f (a) = f (b)

and
∫ b

a f (x)dx = 0. If f ′ is positive, ( f ′)
1
α and ( f ′)

1
β are P-function on [a,b], then the

following inequality holds:∫ b

a
[ f (x)]2dx (2.12)

≤ (b−a)3

(2π)2

{
α

[
( f ′(a))

1
α +( f ′(b))

1
α

]
+β

[
( f ′(a))

1
β +( f ′(b))

1
β

]}
where α,β > 0 and α+β = 1.

Proof. By using the inequality cd ≤ αc
1
α +βd

1
β α,β,c,d > 0 and α+β = 1 we get(

b−a
2π

)2 ∫ b

a
[ f ′(x)]2dx

=
(b−a)3

(2π)2

∫ 1

0
f ′
(
ta+(1− t)b

)
f ′
(
ta+(1− t)b

)
dt

≤ (b−a)3

(2π)2

{
α

∫ 1

0

[
f ′
(
ta+(1− t)b

)] 1
α

dt +β

∫ 1

0

[
f ′
(
ta+(1− t)b

)] 1
β

dt

}

≤ (b−a)3

(2π)2

{
α

∫ 1

0

[(
f ′(a)

) 1
α +
(

f ′(b)
) 1

α

]
dt

+β

∫ 1

0

[(
f ′(a)

) 1
β +
(

f ′(b)
) 1

β

]
dt

}
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=
(b−a)3

(2π)2

{
α

[(
f ′(a)

) 1
α +
(

f ′(b)
) 1

α

]
+β

[(
f ′(a)

) 1
β +
(

f ′(b)
) 1

β

]}
.

By applying (1.2), we get required inequality (2.12) and the proof is complete. □

Theorem 18. Let f and f ′ are continuous on the interval (a,b) , with f (a) = f (b)

and
∫ b

a f (x)dx = 0. If f ′ is positive, ( f ′)
1
α and ( f ′)

1
β are quasi-convex function on

[a,b], then the following inequality holds∫ b

a
[ f (x)]2dx (2.13)

≤ (b−a)3

(2π)2

{
α

[
max

{
( f ′(a))

1
α ,( f ′(b))

1
α

}]
+β

[
max

{
( f ′(a))

1
β ,( f ′(b))

1
β

}]}
where α,β > 0 and α+β = 1.

Proof. By a similar way to the previous theorem, but now by using the quasi-
convexity of ( f ′)

1
α and ( f ′)

1
β on [a,b], we get(

b−a
2π

)2 ∫ b

a
[ f ′(x)]2dx

=
(b−a)3

(2π)2

∫ 1

0
f ′
(
ta+(1− t)b

)
f ′
(
ta+(1− t)b

)
dt

≤ (b−a)3

(2π)2

{
α

∫ 1

0

[
f ′
(
ta+(1− t)b

)] 1
α

dt +β

∫ 1

0

[
f ′
(
ta+(1− t)b

)] 1
β

dt

}

≤ (b−a)3

(2π)2

{
α

∫ 1

0
max

{(
f ′(a)

) 1
α ,
(

f ′(b)
) 1

α

}
dt

+β

∫ 1

0
max

{(
f ′(a)

) 1
β ,
(

f ′(b)
) 1

β

}
dt

}

=
(b−a)3

(2π)2

{
α

[
max

{
( f ′(a))

1
α ,( f ′(b))

1
α

}]
+β

[
max

{
( f ′(a))

1
β ,( f ′(b))

1
β

}]}
.

By applying (1.2), we get required inequality (2.13) and the proof is complete. □

Theorem 19. Let f and f ′ are continuous on the interval (a,mb), 0 ≤ a < mb

, with f (a) = f (mb) and
∫ mb

a f (x)dx = 0. If f ′ is positive, ( f ′)
1
α and ( f ′)

1
β are m-

convex function on [a,b], then the following inequality holds∫ mb

a
[ f (x)]2dx (2.14)
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≤ α(mb−a)3 [ f
′(a)]

1
α +m [ f ′(b)]

1
α

8π2 +β(mb−a)3 [ f
′(a)]

1
β +m [ f ′(b)]

1
β

8π2

where m ∈ [0,1], α,β > 0 and α+β = 1.

Proof. By using the inequality cd ≤ αc
1
α +βd

1
β α,β,c,d > 0 and α+β = 1 and

m-convexity of ( f ′)
1
α and ( f ′)

1
β on [a,b], one can easily write(

mb−a
2π

)2 ∫ mb

a
[ f ′(x)]2dx

=
(mb−a)3

(2π)2

∫ 1

0
f ′(ta+m(1− t)b) f ′(ta+m(1− t)b)dt

≤ (mb−a)3

(2π)2

{
α

∫ 1

0

[
f ′(ta+m(1− t)b)

] 1
α dt

+β

∫ 1

0

[
f ′(ta+m(1− t)b)

] 1
β dt

}

≤ (mb−a)3

(2π)2

{
α

∫ 1

0

[
t
(

f ′(a)
) 1

α +m(1− t)
(

f ′(b)
) 1

α

]
dt

+β

∫ 1

0

[
t
(

f ′(a)
) 1

β +m(1− t)
(

f ′(b)
) 1

β

]
dt

=
(mb−a)3

(2π)2

{
α

(
[ f ′(a)]

1
α +m [ f ′(b)]

1
α

2

)

+β

(
[ f ′(a)]

1
β +m [ f ′(b)]

1
β

2

)}
.

By applying (1.2), we get required inequality (2.14) and the proof is complete. □

Remark 8. In Theorem 19, if we take m = 1, the inequality (2.14) reduces to the
inequality (1.8)

Theorem 20. Let f and f ′ are continuous on the interval (a,mb), 0 ≤ a < mb ,

with f (a) = f (mb) and
∫ mb

a f (x)dx = 0. If f ′ is positive, ( f ′)
1
θ and ( f ′)

1
β are (α,m)-

convex function on [a,b], then the following inequality holds∫ mb

a
[ f (x)]2dx (2.15)

≤ (mb−a)3

(2π)2

{
θ

(
[ f ′(a)]

1
θ +mα [ f ′(b)]

1
θ

α+1

)
+β

(
[ f ′(a)]

1
β +mα [ f ′(b)]

1
β

α+1

)}
where (α,m) ∈ [0,1]2,θ,β > 0 and θ+β = 1.



WIRTINGER TYPE INEQUALITIES 753

Proof. By using the same inequality and the similar computations to the proof of
the Theorem 19, we have(

mb−a
2π

)2 ∫ mb

a
[ f ′(x)]2dx

=
(mb−a)3

(2π)2

∫ 1

0
f ′(ta+m(1− t)b) f ′(ta+m(1− t)b)dt

≤ (mb−a)3

(2π)2

{
θ

∫ 1

0

[
f ′(ta+m(1− t)b)

] 1
θ dt

+β

∫ 1

0

[
f ′(ta+m(1− t)b)

] 1
β dt

}

≤ (mb−a)3

(2π)2

{
θ

∫ 1

0

[
tα
(

f ′(a)
) 1

θ +m(1− tα)
(

f ′(b)
) 1

θ

]
dt

+β

∫ 1

0

[
tα
(

f ′(a)
) 1

β +m(1− tα)
(

f ′(b)
) 1

β

]
dt

=
(mb−a)3

(2π)2

{
θ

(
[ f ′(a)]

1
θ +mα [ f ′(b)]

1
θ

α+1

)

+β

(
[ f ′(a)]

1
β +mα [ f ′(b)]

1
β

α+1

)}
.

By applying (1.2), this completes the proof. □

Remark 9. In Theorem 20, if we take m = 1, α = 1 the inequality (2.15) reduces
to the inequality (1.8).
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topologischen linearen Räumen,” Publ. Inst. Math., Nouv. Sér., vol. 23, pp. 13–20, 1978.
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