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Abstract. This paper focuses on the problems of a diagonal common quadratic Lyapunov func-
tion (DCQLF) existence for sets of stable positive linear time-invariant (LTI) systems. We derive
the equivalent algebraic conditions to verify the existence of a DCQLF, namely that the finite
number Hurwitz Mezler matrices at least have a common diagonal Stein solution. Finally some
reduced cases are considered.
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1. INTRODUCTION

In dynamical systems, an additional frequent and inherent constraint is the nonneg-
ativity of the states. Many physical systems in the real world involve variables that
have nonnegative sign: population levels, absolute temperature, concentration of sub-
stances, and so on. Such systems are referred to as positive systems which means that
any trajectory of the system starting at an initial state in the positive orthant remains
forever (see [4, 9]). This feature makes analysis and synthesis of positive systems a
challenging and interesting job (see, for example, [3,5,6,12] and references therein).

In this paper we are interested in the general stability properties of switched pos-
itive systems. Our objective in this paper is on the diagonal quadratic Lyapunov
function existence for such systems with stable subsystems. Diagonal quadratic Lya-
punov functions play a central role in the study of positive linear time-invariant(LTI)
systems. For general LTI systems ˙A W Px.t/D Ax.t/ with A 2 Rn�n and the corres-
ponding Stein matrix inequalities

ATP CPA < 0;

This work was supported by the Foundation of National Nature Science of China (Grant
No.11326128 and No.61473239) and supported by the Fundamental Research Funds for the Central
Universities (Grant No.2682014BR038 and No.2682013BR029).

c 2014 Miskolc University Press



594 XIU LIU, LAN SHU, AND XIUYONG DING

where P 2 Rn�n is positive definite symmetric matrix, we can find a P satisfying
the Stein matrix inequalities if and only if A is stable, i.e., each eigenvalue of A has
negative real part. We call such a positive definite matrix Stein solution for A. If
we can find a Stein solution D D P in the set of diagonal matrices, we say A is
diagonally stable, and V.x/D xTDx is called a diagonal quadratic Lyapunov func-
tion for system ˙A. We also say a set of matrices is simultaneously diagonal stable
if there exists a diagonal matrix that is a Stein solution D for all matrices belong-
ing such a set. Here V.x/ D xTDx is called a DCQLF for the LTI systems with
these matrices. In practice, the diagonal Lyapunov functions are required to assure
the stability of quantized systems if a finite precision arithmetic is used to calculate
the states of systems[14]. The basic results about the diagonal Lyapunov functions
were presented by [15]. This question has attracted a great deal of attention in the
past [1,2,10,11,13,16–20]. In general, the solution approaches on diagonal stability
problem follows three distinct lines of enquiry. One line can be concluded from the
work of [11,20] and others. By checking the negative diagonal entry existence of the
matrix AX for all positive semi-definite X , the authors attempted to derive algebraic
conditions to verify the existence of a DCQLF. The second line is mainly based on
the structure of several convex cones that arise in the study of DCQLF[13]. The au-
thors considered a pair of positive LTI systems and demonstrated how this structure
can be used to derive conditions for the existence of such functions. The authors of
[17–19] provided the third approach. Through making use of both A and A�1, the
author derived the diagonal stability conditions. In particular, conditions for diagonal
stability are given in his paper in terms of a common quadratic Lyapunov function
existence problem for a pair of lower dimensional systems constructed from A and
A�1.

The purpose of this paper is to present some results about the simultaneous di-
agonal stability of Hurwitz Metzler matrices. By showing a common diagonal Stein
solution existence for a finite number Hurwitz Metzler matrices, we object to determ-
ine some tractable conditions for the existence of a DCQLF for sets of positive LTI
systems. The organization of this paper is as follows. The preparations will be made
in Section 2. Section 3 is dedicated to derive some checkable necessary and sufficient
conditions on the problem of DCQLF existence for a finite number of positive LTI
systems. Some concluding remarks are presented in Section 4.

2. PRELIMINARIES

Throughout, R denotes the set of all real numbers, Rn stands for the n-dimensional
real vector space and Rn�n is the space of n�nmatrices. For A in Rn�n, akl denotes
the element in the .k; l/ position of A. A� 0.� 0/ means that all elements of matrix
A are nonnegative (nonpositive) and A� 0.� 0/ means that all elements of matrix A
are positive (negative). A� B.A� B/ implies that all elements of matrix A�B are
nonnegative (positive). The notion A > 0.< 0/ means that A is a symmetric positive
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(negative) definite matrix andA� 0.� 0/means that matrixA is symmetrical positive
(negative) semi-definite. A D 0 implies that all elements of A are zero and A ¤ 0
stands for non-zero matrix. AT .A�1/ represents the transpose (inverse) of matrix A.
Let N D f0;1;2;3; � � � g. �.A/ represents the eigenvalue of A and �.A/ denotes the
real part of the eigenvalue �.A/ of A. Also, when referring to the linear switched
systems in this paper, stability shall be used to denote uniform asymptotic stability
under arbitrary switching signals. Before proceeding, we recall some facts which are
relevant for the work of this paper.

Firstly, Perron-Frobenius Theorem pointed in the following guarantees that the
eigen-space of irreducible matrix[7] A corresponding to �.A/ is one dimensional.

Lemma 1. Given an irreducible matrix A� 0 in Rn�n, then

(1) �.A/ is an eigenvalue of A with algebraic multiplicity one.
(2) There exists a vector x � 0 such that Ax D �.A/x.

In [6], Farina and Rinaldi described the basic theory and several applications of
positive linear systems. Such systems relate to Metzler and Hurwitz matrices. A
matrix A is called a Metzler matrix if and only if akl � 0 for k ¤ l , and Hurwitz
matrix if and only if the real part �.A/ of the eigenvalue �.A/ satisfies �.A/ < 0.
Now we collect some facts to introduce positive systems.

Theorem 1. ForA2Rn�n, consider the associated LTI system˙A W x.t/DAx.t/
with the initial condition x0 D x.0/, then the following statements are equivalent.

(1) The LTI system ˙A is positive.
(2) For all t � 0, the condition x0 � 0 implies that x.t/� 0.
(3) A is a Metzler matrix.

Theorem 1 actually gives the definition of positive systems. Furthermore, a classic
result guarantees the stability of positive LTI systems.

Theorem 2. The positive LTI system ˙A is stable if and only if A 2 Rn�n is a
Hurwitz Metzler matrix.

Therefore, from Theorem 1 and 2, when referring to Hurwitz Metzler matrices
in the sequel, this is equivalent to the stable positive LTI systems. Applying the
properties of Hurwitz Metzler matrix, some results follows straightforward.

Lemma 2 ([13]). Assume A 2 Rn�n is a Metzler matrix such that akl ¤ 0 for
1� k; l � n, and a diagonal matrix D 2 Rn�n satisfies D � 0 and D ¤ 0. Then

(1) The matrix ATDCDA is Metzler.
(2) The matrix ATDCDA is irreducible.

Here if replacing akl ¤ 0 with irreducible and Hurwitz properties of A, we can
also derive that ATDCDA are Metzler and irreducible.
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Lemma 3. Let matricesA;B in Rn�n be Hurwitz Metzler, for any diagonal matrix
D 2 Rn�n, then ATDCDAD 0 if and only if BTDCDB D 0.

Lemma 4 ([8]). Assume that A;B in Rn�n are Metzler matrices with akl ;bkl ¤ 0
for 1� k; l � n, respectively. If A� B and A is Hurwitz, then B is also Hurwitz.

Paper [8] pointed that, for two Hurwitz Metzler matrices A;B and any positive
number ı, the Hurwitz of matrix pencil ACıB is equivalent to its non-singular prop-
erty. This fact can be easy to extend the finite numbers case as follows.

Lemma 5. Suppose that A1; � � � ;Am are Hurwitz Metzler in Rn�n, for all positive
real numbers ı1; � � � ; ım, then the following statements are equivalent.

(1)
Pm
jD1 ıjAj is a Hurwitz matrix.

(2) The determination det
Pm
jD1 ıjAj ¤ 0.

As stable LTI systems have diagonal Lyapunov functions, it is natural to ask under
what conditions families of such systems will possess a DCQLF. The next section
shall focus on this problem.

3. DIAGONAL STABILITY

In this section, a necessary and sufficient condition for the existence of a DCQLF
will be derived for sets of stable positive LTI systems. To be more precise, assume
that A1; � � � ;Am in Rn�n are Hurwitz Metzler matrices with no zero entries, Theorem
3 provides a equivalent condition for the existence of a positive definite diagonal
matrix D in Rn�n such that ATj DCDAj < 0 for all j D 1; � � � ;m.

However, before stating that theorem, we need the following technical result.

Lemma 6. Assume that A1; � � � ;Am 2 Rn�n are Hurwitz Metzler matrices satisfy-
ing ajkl ¤ 0 for 1� k; l � n and 1� j �m, then there exist some diagonal matrices
Dj > 0 in Rn�n such that

mX
jD1

detDjAjDj D 0 (3.1)

holds if the following conditions are satisfied:

(1) The positive LTI systems ˙A1
; � � � ;˙Am

have no DCQLF.
(2) There is a diagonal matrix QD 2 Rn�n satisfying QD � 0 and QD ¤ 0 such that

ATj
QDC QDAj � 0; 8j D 1; � � � ;m: (3.2)

Proof. The proof of this lemma is broken into three steps.
Step 1: We claim that there exist m vectors yj � 0 in Rn such that

.ATj
QDC QDAj /yj D 0; 8j D 1; � � � ;m: (3.3)



DCQLFS FOR SETS OF POSITIVE LTI SYSTEMS 597

For simplicity, write QRj D ATj QDC QDAj . In fact, for each j , since Aj 2 Rn�n

with ajkl ¤ 0 .1� k; l � n/ is Metzler matrices, and diagonal matrix QD � 0; QD ¤ 0,
it is easy to check from Lemma 2 that QRj is also irreducible Metzler matrices. Then
in this case, there is ˛ > 0 large enough such that QRj C˛I � 0. Obviously, QRj C˛I
is also irreducible, together (3.2) and Lemma 1 yields that �. QRj C ˛I / D ˛ is an
eigenvalue of algebraic multiplicity one for QRj C˛I . This implies that �. QRj /D 0 is
an eigenvalue of algebraic multiplicity one for QRj , Therefore, the rank of QRj is n�1.
Finally, by Lemma 1, we can conclude that there exist m vectors yj � 0 such that
(3.3) holds for all j as the claim.

Step 2: We wish to show that there is no diagonal matrix OD 2 Rn�n satisfying

yTj .A
T
j
ODC ODAj /yj < 0; 8j D 1; � � � ;m; (3.4)

where yj defined by (3.3).
To this end, conversely, for any vectors xj � 0, suppose that there are some di-

agonal OD satisfying (3.4) for all j . We shall find a diagonal D > 0 in Rn�n such
that

ATj DCDAj < 0 (3.5)

simultaneously hold for all j , which would contradict with statement (1).
With this in mind, for all j , consider the sets

j̋ D fy 2 Rn W yT y D 1 and yT .ATj
ODC ODAj /y � 0g: (3.6)

Now distinguish two cases.
Case 1: j̋ D¿ for all j .
Under this case, yT .ATj ODC ODAj /y < 0 with yT y D 1, together with (3.2) yields

that for any positive constant �j > 0,

yT
�
ATj .

QDC �j OD/C . QDC �j OD/Aj

�
y < 0: (3.7)

Since the inequality (3.7) is unchange if we scale y by any non-zero real number.
That is, each QDC �j OD > 0 results from the Hurwitz of Aj . (3.5) thus holds by
setting D D QDC � OD with � DminmjD1f�j g. A contradiction occurs.

Case 2: j̋ ¤¿ for all j .
For vector y 2 Rn with yT y D 1, note that (3.4) is true as assumption, then yj 2

Rn= j̋ , it follows from (3.3) that for any y 2 j̋

yT .ATj
QDC QDAj /y < 0: (3.8)

Now consider two subcases: y 2 j̋ and y 2 Rn= j̋ .
On the one hand, if y 2 j̋ , then

yT .ATj
ODC ODAj /y � 0: (3.9)
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From (3.8) and (3.9), one can guarantee the following inequality

yT
�
ATj .

QDC �
0

j
OD/C . QDC �

0

j
OD/Aj

�
y < 0 (3.10)

holds, where �
0

j < j
QMj j= OMj with

OMj DmaxfyT .ATj ODC ODAj /yjy 2 j̋ g;

QMj DmaxfyT .ATj QDC QDAj /yjy 2 j̋ g:

Then it is easy to see that (3.10) holds for any y 2 Rn. This means that QDC�
0

j
OD > 0.

Therefore, (3.5) holds by setting D D QDC �
0
OD with �

0

D minf�
0

j ;j D 1; � � � ;mg,
which contradict with statement (1).

On the other hand, if y 2 Rn= j̋ , then yT .ATj ODC ODAj /y < 0, taking (3.2) into
account yields that for �

0

j

yT
�
ATj .

QDC �
0

j
OD/C . QDC �

0

j
OD/Aj

�
y < 0: (3.11)

With the same discussion as case y 2 j̋ , a contradiction shall occur.
Now based on the argument above, we thus know that (3.4) is not true.
Step 3: Now it remains to show that there exist m diagonal matrices Dj > 0 .j D

1; : : : ;m/ such that (3.1) holds.
In Step 2, we have shown that there is no diagonal solution to (3.4) for all j . Now

for diagonal OD, Hurwitz Metzler matrices Aj and vector yj � 0, it follows that

yTjk
.ATjk

ODC ODAjk
/yjk

< 0;1� k � l �1

,yTjk
.ATjk

ODC ODAjk
/yjk

> 0;l � k �m
(3.12)

with jk 2 f1; � � � ;mg and 1� l < m. On the other hand, from Lemma 3 we can know

yT1 .A
T
1
ODC ODA1/y1 D 0, �� � , yTm.A

T
m
ODC ODAm/ym D 0: (3.13)

Furthermore, taking (3.13) and (3.12) into account, we can obtain that for a constant
c > 0

l�1X
kD1

yTjk
.ATjk

ODC ODAjk
/yjk
D�c

mX
kDl

yTjk
.ATjk

ODC ODAjk
/yjk

: (3.14)

From (3.14) we may replace yjk
with yjk

=
p
c, in this case, due to yj � 0, now fix a

vector yju
.1� u� l �1/, then for any vector yj .j ¤ ju/, we can find a associated

diagonal matrix Dj > 0 for all j such that

Dju
yju
DDjyj : (3.15)
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Moreover, substituting (3.15) into (3.14) yields that

yTju
.ATju

ODC ODAju
/yju
C

l�1X
k¤u;kD1

yTju
Dju

D�1jk
.ATjk

ODC ODAjk
/D�1jk

Dju
yju

D�

mX
kDl

yTju
Dju

D�1jk
.ATjk

ODC ODAjk
/D�1jk

Dju
yju
: (3.16)

By induction, (3.16) implies

det

24.ATju
ODC ODAju

/C

mX
k¤u;kD1

Dju
D�1jk

.ATjk

ODC ODAjk
/D�1jk

Dju

35D 0: (3.17)

Now pre- and post-multiplying (3.17) byD�1ju
, respectively, then (3.17) is equivalent

to

det

24 mX
jD1

D�1j .ATj
ODC ODAj /D

�1
j

35D 2det
mX
jD1

D�1j ATj
ODD�1j D 0: (3.18)

As diagonal matrices are commutative, for all j , replacing D�1j in (3.18) by Dj ,
(3.1) follows immediately. This completes the proof. �

Theorem 3. Givenm Hurwitz Metzler matrices A1; � � � ;Am 2Rn�n with ajkl ¤ 0
for 1� k; l � n and j D 1; � � � ;m, then the following statements are equivalent:

(1) The positive LTI systems ˙A1
; � � � ;˙Am

share a DCQLF.
(2) For any m diagonal matrices Dj > 0 in Rn�n,

det
mX
jD1

DjAjDj ¤ 0: (3.19)

Proof. (1)) (2) According to definition of DCQLFs, the statement implies that
for all j and diagonal matrix D > 0

ATj DCDAj < 0 (3.20)

simultaneous hold. By (3.20), for any diagonal Dj > 0, we have

.DjAjDj /
TDCD.DjAjDj /DDj .A

T
j DCDAj /Dj < 0: (3.21)

One can further get from (3.21) that

.

mX
jD1

DjAjDj /
TDCD.

mX
jD1

DjAjDj /D

mX
jD1

Dj .A
T
j DCDAj /Dj < 0: (3.22)

That is,
Pm
jD1DjAjDj is a Hurwitz matrix and thus non-singular.

(2)) (1). We shall prove this by contradiction. First of all, suppose that the
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statement (1) is not true, i.e. ˙A1
; � � � ;˙Am

have no DCQLF. In this case, for all j , if
choose sufficiently large �j > 0, then there is always a DCQLF for
˙A1��1I ; � � � ;˙Am��mI . Now, for any j D 1; � � � ;m, define

Q�j D inf
˚
�j > 0j˙A1��1I ; � � � ;˙Am��mI have a DCQLF

	
;

and further let Q� D minf Q�j ;j D 1; � � � ;mg. Then according to Lemma 3, one can
check that the matrices A1� Q�I ; � � � ;Am� Q�I satisfy the conditions of Lemma 6.
Then there exist m diagonal matrices Dj > 0 such that

det
mX
jD1

Dj .Aj � Q�I /Dj D 0: (3.23)

Moreover, from (3.23), matrix
Pm
jD1DjAjDj has a positive real eigenvalue and thus

is not Hurwitz. Note that all DjAjDj are Hurwitz Metzler matrices, it follows from
Lemma 5 that there exist positive real numbers ı1; � � � ; ım such that

det
mX
jD1

ıjDjAjDj D 0: (3.24)

Finally, for all j , replacing
p
ıjDj in (3.20) by Dj , it turn out that the statement (2)

is not true in this case. This completes the proof. �

The above result follows from the problem of determining whether a DCQLF ex-
ists for sets of positive LTI systems. We have presented a equivalent condition for
such problem through algebraic argument. Obviously, if sets of positive LTI systems
share a DCQLF, each individual LTI system must have a DCQLF.

Note that the comments below Lemma 2, in Theorem 3, if we replace the condition
of ajkl ¤ 0 with the irreducibility of A1; � � � ;Am, then the necessary and sufficient
condition between statements (1) and (2) also holds. Next we shall consider some
reduced cases. These results are straightforward from Theorem 3.

Corollary 1. If A1; � � � ;Am 2 Rn�n are Hurwitz diagonal matrices, then LTI sys-
tems ˙A1

; � � � ;˙Am
are positive and thus share a DCQLF.

Under diagonal matrices, Corollary 1 just restricts the Hurwitz properties of sys-
tem matrices. In fact, as Hurwitz diagonal, the positivity and irreducibility are natur-
ally satisfied. Next we consider upper and lower triangular matrices.

Corollary 2. Suppose that A1; � � � ;Am 2 Rn�n with ajkl ¤ 0 for 1 � k; l � n are
Hurwitz Metzler matrix. If A1; � � � ;Am 2 Rn�n are upper (lower) triangular, then
positive LTI systems ˙A1

; � � � ;˙Am
have a DCQLF.

Applying Lemma 4, Corollary 3 and 4 follow immediately.
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Corollary 3. For i;j D 1; � � � ;m, given m Metzler matrices A1; � � � ;Am 2 Rn�n

with ajkl ¤ 0 for 1 � k; l � n. If there is a matrix Aj such that Aj is Hurwitz and
satisfies Aj � Ai for i ¤ j , then positive LTI systems ˙A1

; � � � ;˙Am
have a DCQLF.

Corollary 4. For i;j D 1; � � � ;m, given m Metzler matrices A1; � � � ;Am 2 Rn�n

with ajkl ¤ 0 for 1 � k; l � n, and some diagonal Dj > 0. If there is a matrix Aj
such that Aj is Hurwitz and satisfies DjAjDj � Ai for i ¤ j , then positive LTI
systems ˙A1

; � � � ;˙Am
have a DCQLF.

For 2�2 Hurwitz matrices with negative diagonal entries, this is equivalent to the
determinants being positive. We thus obtain the following result.

Corollary 5. If Hurwitz Metzler matrices A1; � � � ;Am with ajkl ¤ 0 .1� k; l � n/
are in R2�2, then positive LTI systems ˙A1

; � � � ;˙Am
share a DCQLF.

4. CONCLUSIONS

In this paper, a necessary and sufficient condition for the existence of a DCQLF
has been derived for families of positive LTI systems. By algebraic argument, we
answered that under what conditions a finite number Hurwitz Metzler matrices have a
common diagonal Stein solution. In other words, the simultaneous diagonal stability
can be achieved for system matrices of positive LTI systems. Furthermore some
results for reduced cases followed from such a result.
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