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Abstract. Inspired by the paper of Fazli and Nieto in [Open Math. 17 (2019) 499–512], we es-
tablish new existence and uniqueness result for a type of fractional Bagley–Torvik differential
equation. Reported result not only generalizes previous results but also adopts different tech-
nique. We finish this study by concluding remarks which discuss the preference of our theorem
compared to previous results. An example is constructed with specific parameters that requires
weaker conditions for the existence of a unique solution. Meanwhile, we construct an iterative
sequence that converges to the unique solution and can not be commented via the results of Fazli
and Nieto.
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1. INTRODUCTION

Guided by their popular applications, fractional differential equations have attrac-
ted the awareness of many researchers working in fields of science and engineering.
The existing literature on this topic not only covers its theoretical manifestation but
also describes its extensive applications in describing reallistic phenomena. The ap-
paratus of fractional calculus, in particular, are efficiently used and applied in model-
ing many engineering and scientific processes; we propose the popular monographs
[13, 19, 23] for readers’ consciousness.

Fractional differential equations have proved significant applications in many real
life aspects. For this, these type of equations has attracted the attention of many
researchers who produced several remarkable results in this regard. A particular em-
phasize of initial and boundary value problems which have been treated within frac-
tional order settings such as the Langevin equation, the Basset equation and Bagley–
Torvik equation which are popular in fluctuating environments, a incompressible vis-
cous fluid and viscoelasticity, respectively. Fractional Langevin equations have been
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systematically studied [1–5,11,16–18]. The latter two equations, however, have com-
parably gained less attention amongst researchers [6–10, 20, 25].

The Bagley–Torvik equation, which is our concern herein, of the form

ξu′′(ς)+ζD
3
2 u(ς)+ηu(ς) = ω(ς), 0 < ς ≤ 1, 1 < α < 2, (1.1)

appears in the modelling of the motion of a rigid plate immersed in a Newtonian fluid.
Here the prime denotes the classical derivative, D 3

2 is the Caputo fractional derivative
of order 3

2 , ω : [0,1]→R is a given function and ξ,ζ,η∈R, ξ ̸= 0. Equation (1.1) was
initially introduced in [25] and is thoroughly discussed in [23]. Particularly, the in-
vestigators have studied the analytical and numerical solutions of equation (1.1); see
for instance [12,14,21,22]. In [7], the equivalence between the Caputo and Riemann
derivatives are discussed and pointed out that they are identical in describing the lin-
ear viscoelastic material just under two minimal restrictions.

Recently in [15], Fazli and Nieto studied fractional Bagley–Torvik equation which
is in the form{(

D2 +Λ1Dα +Λ2
)
u(ς) = ω(ς), 0 < ς ≤ 1, 1 < α < 2,

u(0) = µ,u′(0) = ν,
(1.2)

under the same assumptions, µ,ν,Λ1 and Λ2 are real numbers and D2 := d2

dς2 . It is
clear that equation (1.2) is a generalization of (1.1) to an arbitrary order in fractional
derivative settings. The existence and approximations of solutions are proved for
equation (1.2) admitting only the existence of a lower (coupled lower and upper)
solution. The main results are obtained under certain assumptions and by use of an
appropriate fixed point theorem in partially ordered normed linear spaces. Equation
(1.2) is refereed to in the text as FBTE.

In this work, we extend the main results of [15] and establish an improved existence-
uniqueness theorem. Our result complements and generalizes the result of Fazli and
Nieto and also proves the main theorem using different technique. We end the paper
by a concluding remark that shows the preference of our theorem over the results of
[15]. An example is constructed with specific parameters that requires less restrictive
conditions for the existence of a unique solution. Meanwhile, we construct an iterat-
ive sequence that converges to the unique solution and can not be commented via the
results of [15].

2. ESSENTIAL BACKGROUND AND RESULTS OF [15]

This section assembles some basic definitions and concepts concerning with theory
of fractional calculus. For the terms and terminologies, the reader can consult one of
the monographs [13, 19, 23].
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The Riemann-Liouville fractional integral of order α > 0 for a function u : [0,1]→
R is defined as

I αu(ς) =
∫

ς

0

(ς− s)α−1

Γ(α)
u(s)ds, 0 ≤ ς ≤ 1, (2.1)

where Γ is the Gamma function. For a function u : [0,1]→ R, the Caputo derivative
of fractional order α ∈ R+ is defined as

Dαu(ς) =
1

Γ(n−α)

dn

dςn

∫
ς

0
(ς− s)n−α−1

(
u(s)−

n−1

∑
k=0

u(k)(0)
k!

sk
)

ds

= DnI n−α

(
u(ς)−

n−1

∑
k=0

u(k)(0)
k!

ς
k
)
,

(2.2)

where n−1 < α < n, provided that the right side is pointwise defined on [0,1]. Note
that if n−1 < α < n and u ∈ ACn−1[0,1], then

Dαu(ς) =
1

Γ(n−α)

∫
ς

0
(ς− s)n−α−1u(n)(s)ds

= I n−αu(n)(ς).

For the relationship between (2.1) and (2.2) and other properties of these notions, we
refer the reader to [13, 19, 23].

Lemma 1. [15] u is a solution of FBTE if and only if it is a solution of

u(ς) = µ+ν

(
ς+

Λ1

Γ(4−α)
ς

3−α

)
−Λ1I 3−αu′(ς)+ I 2

[
ω(ς)−Λ2u(ς)

]
, (2.3)

in the set C :=C1[0,1].

The main results of [15] are proved by the help of some fixed point theorems in
partially ordered metric spaces. Because the definition of coupled solutions becomes
different based on the sign of the product Λ1 ·Λ2, the proofs are presented in two
folds. We review the herein the two cases for the sake of completeness.

2.1. The case Λ1 ·Λ2 < 0

Definition 1. [15] An element (u0,v0) ∈ C ×C is said to be a coupled lower and
upper solution of FBTE if{

u′0(ς)≤ ν

(
1+ Λ1

Γ(3−α)ς
2−α

)
− Λ1

Γ(2−α)

∫ ς

0 (ς− τ)1−αv′0(τ)dτ+
∫ ς

0 [ω(τ)+ |Λ2|u0(τ)]dτ,

u0(0)≤ µ

and{
v′0(ς)≥ ν

(
1+ Λ1

Γ(3−α)ς
2−α

)
− Λ1

Γ(2−α)

∫ ς

0 (ς− τ)1−αu′0(τ)dτ+
∫ ς

0 [ω(τ)+ |Λ2|v0(τ)]dτ,

v0(0)≥ µ
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for all ς ∈ [0,1].

Theorem 1. [15] Let (u0,v0) ∈ C ×C be a coupled lower and upper solution of
FBTE and k1 := max{2|Λ2|, 2|Λ1|

Γ(3−α)}< 1.

I. Then FBTE has a unique solution u∗ ∈ C .
II. Moreover, there exist two monotone sequence {un} and {vn} such that both

sequences converge to u∗ in C .
III. Further, the following error estimates hold,

∥un −u∗∥C ≤ 1
2

kn
1

1− k1

(
∥u1 −u0∥C +∥v1 − v0∥C

)
,

∥vn −u∗∥C ≤ 1
2

kn
1

1− k1

(
∥u1 −u0∥C +∥v1 − v0∥C

)
,

∥un − vn∥C ≤
kn

1
1− k1

(
∥u1 −u0∥C +∥v1 − v0∥C

)
.

(2.4)

2.2. The case Λ1 ·Λ2 > 0

Definition 2. [15] An element u0 ∈ C is said to be a lower solution of FBTE if

u′0(ς)≤ H(ς) := ν

(
1+

Λ1

Γ(3−α)
ς

2−α

)
− Λ1

Γ(2−α)

∫
ς

0
(ς− τ)1−αu′0(τ)dτ

+
∫

ς

0
[ω(τ)−Λ2u0(τ)]dτ, (2.5)

u0(0)≤ µ

for all ς ∈ [0,1].

Theorem 2. [15] Let u0 ∈C be a lower solution of FBTE and k2 := |Λ2|+ |Λ1|
Γ(3−α) <

1.
I. Then FBTE has a unique solution u∗ ∈ C .

II. Moreover, the iterative sequence {un} defined by

un(ς) = µ+ν

(
ς+

Λ1

Γ(4−α)
ς

3−α

)
− Λ1

Γ(3−α)

∫
ς

0
(ς− τ)2−αu′n−1(τ)dτ

+
∫

ς

0
(ς− τ)[ω(τ)−Λ2un−1(τ)]dτ,

converges to u∗ in C .
III. Further, the following error estimates hold,

∥un −u∗∥C ≤
kn

2
1− k2

∥u1 −u0∥C ,

∥un+1 −un∥C ≤ kn
2∥u1 −u0∥C .
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3. MAIN RESULT

This segment is dedicated to our main theorem.

Theorem 3. Let k := |Λ2|+ |Λ1|
Γ(3−α) < 1.

I. Then, FBTE has a unique solution u∗ ∈ C .
II. Each sequence {un} along with an initial point u0 (not necessarily a lower

solution) given by

un(ς) = µ+ν

(
ς+

Λ1

Γ(4−α)
ς

3−α

)
− Λ1

Γ(3−α)

∫
ς

0
(ς− τ)2−αu′n−1(τ)dτ

+
∫

ς

0
(ς− τ)[ω(τ)−Λ2un−1(τ)]dτ,

converges to u∗ in C . In addition, the following error estimates hold,

∥un −u∗∥C ≤ kn

1− k
∥u1 −u0∥C ,

∥un+1 −un∥C ≤ kn∥u1 −u0∥C .

III. Further, if k1 = max{2|Λ2|, 2|Λ1|
Γ(3−α)} < 1, then, ∃ two sequences {Un} and

{Vn} such that both sequences converge to u∗ in C . Also, the following error
estimates are valid,

∥Un −u∗∥C ≤ 1
2

kn
1

1− k1

(
∥U1 −U0∥C +∥V1 −V0∥C

)
,

∥Vn −u∗∥C ≤ 1
2

kn
1

1− k1

(
∥U1 −U0∥C +∥V1 −V0∥C

)
, (3.1)

∥Un −Vn∥C ≤
kn

1
1− k1

(
∥U1 −U0∥C +∥V1 −V0∥C

)
. (3.2)

Proof. Let U := C be denoted the class of continuously differentiable functions
on finite interval [0,1]. Then, (U,∥.∥C ) is a Banach space with metric ∥u∥C =
max{∥u∥∞,∥u′∥∞}, where ∥u∥∞ = max0≤ς≤1 |u(ς)|.

Suppose ⊖ : U →U is defined by

⊖u(ς) = µ+ν

(
ς+

Λ1

Γ(4−α)
ς

3−α

)
− Λ1

Γ(3−α)

∫
ς

0
(ς− τ)2−αu′(τ)dτ

+
∫

ς

0
(ς− τ)[ω(τ)−Λ2u(τ)]dτ

for each ς ∈ [0,1].
It is clear that if u is a solution of FBTE, then it is equivalent to a fixed point u of

the operator ⊖.
Now, ∀ u,v ∈U and ς ∈ [0,1], we have

|⊖(u)(ς)−⊖(v)(ς)| ≤ |Λ1||I 3−αu′(ς)− I 3−αv′(ς)|+ |Λ2||I 2u(ς)− I 2v(ς)|
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≤ |Λ1|
Γ(4−α)

∥u′− v′∥∞ +
|Λ2|

2
∥u− v∥∞

≤
( |Λ2|

2
+

|Λ1|
Γ(4−α)

)
∥u− v∥C .

Then, for each u,v ∈U , ∥⊖(u)−⊖(v)∥∞ ≤
(
|Λ2|

2 + |Λ1|
Γ(4−α)

)
∥u− v∥C .

On the other hand, ∀ u,v ∈U and ς ∈ [0,1], we have

|⊖′(u)(ς)−⊖′(v)(ς)| ≤ |Λ1||I 2−αu′(ς)− I 2−αv′(ς)|+ |Λ2||I 1u(ς)− I 1v(ς)|

≤ |Λ1|
Γ(3−α)

∥u′− v′∥∞ + |Λ2|∥u− v∥∞

≤
(
|Λ2|+

|Λ1|
Γ(3−α)

)
∥u− v∥C .

Then, for each u,v ∈U , ∥⊖′(u)−⊖′(v)∥∞ ≤
(
|Λ2|+ |Λ1|

Γ(3−α)

)
∥u− v∥C .

Therefore, we get for each u,v ∈U ,

∥⊖(u)−⊖(v)∥C ≤
(
|Λ2|+

|Λ1|
Γ(3−α)

)
∥u− v∥C = k∥u− v∥C .

By Banach contraction principle, ∃ u∗ ∈ U such that u∗ = ⊖u∗. Also, ⊖ is a Picard
operator with limn→∞⊖nu = u∗, u ∈U .

The assertion II. of the theorem is an obvious consequence of the Banach con-
traction mapping principle. Now, we show that the assertion III. of the theorem is
correct.

Let (U0,V0) be an arbitrary element of U ×U (not necessarily a coupled lower and
upper solution). For each n ∈ N, we let

Un(ς) = µ+ν

(
ς+

Λ1

Γ(4−α)
ς

3−α

)
− Λ1

Γ(3−α)

∫
ς

0
(ς− τ)2−αV ′

n−1(τ)dτ

+
∫

ς

0
(ς− τ)[ω(τ)−Λ2Un−1(τ)]dτ,

and

Vn(ς) = µ+ν

(
ς+

Λ1

Γ(4−α)
ς

3−α

)
− Λ1

Γ(3−α)

∫
ς

0
(ς− τ)2−αU ′

n−1(τ)dτ

+
∫

ς

0
(ς− τ)[ω(τ)−Λ2Vn−1(τ)]dτ

for all ς ∈ [0,1].
It is easy to see that

∥Un −u∗∥∞ ≤ max
{
|Λ2|

2
,

|Λ1|
Γ(4−α)

}(
∥Un−1 −u∗∥C +∥Vn−1 −u∗∥C

)
, (3.3)
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∥Vn −u∗∥∞ ≤ max
{
|Λ2|

2
,

|Λ1|
Γ(4−α)

}(
∥Un−1 −u∗∥C +∥Vn−1 −u∗∥C

)
, (3.4)

∥U ′
n − (u∗)′∥∞ ≤ max

{
|Λ2|,

|Λ1|
Γ(3−α)

}(
∥Un−1 −u∗∥C +∥Vn−1 −u∗∥C

)
, (3.5)

and

∥V ′
n − (u∗)′∥∞ ≤ max

{
|Λ2|,

|Λ1|
Γ(3−α)

}(
∥Un−1 −u∗∥C +∥Vn−1 −u∗∥C

)
. (3.6)

Here, using (3.3) and (3.5), for each n ∈ N, we have

∥Un −u∗∥C ≤ max
{
|Λ2|,

|Λ1|
Γ(3−α)

}(
∥Un−1 −u∗∥C +∥Vn−1 −u∗∥C

)
≤ k1

2

(
∥Un−1 −u∗∥C +∥Vn−1 −u∗∥C

)
.

(3.7)

Furthermore, using (3.4) and (3.6), for each n ∈ N, we have

∥Vn −u∗∥C ≤ max
{
|Λ2|,

|Λ1|
Γ(3−α)

}(
∥Un−1 −u∗∥C +∥Vn−1 −u∗∥C

)
≤ k1

2

(
∥Un−1 −u∗∥C +∥Vn−1 −u∗∥C

)
.

(3.8)

By induction, (3.7) and (3.8), we obtain

∥Un −u∗∥C ≤
kn

1
2

(
∥U0 −u∗∥C +∥V0 −u∗∥C

)
, n ∈ N,

and

∥Vn −u∗∥C ≤
kn

1
2

(
∥U0 −u∗∥C +∥V0 −u∗∥C

)
.

Letting n → ∞ in above equations, we see that the sequences {Un} and {Vn} converge
to u∗.

A similar argument can also obtain the following relations:

∥Un+1 −Un∥C ≤
kn

1
2

(
∥U1 −U0∥C +∥V1 −V0∥C

)
,

and

∥Vn+1 −Vn∥C ≤
kn

1
2

(
∥U1 −U0∥C +∥V1 −V0∥C

)
.

Then for any m > n ≥ 1,

∥Um −Un∥C ≤
m−n−1

∑
j=0

∥Un+ j+1 −Un+ j∥C

≤
m−n−1

∑
j=0

kn+ j
1
2

(
∥U1 −U0∥C +∥V1 −V0∥C

)
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≤ 1
2

kn
1 − km

1
1− k1

(
∥U1 −U0∥C +∥V1 −V0∥C

)
,

and

∥Vm −Vn∥C ≤
m−n−1

∑
j=0

∥Un+ j+1 −Un+ j∥C

≤
m−n−1

∑
j=0

kn+ j
1
2

(
∥U1 −U0∥C +∥V1 −V0∥C

)
≤ 1

2
kn

1 − km
1

1− k1

(
∥U1 −U0∥C +∥V1 −V0∥C

)
.

Letting m → ∞, we conclude the error estimate (3.1) as following.

∥Un −u∗∥C ≤ 1
2

kn
1

1− k1

(
∥U1 −U0∥C +∥V1 −V0∥C

)
,

and

∥Vn −u∗∥C ≤ 1
2

kn
1

1− k1

(
∥U1 −U0∥C +∥V1 −V0∥C

)
.

Finally, (3.2) follows immediately from (3.1) □

Remark 1. Consider the following equations{
u′′(ς)+Λ1Dαu(ς) = h(ς), 0 < ς < 1,1 < α < 2,
u(0) = µ, u′(0) = ν,

(3.9)

and {
v′′(ς)+Λ1Dαv(ς) = h(ς), 0 < ς < 1,1 < α < 2,
v(1) = 0, v′(0) = 0. (3.10)

One may observe that if u is a solution of (3.9), then v(ς) = u(ς)−u(1)+(1−ς)u′(0)
is a solution of (3.10). Further, if v is a solution of (3.10), then u(ς) = v(ς)− v(0)+
µ+νt is a solution of (3.9). Note that, v′′(ς) = u′′(ς) and Dαv(ς) = Dαu(ς).

4. A CONCLUDING REMARK AND SOME EXAMPLES

An improved existence-uniqueness theorem is established for FBTE under more
relaxed assumptions. We prove our main result of this paper by using entirely differ-
ent approach. The feature of Theorem 3 in this paper compared to the consequences
of Theorem 3.4 and Theorem 3.6 of [15] can be viewed under:

• In Theorem 3.4 and Theorem 3.6 of [15], the authors needed the concept of
coupled solutions for FBTE, while Theorem 3 does not require this notion.

• Theorem 3.4 and Theorem 3.6 of [15] are based on the product Λ1 ·Λ2. The
proof of Theorem 3, however, is freelance of the Λ1 ·Λ2.
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• ⊖ is a Picard operator, that is,

lim
n→∞

⊖nu = u∗, u ∈U.

Therefore, for each u0 ∈U (not necessarily a lower solution), limn→∞ un = u∗,
where

un(ς) = µ+ν

(
ς+

Λ1

Γ(4−α)
ς

3−α

)
− Λ1

Γ(3−α)

∫
ς

0
(ς− τ)2−αu′n−1(τ)dτ

+
∫

ς

0
(ς− τ)[ω(τ)−Λ2un−1(τ)]dτ,

for each n ∈ N.
• That max{2|Λ2|, 2|Λ1|

Γ(3−α)}< 1 is an essential condition to prove the existence
and uniqueness in Theorem 3.4 of [15]. In Theorem 3, the existence and
uniqueness is established under the condition |Λ2|+ |Λ1|

Γ(3−α) < 1 which is less
restrictive.

• Remark 1 demonstrates that part (i) of Theorem 3.4 and Theorem 3.6 in [15]
are a weak version of Theorem 4.1 of [24] where we put T = 1,µ = 0,ϕ1 =
|Λ2| and ϕ2 = ϕ3 = 0.

Here, we provide an example that can not be discussed using Theorem 3.4 and
Theorem 3.6 of [15].

Consider the following particular FBTE{
u′′(ς)+ 3

5 D 4
3 u(ς)− 1

4 u(ς) = 1
10 ς2 − 1

4 ς− 8
√

ς√
π
, 0 < ς < 1,

u(0) = 0, u′(0) = 1.
(4.1)

Therefore, we get k = |Λ2|+ |Λ1|
Γ(3−α) = 0.9146393007 < 1. Thus, by Theorem 3,

equation (4.1) has a unique solution in C .
We observe that the product Λ1 ·Λ2 < 0 and

k1 = max
{

2|Λ2|,
2|Λ1|

Γ(3−α)

}
= 1.354055000 > 1.

Thus, Theorem 3.4 of [15] does not work herein.
Consider the following particular FBTE{

u′′(ς)− 2
5 D 3

2 u(ς)− 1
2 u(ς) = ω(ς), 0 < ς < 1,

u(0) = 0, u′(0) = 9
16 ,

(4.2)

where ω(ς)= −1
2 ς3− 3

4 ς2+ 183
32 ς−3− 4

√
ς(−3+4ς)

5
√

π
. Here Λ1 =

−2
5 ,Λ2 =

−1
2 ,α= 3

2 ,µ=

0 and ν = 9
16 . Therefore, we can obtain that k = |Λ2|+ |Λ1|

Γ(3−α) = 0.95135 < 1 and the

exact solution is u∗(ς) = ς3 − 3
2 ς2 + 9

16 ς. Thus, by Theorem 3, equation (4.2) has a
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unique solution u∗ ∈ C . Moreover, the iterative sequence {un} with an initial function
u0 (not necessarily a lower solution) defined by

un(ς) = µ+ν

(
ς+

Λ1

Γ(4−α)
ς

3−α

)
− Λ1

Γ(3−α)

∫
ς

0
(ς− τ)2−αu′n−1(τ)dτ

+
∫

ς

0
(ς− τ)[ω(τ)−Λ2un−1(τ)]dτ,

converges to u∗ in C . The graphs of un,n = 0,1,2 with the initial point u0(ς) = sin(ς)
are shown in Figure 1 whereas graphs with the initial point u0(ς) = cos(ς) are shown
in Figure 2. Here, it is important to say that Figure 3. shows that equation (2.5) is
not true for initial function u0(ς) = sin(ς). Then the mapping u0(ς) = sin(ς) is not a
lower solution of the problem (4.2). Hence, we can not conclude this approximations
by the consequences reported in [15].

FIGURE 1. The initial function is u0(ς) = sin(ς)

FIGURE 2. The initial function is u0(ς) = cos(ς)
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[24] S. Staněk, “Two-point boundary value problems for the generalized Bagley-Torvik fractional dif-
ferential equation,” Cent. Eur. J. Math., vol. 11, no. 3, pp. 574–593, 2013, doi: 10.2478/s11533-
012-0141-4.

http://dx.doi.org/10.15388/NA.2019.6.3
http://dx.doi.org/10.1122/1.549724
http://dx.doi.org/10.2514/3.9007
http://dx.doi.org/10.1098/rsta.1888.0003
http://dx.doi.org/10.1007/s40324-016-0089-6
http://dx.doi.org/10.1007/s40324-016-0089-6
http://dx.doi.org/10.1515/math-2019-0040
http://dx.doi.org/10.1007/s40995-020-00942-z
http://dx.doi.org/10.1140/epjst/e2018-00082-0
http://dx.doi.org/10.1115/1.3167616
http://dx.doi.org/10.1155/2015/591715
http://dx.doi.org/10.1186/s13662-019-2082-8
http://dx.doi.org/10.1186/s13662-019-2082-8
http://dx.doi.org/10.2478/s11533-012-0141-4
http://dx.doi.org/10.2478/s11533-012-0141-4


FRACTIONAL BAGLEY–TORVIK DIFFERENTIAL EQUATION 549

[25] P. J. Torvik and R. L. Bagley, “On the appearance of the fractional derivative in the behavior of
real materials,” J. Appl. Mech., vol. 51, pp. 294–298, 1984, doi: 10.1115/1.3167615.

Authors’ addresses

Hamid Baghani
(corresponding) Department of Mathematics, University of Sistan and Baluchestan, Zahedan, Iran.
E-mail address: h.baghani@gmail.com

Michal Fečkan
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